1
|
Wang D, Ming H, Yang D, Tsai LK, Wei Z, Scatolin GN, Wang X, Yau K, Tao L, Tong X, Wang S, Shi KX, Evseenko D, Handel BV, Zhang B, Wang Y, Iyyappan R, Ojeda-Rojas OA, Hu G, McGinnis L, Paulson R, Mckim D, Kong X, Xia X, Zhang J, Chen YE, Xu J, Jiang Z, Ying QL. A Universal 6iL/E4 Culture System for Deriving and Maintaining Embryonic Stem Cells Across Mammalian Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.20.654948. [PMID: 40475639 PMCID: PMC12139945 DOI: 10.1101/2025.05.20.654948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
The derivation of authentic embryonic stem cells (ESCs) from diverse mammalian species offers valuable opportunities for advancing regenerative medicine, studying developmental biology, and enabling species conservation. Here, we report the development of a robust, serum-free culture system, termed 6iL/E4 that enables the derivation and long-term self-renewal of ESCs from multiple mammalian species, including mouse, rat, bovine, rabbit, and human. Using systematic signaling pathway analysis, we identified key regulators-including GSK3α, STAT3, PDGFR, BRAF, and LATS-critical for ESC maintenance across species. Additionally, inducible expression of KLF2 and NANOG enhances the naive pluripotency and chimeric potential of bovine ESCs. The E4 medium also supports stable ESC growth while minimizing lineage bias. These findings reveal conserved principles underlying ESC self-renewal across divergent mammalian species and provide a universal platform for cross-species stem cell research, disease modeling, and biotechnology applications. In Brief Wang et al. developed 6iL/E4, a serum-free system sustaining ESCs from mouse, rat, bovine, rabbit, and human. These findings reveal conserved fundamental mechanisms governing ESC self-renewal across diverse mammalian species. Highlights Developed 6iL/E4 system for ESC derivation across five mammalian species.PDGFR signaling inhibition as critical for ESC derivation across species.E4 medium improves ESC maintenance and avoids neural bias of traditional N2B27.Inducible KLF2/NANOG enhances naive pluripotency and chimera formation in bovine.
Collapse
Affiliation(s)
- Duo Wang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Dongshan Yang
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Li-Kuang Tsai
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Zhuying Wei
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | | | - Xiukun Wang
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | - Kimberly Yau
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Litao Tao
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Xinyi Tong
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuling Wang
- Transgenic Mouse Facility, University of California, Irvine. Irvine, CA 92697, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, University of California, Irvine. Irvine, CA 92697, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Bingjing Zhang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
- Present address: Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Guang Hu
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Lynda McGinnis
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard Paulson
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Mckim
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiangbo Kong
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Xiaofeng Xia
- ATGC Inc. 1004w 9th Avenue, Suite 10, King of Prussia, PA 19406, USA
| | - Jifeng Zhang
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jie Xu
- Center for Advanced Models Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Lead contact
| |
Collapse
|
2
|
Wang H, Zhong L, Wang Z, Xiang J, Pei D. Wnt Inhibition Safeguards Porcine Embryonic Stem Cells From the Acquisition of Extraembryonic Endoderm Cell Fates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416802. [PMID: 40063421 PMCID: PMC12061302 DOI: 10.1002/advs.202416802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/25/2025] [Indexed: 05/10/2025]
Abstract
Porcine embryonic stem cells (ESCs) are excellent models for exploring embryogenesis, producing genetically enhanced farm animals, and improving breeding. Various chemicals have been applied to generate porcine ESCs from embryos, which differ from mouse and human ESC derivation. Wnt inhibitors XAV939 or IWR1 are required to isolate and maintain porcine ESCs. How Wnt inhibitors specify porcine ESC fate decisions remains poorly understood. Additionally, whether porcine ESCs can be converted to extraembryonic endoderm (XEN) cells without genetic interventions has not been reported. Here, it is reported that Wnt inhibitors (i.e., XAV939 and IWR1) safeguard porcine ESCs from acquiring the XEN lineage. Porcine ESCs rely on Wnt inhibitors to maintain pluripotency. Without them, porcine ESCs exit from pluripotency and convert to XEN cells. An efficient strategy and culture conditions are further developed to directly derive porcine XEN cells from ESCs without gene editing. The resulting XEN cells from ESCs exhibit similar transcriptome and chromatin accessibility features to XEN cells from embryos and contribute to mouse extraembryonic tissues. This study will deepen the understanding of porcine pluripotency, lay the foundation for deriving high-quality porcine ESCs with germline chimerism and transmission, and provide valuable materials to study extraembryonic development and lineage segregation in livestock.
Collapse
Affiliation(s)
- Hanning Wang
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for DiabetesThe Shijiazhuang Second HospitalShijiazhuang050051China
| | - Zhuangfei Wang
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Jinzhu Xiang
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Duanqing Pei
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhou310030China
| |
Collapse
|
3
|
Sozen B, Tam PPL, Pera MF. Pluripotent cell states and fates in human embryo models. Development 2025; 152:dev204565. [PMID: 40171916 PMCID: PMC11993252 DOI: 10.1242/dev.204565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pluripotency, the capacity to generate all cells of the body, is a defining property of a transient population of epiblast cells found in pre-, peri- and post-implantation mammalian embryos. As development progresses, the epiblast cells undergo dynamic transitions in pluripotency states, concurrent with the specification of extra-embryonic and embryonic lineages. Recently, stem cell-based models of pre- and post-implantation human embryonic development have been developed using stem cells that capture key properties of the epiblast at different developmental stages. Here, we review early primate development, comparing pluripotency states of the epiblast in vivo with cultured pluripotent cells representative of these states. We consider how the pluripotency status of the starting cells influences the development of human embryo models and, in turn, what we can learn about the human pluripotent epiblast. Finally, we discuss the limitations of these models and questions arising from the pioneering studies in this emerging field.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin F. Pera
- The Jackson Laboratory, Mammalian Genetics, Bar Harbor, ME 04609, USA
| |
Collapse
|
4
|
Guiltinan C, Botigelli RC, Candelaria JI, Smith JM, Arcanjo RB, Denicol AC. Primed bovine embryonic stem cell lines can be derived at diverse stages of blastocyst development with similar efficiency and molecular characteristics. Biol Open 2025; 14:BIO061819. [PMID: 39957479 PMCID: PMC11911636 DOI: 10.1242/bio.061819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
In this study, we established bovine embryonic stem cell (bESC) lines from early (eBL) and full (BL) blastocysts to determine the efficiency of bESC derivation from an earlier embryonic stage and compare the characteristics of the resulting lines. Using established medium and protocols for derivation of primed bESCs from expanded blastocysts, we derived bESC lines from eