1
|
Li K, Chen Y, Sheng Y, Tang D, Cao Y, He X. Defects in mRNA splicing and implications for infertility: a comprehensive review and in silico analysis. Hum Reprod Update 2025; 31:218-239. [PMID: 39953708 DOI: 10.1093/humupd/dmae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND mRNA splicing is a fundamental process in the reproductive system, playing a pivotal role in reproductive development and endocrine function, and ensuring the proper execution of meiosis, mitosis, and gamete function. Trans-acting factors and cis-acting elements are key players in mRNA splicing whose dysfunction can potentially lead to male and female infertility. Although hundreds of trans-acting factors have been implicated in mRNA splicing, the mechanisms by which these factors influence reproductive processes are fully understood for only a subset. Furthermore, the clinical impact of variations in cis-acting elements on human infertility has not been comprehensively characterized, leading to probable omissions of pathogenic variants in standard genetic analyses. OBJECTIVE AND RATIONALE This review aimed to summarize our current understanding of the factors involved in mRNA splicing regulation and their association with infertility disorders. We introduced methods for prioritizing and functionally validating splicing variants associated with human infertility. Additionally, we explored corresponding abnormal splicing therapies that could potentially provide insight into treating human infertility. SEARCH METHODS Systematic literature searches of human and model organisms were performed in the PubMed database between May 1977 and July 2024. To identify mRNA splicing-related genes and pathogenic variants in infertility, the search terms 'splice', 'splicing', 'variant', and 'mutation' were combined with azoospermia, oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella, acephalic spermatozoa, disorders of sex development, early embryonic arrest, reproductive endocrine disorders, oocyte maturation arrest, premature ovarian failure, primary ovarian insufficiency, zona pellucida, fertilization defects, infertile, fertile, infertility, fertility, reproduction, and reproductive. OUTCOMES Our search identified 5014 publications, of which 291 were included in the final analysis. This review provided a comprehensive overview of the biological mechanisms of mRNA splicing, with a focus on the roles of trans-acting factors and cis-acting elements. We highlighted the disruption of 52 trans-acting proteins involved in spliceosome assembly and catalytic activity and recognized splicing regulatory regions and epigenetic regulation associated with infertility. The 73 functionally validated splicing variants in the cis-acting elements of 54 genes have been reported in 20 types of human infertility; 27 of them were located outside the canonical splice sites and potentially overlooked in standard genetic analysis due to likely benign or of uncertain significance. The in silico prediction of splicing can prioritize potential splicing abnormalities that may be true pathogenic mechanisms. We also summarize the methods for prioritizing splicing variants and strategies for functional validation and review splicing therapy approaches for other diseases, providing a reference for abnormal reproduction treatment. WIDER IMPLICATIONS Our comprehensive review of trans-acting factors and cis-acting elements in mRNA splicing will further promote a more thorough understanding of reproductive regulatory processes, leading to improved pathogenic variant identification and potential treatments for human infertility. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Kuokuo Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yuge Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yuying Sheng
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Liu T, Rahim F, Yang ML, Uddin M, Ye JW, Ali I, Raza Y, Mansoor A, Shoaib M, Hussain M, Khan I, Shah B, Khan A, Nisar A, Ma H, Xu B, Shah W, Shi QH. Novel homozygous SPAG17 variants cause human male infertility through multiple morphological abnormalities of spermatozoal flagella related to axonemal microtubule doublets. Asian J Androl 2025; 27:245-253. [PMID: 39686771 PMCID: PMC11949450 DOI: 10.4103/aja202496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/05/2024] [Indexed: 12/18/2024] Open
Abstract
ABSTRACT Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella (MMAF). Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement. Mammalian sperm-associated antigen 17 ( SPAG17 ) encodes a conserved axonemal protein of cilia and flagella, forming part of the C1a projection of the central apparatus, with functions related to ciliary/flagellar motility, skeletal growth, and male fertility. This study investigated two novel homozygous SPAG17 mutations (M1: NM_206996.2, c.829+1G>T, p.Asp212_Glu276del; and M2: c.2120del, p.Leu707*) identified in four infertile patients from two consanguineous Pakistani families. These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa. Quantitative real-time polymerase chain reaction (PCR) of patients' spermatozoa also revealed a significant decrease in SPAG17 mRNA expression, and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella. However, no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients. Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls. Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17 (SPATA17), a component of the C1a projection, and sperm-associated antigen 6 (SPAG6), a marker of the spring layer, revealed disrupted expression of both proteins in the patients' spermatozoa. Altogether, these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme, expanding the phenotypic spectrum of SPAG17 mutations in humans.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Fazal Rahim
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Lei Yang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meftah Uddin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Jing-Wei Ye
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Imtiaz Ali
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Yousaf Raza
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Abu Mansoor
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shoaib
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Mujahid Hussain
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ihsan Khan
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Basit Shah
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Asad Khan
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ahmad Nisar
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Bo Xu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Wasim Shah
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Qing-Hua Shi
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
3
|
Sun X, Wang C, Li S, Liu X, Li Y, Wang Y, Niu Y, Ren Z, Yang X, Yang X, Liu Y. Folic acid alleviates the negative effects of dexamethasone induced stress on production performance in Hyline Brown laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:54-65. [PMID: 39949729 PMCID: PMC11821403 DOI: 10.1016/j.aninu.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025]
Abstract
Multiple stressors are believed to deteriorate production performance and cause substantial economic losses in commercial poultry farming. Folic acid (FA) is an antioxidant compound that can improve oocyte function and regulate gut microbiota composition. The current study was conducted to investigate the role of FA in alleviating stress and improving production performance. Sixty Hyline Brown laying hens at 21 weeks of age were randomly divided into three groups, with 10 replicates in each group and each replicate containing two chickens. Each group received basic diet and saline injection (Con group), basic diet with dexamethasone (DXM) injection (DXM group), or basic diet supplemented with FA (13 mg/kg in the premix) with DXM injection (FA group). The feeding trial lasted five weeks. Birds in the DXM and FA groups receiving subcutaneous DXM injections at a dosage of 4.50 mg/kg per day during the first seven days of the trial. Results showed that the levels of corticosterone, triglyceride, total cholesterol, and malondialdehyde in serum were significantly increased in the DXM group (P < 0.05), while the concentrations of FA and 5-methyltetrahydrofolate were decreased in the DXM group (P < 0.05). Laying hens in the DXM group had lower laying rates and egg quality, including egg weight, eggshell thickness, eggshell strength, albumen height, and Haugh units (P < 0.05). Conversely, FA alleviated these negative impacts. Through transcriptome analysis, a total of 247 and 151 differentially expressed genes were identified among the three groups, and 32 overlapped genes were further identified. Moreover, 44 and 59 differential metabolites were influenced by DXM and FA, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment from the transcriptome and metabolomics showed that the reduced production performance may be due to the disturbance of oocyte production, calcium metabolism, and oxidative stress. Analysis of 16S rRNA gene amplicon sequences revealed the differential microbial composition and potential functional changes among the different groups. LEfSe analysis showed that Mucispirillum and Nautella were the predominant bacteria in the DXM group, while Clostridium was the predominant bacteria in the FA group. Functional prediction demonstrated that stressors enhanced fatty acid biosynthesis, while betaine biosynthesis and retinol metabolism were elevated in the FA group. Dietary FA reversed the elevated levels of bile acids (BA), including cholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid (P < 0.05). The DXM group showed an overall decrease in short-chain fatty acids (SCFA), but FA restored the concentrations of acetic acid, propionic acid, and isobutyric acid (P < 0.05). In conclusion, this study reveals that dietary FA can alleviate the degradation of production performance caused by stress through improving circulating antioxidant capacity, maintaining intestinal microbiota homeostasis, and regulating SCFA and BA biosynthesis. Thus, highlighting the prominent role of gut microbe-host interactions in alleviating multi-stresses.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sijing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yumeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Chen J, Ren C, Zhao S, Wu H, Wang J, Dong Y, Liu S, Pan Y, Xiao Z, Yang S, Zhang J, Liu M. CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility. Cell Mol Life Sci 2025; 82:61. [PMID: 39853433 PMCID: PMC11759756 DOI: 10.1007/s00018-025-05583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025]
Abstract
Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants. The knockout mice displayed severe sperm flagellar defects (MMAF), high hydrocephalus incidence, but no significant impact on respiratory cilia. Similarly, the patients exhibited MMAF and infertility without respiratory symptoms. CFAP65 was found to anchor at the base of the C2a projection of the axoneme, interacting with proteins such as CFAP70 and MYCBPAP. Loss of CFAP65 caused disorganization of the sperm head-shaping microtubule structure and impaired protamine precursor removal, leading to nuclear condensation defects and poor assisted reproductive outcomes. Importantly, the assembly of CFAP65 was unaffected in mice with defects in the radial spokes (RSs) and nexin-dynein regulatory complex (N-DRC), indicating that CFAP65 assembly is independent of these components. However, CFAP65 deficiency led to the disintegration of the C2a projection, compromising ciliary and flagellar integrity. These findings establish CFAP65 as an essential component of the C2a projection, critical for the structure and function of sperm flagella and ependymal cilia, but not respiratory cilia, underscoring the organ-specific consequences of C2a projection defects in PCD.
Collapse
Affiliation(s)
- Jinyi Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Chuan Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiaxiong Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhuang Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shenmin Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, China.
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Harima R, Hara K, Tanemura K. TCTEX1D2 is essential for sperm flagellum formation in mice. Sci Rep 2025; 15:2413. [PMID: 39827215 PMCID: PMC11743150 DOI: 10.1038/s41598-024-83424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear. One such subunit is TCTEX1D2. Co-immunoprecipitation studies showed that TCTEX1D2 interacted with cytoplasmic dynein 2 subunits WDR34, WDR60, and DYNLT1 in the testes. Furthermore, TCTEX1D2 also interacted with WDR63 and WDR78, subunits of inner dynein arm, which is axonemal dynein. Tctex1d2-/- mice generated in this study exhibited male infertility due to flagellar dysplasia, and the axonemal structures were disrupted inside the flagella. Further, the localization of cytoplasmic dynein 2 subunits was abnormal in in Tctex1d2-/- mice. In contrast, the motile cilia of Tctex1d2-/- mice were normal. Overall, we revealed that TCTEX1D2 is important for the assembly of cytoplasmic dynein 2 and inner dynein arm and functions in two distinct dynein complexes during mouse sperm flagellum formation. This is only in sperm flagellum formation, not in cilia formation.
Collapse
Affiliation(s)
- Ryua Harima
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
- Laboratory of Reproductive Technology (Repro-SOLEIL), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
6
|
Muroňová J, Lambert E, Thamwan C, Wehbe Z, Court M, Chevalier G, Escoffier J, Kherraf ZE, Coutton C, Nef S, Ray PF, Loeuillet C, Martinez G, Arnoult C. A comprehensive study of the sperm head defects in MMAF condition and their impact on embryo development in mice. Mol Hum Reprod 2025; 31:gaaf006. [PMID: 40070084 DOI: 10.1093/molehr/gaaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/30/2024] [Indexed: 03/30/2025] Open
Abstract
Among rare cases of teratozoospermia, MMAF (multiple morphological abnormalities of the flagellum) syndrome is a complex genetic disorder involving at least 70 different genes. As the name suggests, patients with MMAF syndrome produce spermatozoa with multiple flagellar defects, rendering them immobile and non-fertilizing, leading to complete infertility in affected men. The only viable treatment option is ICSI. What is less understood is the presence of the various types of head defects in the spermatozoa, which are consistently present. Due to the involvement of numerous genes and the limited number of patients with MMAF syndrome, research on head defects and their impact on embryonic development remains insufficiently explored. To address these questions, a comparative study was conducted under controlled experimental conditions using four knockout (KO) mouse lines targeting Cfap43, Cfap44, Armc2, and Ccdc146 genes, all associated with MMAF syndrome in humans and mice. Each KO line underwent a detailed examination of nuclear defects, including morphology, DNA compaction, chromosomal architecture, and ploidy. The study revealed significant heterogeneity among the four lineages, with the extent of defects varying depending on the lineage, ranked as Ccdc146-/- > Cfap43-/- > Armc2-/- ≈ Cfap44-/-. The developmental potential of sperm from males in each lineage was assessed by injecting them into wild-type oocytes, and embryo development was monitored up to the blastocyst stage. Sperm from all KO lines exhibited a marked decrease in supporting embryo development compared to the wild-type, with developmental failure rates ranked as follows: Ccdc146 > Cfap43 > Armc2 > Cfap44-deficient sperm. The degree of developmental failure thus correlated with the severity of nuclear defects, and zygotes produced with sperm from Ccdc146-/- and Cfap43-/- mice showed the highest rates of developmental impairment. These findings from preclinical models highlight the heterogeneous nature of MMAF syndrome, both in terms of sperm nuclear defects and developmental potentials. Genetic characterization in humans is therefore crucial for improving therapeutic counselling in affected individuals.
Collapse
Affiliation(s)
- Jana Muroňová
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Emeline Lambert
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Chanyuth Thamwan
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Zeina Wehbe
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Magali Court
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Zine-Eddine Kherraf
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, France
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, France
| | - Corinne Loeuillet
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| |
Collapse
|
7
|
Cai X, Zhang H, Kong S, Xu W, Zheng J, Wang N, He S, Li S, Shen Y, Wang K, Zhang Z, Cai H, Ma F, Bai S, Zhu F, Xiao F, Wang F. TMEM232 is required for the formation of sperm flagellum and male fertility in mice. Cell Death Dis 2024; 15:806. [PMID: 39516485 PMCID: PMC11549365 DOI: 10.1038/s41419-024-07200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Asthenoteratozoospermia is a major cause of male infertility. Thus far, the identified related genes can explain only a small share of asthenoteratozoospermia cases, suggesting the involvement of other genes. The transmembrane protein TMEM232 is highly expressed in mouse testes. In the present study, to determine its function of TMEM232 in testes, we constructed a Tmem232-null mouse model using CRISPR-Cas9 technology. Tmem232 knockout (KO) male mice was completely infertile, and their sperm were immotile, with morphological defects of the flagellum. Electron microscopy revealed an aberrant midpiece-principal junction and the loss of the fourth outer microtubule doublet in the sperm of Tmem232-/- mice. Sperm cells presented an 8 + 2 conformation and an irregular arrangement of the mitochondrial sheath. Proteomic analysis revealed altered expression of proteins related to flagellar motility, sperm capacitation, the integrity and stability of sperm structure, especially an upregulated expression of multiple ribosome components in TMEM232-deficient spermatids. Additionally, TMEM232 was observed to be involved in autophagy by interacting with autophagy-related proteins, such as ATG14, to regulate ribosome homeostasis during spermiogenesis. These results suggest that TMEM232, as a potential scaffold protein involving in the correct assembly, distribution, and stability maintenance of certain functional complexes by recruiting key intracellular proteins, is essential for the formation of a highly structured flagellum and plays an important role in the autophagic elimination of cytosolic ribosomes to provide energy for sperm motility.
Collapse
Affiliation(s)
- Xinying Cai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Weilong Xu
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Jie Zheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Ning Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shuai He
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shupei Li
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yiru Shen
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Ke Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Zengyunou Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Haijian Cai
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Fang Ma
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Fuxi Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fengli Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Stallmeyer B, Dicke AK, Tüttelmann F. How exome sequencing improves the diagnostics and management of men with non-syndromic infertility. Andrology 2024. [PMID: 39120565 DOI: 10.1111/andr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non-syndromic forms of all aetiologic sub-categories in the last decade. This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non-syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision-making and appropriate genetic counseling. Future advances in androgenetics will continue to depend on large-scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene-disease relationship.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| |
Collapse
|
10
|
Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development 2024; 151:dev202838. [PMID: 39036999 DOI: 10.1242/dev.202838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Barbotin AL, Boursier A, Jourdain AS, Moerman A, Rabat B, Chehimi M, Thuillier C, Ghoumid J, Smol T. Identification of a novel CFAP61 homozygous splicing variant associated with multiple morphological abnormalities of the flagella. J Assist Reprod Genet 2024; 41:1499-1505. [PMID: 38775994 PMCID: PMC11224159 DOI: 10.1007/s10815-024-03139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
In this study, we investigated the role of a newly identified homozygous variant (c.1245 + 6T > C) in the CFAP61 gene in the development of multiple morphologically abnormal flagella (MMAF) in an infertile patient. Using exome sequencing, we identified this variant, which led to exon 12 skipping and the production of a truncated CFAP61 protein. Transmission electron microscopy analysis of the patient's spermatozoa revealed various flagellar abnormalities, including defective nuclear chromatin condensation, axoneme disorganization, and mitochondria embedded in residual cytoplasmic droplets. Despite a fertilization rate of 83.3% through ICSI, there was no successful pregnancy due to poor embryo quality.Our findings suggest a link between the identified CFAP61 variant and MMAF, indicating potential disruption in radial spokes' assembly or function crucial for normal ciliary motility. Furthermore, nearly half of the observed sperm heads displayed chromatin condensation defects, possibly contributing to the low blastulation rate. This case underscores the significance of genetic counseling and testing, particularly for couples dealing with infertility and MMAF. Early identification of such genetic variants can guide appropriate interventions and improve reproductive outcomes.
Collapse
Affiliation(s)
- Anne-Laure Barbotin
- UMRS1172 Development and Plasticity of the Neuroendocrine Brain, University of Lille, Lille, France
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU Lille, Lille, France
| | - Angèle Boursier
- UMRS1172 Development and Plasticity of the Neuroendocrine Brain, University of Lille, Lille, France
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU Lille, Lille, France
| | - Anne-Sophie Jourdain
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France
- Institut de Génétique Médicale, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | | | - Baptiste Rabat
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France
| | - Mariam Chehimi
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU Lille, Lille, France
| | - Caroline Thuillier
- Institut de Génétique Médicale, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | - Jamal Ghoumid
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France
- Clinique de Génétique Guy Fontaine, CHU Lille, Lille, France
| | - Thomas Smol
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France.
- Institut de Génétique Médicale, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France.
| |
Collapse
|
12
|
Wei X, Wang X, Yang C, Gao Y, Zhang Y, Xiao Y, Ju Z, Jiang Q, Wang J, Liu W, Li Y, Gao Y, Huang J. CFAP58 is involved in the sperm head shaping and flagellogenesis of cattle and mice. Development 2024; 151:dev202608. [PMID: 38602507 DOI: 10.1242/dev.202608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
CFAP58 is a testis-enriched gene that plays an important role in the sperm flagellogenesis of humans and mice. However, the effect of CFAP58 on bull semen quality and the underlying molecular mechanisms involved in spermatogenesis remain unknown. Here, we identified two single-nucleotide polymorphisms (rs110610797, A>G and rs133760846, G>T) and one indel (g.-1811_ g.-1810 ins147bp) in the promoter of CFAP58 that were significantly associated with semen quality of bulls, including sperm deformity rate and ejaculate volume. Moreover, by generating gene knockout mice, we found for the first time that the loss of Cfap58 not only causes severe defects in the sperm tail, but also affects the manchette structure, resulting in abnormal sperm head shaping. Cfap58 deficiency causes an increase in spermatozoa apoptosis. Further experiments confirmed that CFAP58 interacts with IFT88 and CCDC42. Moreover, it may be a transported cargo protein that plays a role in stabilizing other cargo proteins, such as CCDC42, in the intra-manchette transport/intra-flagellar transport pathway. Collectively, our findings reveal that CFAP58 is required for spermatogenesis and provide genetic markers for evaluating semen quality in cattle.
Collapse
Affiliation(s)
- Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yanqin Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Muroňová J, Kherraf ZE, Giordani E, Lambert E, Eckert S, Cazin C, Amiri-Yekta A, Court M, Chevalier G, Martinez G, Neirijnck Y, Kühne F, Wehrli L, Klena N, Hamel V, De Macedo L, Escoffier J, Guichard P, Coutton C, Mustapha SFB, Kharouf M, Bouin AP, Zouari R, Thierry-Mieg N, Nef S, Geimer S, Loeuillet C, Ray PF, Arnoult C. Lack of CCDC146, a ubiquitous centriole and microtubule-associated protein, leads to non-syndromic male infertility in human and mouse. eLife 2024; 12:RP86845. [PMID: 38441556 PMCID: PMC10942651 DOI: 10.7554/elife.86845] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.
Collapse
Affiliation(s)
- Jana Muroňová
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Elsa Giordani
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Emeline Lambert
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Simon Eckert
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Caroline Cazin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Amir Amiri-Yekta
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Magali Court
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Geneviève Chevalier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Francoise Kühne
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Nikolai Klena
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Virginie Hamel
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Lisa De Macedo
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Jessica Escoffier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Paul Guichard
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | | | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Anne-Pacale Bouin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Nicolas Thierry-Mieg
- Laboratoire TIMC/MAGe, CNRS UMR 5525, Pavillon Taillefer, Faculté de MedecineLa TroncheFrance
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Stefan Geimer
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Corinne Loeuillet
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Christophe Arnoult
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| |
Collapse
|
14
|
Chen Y, Luo M, Tu H, Qi Y, Guo Y, Zhang X, Cui Y, Gao M, Zhou X, Zhu T, Zhu H, Situ C, Li Y, Guo X. STYXL1 regulates CCT complex assembly and flagellar tubulin folding in sperm formation. Nat Commun 2024; 15:44. [PMID: 38168070 PMCID: PMC10761714 DOI: 10.1038/s41467-023-44337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Tubulin-based microtubule is a core component of flagella axoneme and essential for sperm motility and male fertility. Structural components of the axoneme have been well explored. However, how tubulin folding is regulated in sperm flagella formation is still largely unknown. Here, we report a germ cell-specific co-factor of CCT complex, STYXL1. Deletion of Styxl1 results in male infertility and microtubule defects of sperm flagella. Proteomic analysis of Styxl1-/- sperm reveals abnormal downregulation of flagella-related proteins including tubulins. The N-terminal rhodanese-like domain of STYXL1 is important for its interactions with CCT complex subunits, CCT1, CCT6 and CCT7. Styxl1 deletion leads to defects in CCT complex assembly and tubulin polymerization. Collectively, our findings reveal the vital roles of germ cell-specific STYXL1 in CCT-facilitated tubulin folding and sperm flagella development.
Collapse
Affiliation(s)
- Yu Chen
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Medical Research Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Mengjiao Luo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiqiang Cui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengmeng Gao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tianyu Zhu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Hwang JY, Chai P, Nawaz S, Choi J, Lopez-Giraldez F, Hussain S, Bilguvar K, Mane S, Lifton RP, Ahmad W, Zhang K, Chung JJ. LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility. eLife 2023; 12:RP90095. [PMID: 38091523 PMCID: PMC10721216 DOI: 10.7554/elife.90095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Radial spokes (RS) are T-shaped multiprotein complexes on the axonemal microtubules. Repeated RS1, RS2, and RS3 couple the central pair to modulate ciliary and flagellar motility. Despite the cell type specificity of RS3 substructures, their molecular components remain largely unknown. Here, we report that a leucine-rich repeat-containing protein, LRRC23, is an RS3 head component essential for its head assembly and flagellar motility in mammalian spermatozoa. From infertile male patients with defective sperm motility, we identified a splice site variant of LRRC23. A mutant mouse model mimicking this variant produces a truncated LRRC23 at the C-terminus that fails to localize to the sperm tail, causing male infertility due to defective sperm motility. LRRC23 was previously proposed to be an ortholog of the RS stalk protein RSP15. However, we found that purified recombinant LRRC23 interacts with an RS head protein RSPH9, which is abolished by the C-terminal truncation. Evolutionary and structural comparison also shows that LRRC34, not LRRC23, is the RSP15 ortholog. Cryo-electron tomography clearly revealed that the absence of the RS3 head and the sperm-specific RS2-RS3 bridge structure in LRRC23 mutant spermatozoa. Our study provides new insights into the structure and function of RS3 in mammalian spermatozoa and the molecular pathogenicity of LRRC23 underlying reduced sperm motility in infertile human males.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale UniversityNew HavenUnited States
- Department of Molecular Biology, Pusan National UniversityBusanRepublic of Korea
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale UniversityNew HavenUnited States
| | - Shoaib Nawaz
- Department of Biotechnology, Faculty of BiologicalSciences, Quaid-i-Azam UniversityIslamabadPakistan
| | - Jungmin Choi
- Department of Genetics, YaleSchool of Medicine, Yale UniversityNew HavenUnited States
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
| | | | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam UniversityIslamabadPakistan
| | - Kaya Bilguvar
- Department of Genetics, YaleSchool of Medicine, Yale UniversityNew HavenUnited States
- Yale Center forGenome Analysis, Yale UniversityWest HavenUnited States
| | - Shrikant Mane
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller UniversityNew YorkUnited States
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of BiologicalSciences, Quaid-i-Azam UniversityIslamabadPakistan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam UniversityIslamabadPakistan
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale UniversityNew HavenUnited States
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale UniversityNew HavenUnited States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
16
|
Yao Y, Shi B, Zhang X, Wang X, Li S, Yao Y, Guo Y, Chen D, Wang B, Yuan Y, Sha J, Guo X. Germ cell-specific deletion of Pex3 reveals essential roles of PEX3-dependent peroxisomes in spermiogenesis. J Biomed Res 2023; 38:24-36. [PMID: 38062668 PMCID: PMC10818173 DOI: 10.7555/jbr.37.20230055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 01/29/2024] Open
Abstract
Peroxisomes are organelles enclosed by a single membrane and are present in various species. The abruption of peroxisomes is correlated with peroxisome biogenesis disorders and single peroxisomal enzyme deficiencies that induce diverse diseases in different organs. However, little is known about the protein compositions and corresponding roles of heterogeneous peroxisomes in various organs. Through transcriptomic and proteomic analyses, we observed heterogenous peroxisomal components among different organs, as well as between testicular somatic cells and different developmental stages of germ cells. As Pex3 is expressed in both germ cells and Sertoli cells, we generated Pex3 germ cell- and Sertoli cell-specific knockout mice. While Pex3 deletion in Sertoli cells did not affect spermatogenesis, the deletion in germ cells resulted in male sterility, manifested as the destruction of intercellular bridges between spermatids and the formation of multinucleated giant cells. Proteomic analysis of the Pex3-deleted spermatids revealed defective expressions of peroxisomal proteins and spermiogenesis-related proteins. These findings provide new insights that PEX3-dependent peroxisomes are essential for germ cells undergoing spermiogenesis, but not for Sertoli cells.
Collapse
Affiliation(s)
- Yejin Yao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Baolu Shi
- Reproductive and Genetic Branch, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuangyue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Yao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dingdong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
17
|
Ma Y, Wu B, Chen Y, Ma S, Wang L, Han T, Lin X, Yang F, Liu C, Zhao J, Li W. CCDC146 is required for sperm flagellum biogenesis and male fertility in mice. Cell Mol Life Sci 2023; 81:1. [PMID: 38038747 PMCID: PMC11072088 DOI: 10.1007/s00018-023-05025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Multiple morphological abnormalities of the flagella (MMAF) is a severe disease of male infertility, while the pathogenetic mechanisms of MMAF are still incompletely understood. Previously, we found that the deficiency of Ccdc38 might be associated with MMAF. To understand the underlying mechanism of this disease, we identified the potential partner of this protein and found that the coiled-coil domain containing 146 (CCDC146) can interact with CCDC38. It is predominantly expressed in the testes, and the knockout of this gene resulted in complete infertility in male mice but not in females. The knockout of Ccdc146 impaired spermiogenesis, mainly due to flagellum and manchette organization defects, finally led to MMAF-like phenotype. Furthermore, we demonstrated that CCDC146 could interact with both CCDC38 and CCDC42. It also interacts with intraflagellar transport (IFT) complexes IFT88 and IFT20. The knockout of this gene led to the decrease of ODF2, IFT88, and IFT20 protein levels, but did not affect CCDC38, CCDC42, or ODF1 expression. Additionally, we predicted and validated the detailed interactions between CCDC146 and CCDC38 or CCDC42, and built the interaction models at the atomic level. Our results suggest that the testis predominantly expressed gene Ccdc146 is essential for sperm flagellum biogenesis and male fertility, and its mutations might be associated with MMAF in some patients.
Collapse
Affiliation(s)
- Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Tingting Han
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Xiaolei Lin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Fulin Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Zhu W, Mao J, Qin J, Chen X. CFAP61 knockdown aggravates male infertility by inhibiting testosterone secretion by Leydig cells via the MAPK/COX-2 pathway. Funct Integr Genomics 2023; 23:340. [PMID: 37982895 DOI: 10.1007/s10142-023-01271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to elucidate the roles of cilia- and flagella-associated protein 61 (CFAP61) in male infertility and its underlying mechanisms. CFAP61 expression levels in the testicular tissues of male patients with infertility were determined using quantitative real-time polymerase chain reaction, immunohistochemical assay, and western blotting. Moreover, the specific roles of CFAP61 in male infertility were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, and enzyme-linked immunosorbent assays. Here, CFAP61 was expressed at low levels in the testicular tissues of male patients with infertility. Functionally, CFAP61 knockdown reduced the Leydig cell viability and testosterone secretion and enhanced apoptosis. A mechanistic study further revealed that silencing CFAP61 promoted the expression levels of mitogen-activated protein kinase (MAPK)/cyclooxygenase-2 (COX-2) signaling pathway-related proteins (p-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (p-JNK), p-P38, and COX-2). In conclusion, CFAP61 knockdown facilitated male infertility by suppressing Leydig cell viability and testosterone secretion and enhanced cell apoptosis by activating the MAPK/COX-2 pathway. Our data suggest CFAP61 as a potential therapeutic target for male infertility.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
19
|
Hwang JY, Chai P, Nawaz S, Choi J, Lopez-Giraldez F, Hussain S, Bilguvar K, Mane S, Lifton RP, Ahmad W, Zhang K, Chung JJ. LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530050. [PMID: 36865175 PMCID: PMC9980178 DOI: 10.1101/2023.02.25.530050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radial spokes (RS) are T-shaped multiprotein complexes on the axonemal microtubules. Repeated RS1, RS2, and RS3 couple the central pair to modulate ciliary and flagellar motility. Despite the cell type specificity of RS3 substructures, their molecular components remain largely unknown. Here, we report that a leucine-rich repeat-containing protein, LRRC23, is an RS3 head component essential for its head assembly and flagellar motility in mammalian spermatozoa. From infertile male patients with defective sperm motility, we identified a splice site variant of LRRC23. A mutant mouse model mimicking this variant produces a truncated LRRC23 at the C-terminus that fails to localize to the sperm tail, causing male infertility due to defective sperm motility. LRRC23 was previously proposed to be an ortholog of the RS stalk protein RSP15. However, we found that purified recombinant LRRC23 interacts with an RS head protein RSPH9, which is abolished by the C-terminal truncation. Evolutionary and structural comparison also shows that LRRC34, not LRRC23, is the RSP15 ortholog. Cryo-electron tomography clearly revealed that the absence of the RS3 head and the sperm-specific RS2-RS3 bridge structure in LRRC23 mutant spermatozoa. Our study provides new insights into the structure and function of RS3 in mammalian spermatozoa and the molecular pathogenicity of LRRC23 underlying reduced sperm motility in infertile human males.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Present address, Department of Molecular Biology, Pusan National University, Pusan, South Korea, 43241
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT, 06510
| | - Shoaib Nawaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Present address, Department of Human Genetics, Sidra Medicine, Doha, Qatar, 26999
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea, 02841
| | | | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Present address, Clinical and Molecular Metabolism Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland, 00250
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Yale Center for Genome Analysis, Yale University, West Haven, CT, 06516
| | - Shrikant Mane
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea, 02841
- Yale Center for Genome Analysis, Yale University, West Haven, CT, 06516
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, 10065
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT, 06510
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, 06510
| |
Collapse
|
20
|
Sha Y, Liu W, Tang S, Zhang X, Xiao Z, Xiao Y, Deng H, Zhou H, Wei X. TENT5D disruption causes oligoasthenoteratozoospermia and male infertility. Andrology 2023; 11:1121-1131. [PMID: 36746179 DOI: 10.1111/andr.13407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/06/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oligoasthenoteratozoospermia (OAT) is one of the most complex aggregators of male gametic problems. However, the genetic etiology of OAT is still largely unknown. OBJECTIVES To reveal the new genetic factors responsible for male infertility owning to OAT and reveal the outcomes of the affected patients from intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS Two infertile men with typical OAT were recruited in 2018 and retrospected a cohort that included 47 patients with OAT from 2013 to 2021. Fifty healthy men with proven fertility served as control subjects. To identify the novel pathogenic variants, whole-exome sequencing and Sanger sequencing were used. In silico analysis revealed the affecting of the variants. Field emission scanning electron microscopy was employed to observe the morphological defects of the spermatozoa. Immunofluorescence was used to analyze the expression and localization of the related protein. CRISPR/Cas9 was used to generate the mouse model. ICSI was used as a treatment for the patients and to assess the effects of the pathogenic variant on fertilization and embryo development. RESULTS We identified a loss-of-function mutation NM_001170574.2:c.823G > T (p.Glu275*) in X-linked TENT5D from two patients with OAT. This variant is highly deleterious and has not been found in the human population. The count of patients' spermatozoa is dramatically decreased and displays multiple morphologic abnormalities with poor motility. Tent5d knockout mice are infertile and exhibit parallel defects. ICSI could rescue the infertility of the Tent5d knockout male mice. Moreover, the proband was treated with ICSI and achieved a successful pregnancy outcome for the first time. Subsequent mutation screening identified no TENT5D mutations among 47 additional patients with OAT and 50 control subjects. CONCLUSION Mutation in TENT5D results in OAT and male infertility, and this terrible situation could be rescued by ICSI.
Collapse
Affiliation(s)
- Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wensheng Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, Guangdong, China
| | - Songxi Tang
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoya Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ziyi Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yuwei Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Hongjing Deng
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Huiliang Zhou
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoli Wei
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Wang M, Kang J, Shen Z, Hu Y, Chen M, Cui X, Liu H, Gao F. CCDC189 affects sperm flagellum formation by interacting with CABCOCO1. Natl Sci Rev 2023; 10:nwad181. [PMID: 37601242 PMCID: PMC10437088 DOI: 10.1093/nsr/nwad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 08/22/2023] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) are one of the major causes of male infertility and are characterized by multiple defects. In this study, we found that the coiled-coil domain-containing 189 (Ccdc189) gene was predominantly expressed in mouse testes and that inactivation of the Ccdc189 gene caused male infertility. Histological studies revealed that most sperm from Ccdc189-deficient mice carried coiled, curved or short flagella, which are typical MMAF phenotypes. Immunoelectron microscopy showed that the CCDC189 protein was located at the radial spoke of the first peripheral microtubule doublet in the sperm axoneme. A CCDC189-interacting protein, CABCOCO1 (ciliary-associated calcium-binding coiled-coil protein 1), was discovered via co-immunoprecipitation and mass spectrometry, and inactivation of Cabcoco1 caused malformation of sperm flagella, which was consistent with findings obtained with Ccdc189-deficient mice. Further studies revealed that inactivation of CCDC189 caused downregulation of CABCOCO1 protein expression and that both CCDC189 and CABCOCO1 interacted with the radial-spoke-specific protein RSPH1 and intraflagellar transport proteins. This study demonstrated that Ccdc189 is a radial-spoke-associated protein and is involved in sperm flagellum formation through its interactions with CABCOCO1 and intraflagellar transport proteins.
Collapse
Affiliation(s)
- Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100020, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100020, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Junyan Kang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200031, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100020, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100020, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yingchun Hu
- Core Facilities, College of Life Sciences, Peking University, Beijing 100871, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100020, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100020, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100020, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100020, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100020, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250100, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100020, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100020, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100020, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| |
Collapse
|
22
|
Jin HJ, Wang JL, Geng XY, Wang CY, Wang BB, Chen SR. CFAP70 is a solid and valuable target for the genetic diagnosis of oligo-astheno-teratozoospermia in infertile men. EBioMedicine 2023; 93:104675. [PMID: 37352829 DOI: 10.1016/j.ebiom.2023.104675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide population health concern, but its aetiology remains largely understood. Although CFAP70 variants have already been reported in two oligo-astheno-teratozoospermia (OAT) individuals by sequencing, animal evidence to support CFAP70 as a credible OAT-pathogenic gene is lacking. METHOD Cfap70-KO mice were generated to explore the physiological role of CFAP70. CFAP70 variants were detected in infertile men with OAT by whole exome sequencing and Sanger sequencing confirmation. Cfap70-truncated mice were further generated to explore the pathogenicity of the nonsense variant of CFAP70 identified in the proband. FINDINGS Here, we demonstrate that Cfap70-KO mice are sterile mainly due to OAT and further identify a Chinese infertile man carrying a homozygous nonsense variant (c.2962C > T/p.R988X) of CFAP70. Cfap70-truncated mice lacking 5-8 tetratricopeptide repeats (TPRs) mimic the patient's symptoms. CFAP70 is required for the biogenesis of spermatid flagella partially by regulating the expression of OAT-associated proteins (e.g., QRICH2), assisting the cytoplasmic preassembly of the calmodulin- and radial spoke-associated complex (CSC), and controlling the manchette localization of axoneme-related proteins. Moreover, we suggest that CFAP70-associated male infertility could be overcome by intracytoplasmic sperm injection (ICSI) treatment. INTERPRETATION Overall, we demonstrate that CFAP70 is necessary to assemble spermatid flagella and that CFAP70 gene could be used as a diagnostic target for male infertility with OAT in the clinic. FUNDING This study was supported by the National Key Research and Development Project (2019YFA0802101 to S.C), Open Fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education (to S.C), Central Government to Guide Local Scientific and Technological Development (ZY21195023 to B.W), and Basic Research Projects of Central Scientific Research Institutes (to B.W).
Collapse
Affiliation(s)
- Hui-Juan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Li Wang
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China; Environmental Health Risk Assessment and Prevention Engineering Center of Ecological Aluminum Industry Base of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xin-Yan Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chun-Yan Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China; Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bin-Bin Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China; Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100005, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, 100081 Beijing, China.
| | - Su-Ren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Ma A, Zhou J, Ali H, Abbas T, Ali I, Muhammad Z, Dil S, Chen J, Huang X, Ma H, Zhao D, Zhang B, Zhang Y, Shah W, Shah B, Murtaza G, Iqbal F, Khan MA, Khan A, Li Q, Xu B, Wu L, Zhang H, Shi Q. Loss-of-function mutations in CFAP57 cause multiple morphological abnormalities of the flagella in humans and mice. JCI Insight 2023; 8:e166869. [PMID: 36752199 PMCID: PMC9977434 DOI: 10.1172/jci.insight.166869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) are the most severe form of asthenozoospermia due to impaired axoneme structure in sperm flagella. Dynein arms are necessary components of the sperm flagellar axoneme. In this study, we recruited 3 unrelated consanguineous Pakistani families with multiple MMAF-affected individuals, who had no overt ciliary symptoms. Whole-exome sequencing and Sanger sequencing identified 2 cilia and flagella associated protein 57 (CFAP57) loss-of-function mutations (c.2872C>T, p. R958*; and c.2737C>T, p. R913*) recessively segregating with male infertility. A mouse model mimicking the mutation (c.2872C>T) was generated and recapitulated the typical MMAF phenotype of CFAP57-mutated individuals. Both CFAP57 mutations caused loss of the long transcript-encoded CFAP57 protein in spermatozoa from MMAF-affected individuals or from the Cfap57-mutant mouse model while the short transcript was not affected. Subsequent examinations of the spermatozoa from Cfap57-mutant mice revealed that CFAP57 deficiency disrupted the inner dynein arm (IDA) assembly in sperm flagella and that single-headed IDAs were more likely to be affected. Thus, our study identified 2 pathogenic mutations in CFAP57 in MMAF-affected individuals and reported a conserved and pivotal role for the long transcript-encoded CFAP57 in IDAs' assembly and male fertility.
Collapse
Affiliation(s)
- Ao Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Haider Ali
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Tanveer Abbas
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Imtiaz Ali
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zubair Muhammad
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Sobia Dil
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jing Chen
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xiongheng Huang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Daren Zhao
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Beibei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Basit Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Ghulam Murtaza
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, Pakistan
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Asad Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Qing Li
- The Central Laboratory of Medical Research Center, First Affiliated Hospital of USTC, Hefei, China
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Limin Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
New Mutations in DNHD1 Cause Multiple Morphological Abnormalities of the Sperm Flagella. Int J Mol Sci 2023; 24:ijms24032559. [PMID: 36768883 PMCID: PMC9916431 DOI: 10.3390/ijms24032559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Male infertility is a common and complex disease and presents as a wide range of heterogeneous phenotypes. Multiple morphological abnormalities of the sperm flagellum (MMAF) phenotype is a peculiar condition of extreme morphological sperm defects characterized by a mosaic of sperm flagellum defects to a total asthenozoospermia. At this time, about 40 genes were associated with the MMAF phenotype. However, mutation prevalence for most genes remains individually low and about half of individuals remain without diagnosis, encouraging us to pursue the effort to identify new mutations and genes. In the present study, an a cohort of 167 MMAF patients was analyzed using whole-exome sequencing, and we identified three unrelated patients with new pathogenic mutations in DNHD1, a new gene recently associated with MMAF. Immunofluorescence experiments showed that DNHD1 was totally absent from sperm cells from DNHD1 patients, supporting the deleterious effect of the identified mutations. Transmission electron microscopy reveals severe flagellum abnormalities of sperm cells from one mutated patient, which appeared completely disorganized with the absence of the central pair and midpiece defects with a shortened and misshapen mitochondrial sheath. Immunostaining of IFT20 was not altered in mutated patients, suggesting that IFT may be not affected by DNHD1 mutations. Our data confirmed the importance of DNHD1 for the function and structural integrity of the sperm flagellum. Overall, this study definitively consolidated its involvement in MMAF phenotype on a second independent cohort and enriched the mutational spectrum of the DNHD1 gene.
Collapse
|
25
|
Xu C, Zhu M, Zhao S, Zhang X, Wang Y, Liu M. Mutation of S461, in the GOLGA3 phosphorylation site, does not affect mouse spermatogenesis. PeerJ 2023; 11:e15133. [PMID: 37090114 PMCID: PMC10117384 DOI: 10.7717/peerj.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Golgin subfamily A member 3 (Golga3), a member of the golgin subfamily A, is highly expressed in mouse testis. The GOLGA3 protein, which contains eight phosphorylation sites, is involved in protein transport, cell apoptosis, Golgi localization, and spermatogenesis. Although it has been previously reported that nonsense mutations in Golga3 cause multiple defects in spermatogenesis, the role of Golga3 in the testis is yet to be clarified. Methods Immunofluorescence co-localization in cells and protein dephosphorylation experiments were performed. Golga3 S461L/S461Lmice were generated using cytosine base editors. Fertility tests as well as computer-assisted sperm analysis (CASA) were then performed to investigate sperm motility within caudal epididymis. Histological and immunofluorescence staining were used to analyze testis and epididymis phenotypes and TUNEL assays were used to measure germ cell apoptosis in spermatogenic tubules. Results Immunofluorescence co-localization showed reduced Golgi localization of GOLGA3S465L with some protein scattered in the cytoplasm of HeLa cells .In addition, protein dephosphorylation experiments indicated a reduced band shift of the dephosphorylated GOLGA3S465L, confirming S461 as the phosphorylation site. Golga3 is an evolutionarily conserved gene and Golga3 S461L/S461Lmice were successfully generated using cytosine base editors. These mice had normal fertility and spermatozoa, and did not differ significantly from wild-type mice in terms of spermatogenesis and apoptotic cells in tubules. Conclusions Golga3 was found to be highly conserved in the testis, and GOLGA3 was shown to be involved in spermatogenesis, especially in apoptosis and Golgi complex-mediated effects. Infertility was also observed in Golga3 KO male mice. Although GOLGA3S465Lshowed reduced localization in the Golgi with some expression in the cytoplasm, this abnormal localization did not adversely affect fertility or spermatogenesis in male C57BL/6 mice. Therefore, mutation of the S461 GOLGA3 phosphorylation site did not affect mouse spermatogenesis.
Collapse
Affiliation(s)
- Changtong Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingcong Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein Arms in Tetrahymena Cilia. Cells 2022; 11:cells11244048. [PMID: 36552811 PMCID: PMC9776847 DOI: 10.3390/cells11244048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.
Collapse
|
27
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
28
|
Yin Y, Mu W, Yu X, Wang Z, Xu K, Wu X, Cai Y, Zhang M, Lu G, Chan WY, Ma J, Huang T, Liu H. LRRC46 Accumulates at the Midpiece of Sperm Flagella and Is Essential for Spermiogenesis and Male Fertility in Mouse. Int J Mol Sci 2022; 23:8525. [PMID: 35955660 PMCID: PMC9369233 DOI: 10.3390/ijms23158525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The sperm flagellum is essential for male fertility. Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. MMAF phenotypes are understood to result from pathogenic variants of genes from multiple families including AKAP, DANI, DNAH, RSPH, CCDC, CFAP, TTC, and LRRC, among others. The Leucine-rich repeat protein (LRRC) family includes two members reported to cause MMAF phenotypes: Lrrc6 and Lrrc50. Despite vigorous research towards understanding the pathogenesis of MMAF-related diseases, many genes remain unknown underlying the flagellum biogenesis. Here, we found that Leucine-rich repeat containing 46 (LRRC46) is specifically expressed in the testes of adult mice, and show that LRRC46 is essential for sperm flagellum biogenesis. Both scanning electron microscopy (SEM) and Papanicolaou staining (PS) presents that the knockout of Lrrc46 in mice resulted in typical MMAF phenotypes, including sperm with short, coiled, and irregular flagella. The male KO mice had reduced total sperm counts, impaired sperm motility, and were completely infertile. No reproductive phenotypes were detected in Lrrc46-/- female mice. Immunofluorescence (IF) assays showed that LRRC46 was present throughout the entire flagella of control sperm, albeit with evident concentration at the mid-piece. Transmission electron microscopy (TEM) demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. About the important part of the Materials and Methods, SEM and PS were used to observe the typical MMAF-related irregular flagella morphological phenotypes, TEM was used to further inspect the sperm flagellum defects in ultrastructure, and IF was chosen to confirm the location of protein. Our study suggests that LRRC46 is an essential protein for sperm flagellum biogenesis, and its mutations might be associated with MMAF that causes male infertility. Thus, our study provides insights for understanding developmental processes underlying sperm flagellum formation and contribute to further observe the pathogenic genes that cause male infertility.
Collapse
Affiliation(s)
- Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Wenyu Mu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Ke Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Xinyue Wu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Yuling Cai
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Mingyu Zhang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| |
Collapse
|
29
|
Liu Q, Chen X, Qiao J. Advances in studying human gametogenesis and embryonic development in China. Biol Reprod 2022; 107:12-26. [PMID: 35788258 DOI: 10.1093/biolre/ioac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Reproductive medicine in China has developed rapidly since 1988 due to the support from the government and scientific exploration. However, the success rate of assisted reproduction technology (ART) is around 30-40% and many unknown "black boxes" in gametogenesis and embryo development are still present. With the development of single-cell and low-input sequencing technologies, the network of transcriptome and epigenetic regulation (DNA methylation, chromatin accessibility, and histone modifications) during the development of human primordial germ cells (PGCs), gametes and embryos has been investigated in depth. Furthermore, pre-implantation genetic testing (PGT) has also rapidly developed. In this review, we summarize and analyze China's outstanding progress in these fields.
Collapse
Affiliation(s)
- Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Novel Compound Heterozygous Mutation in FSIP2 Causes Multiple Morphological Abnormalities of the Sperm Flagella (MMAF) and Male Infertility. Reprod Sci 2022; 29:2697-2702. [DOI: 10.1007/s43032-022-00965-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/01/2022] [Indexed: 12/20/2022]
|
31
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|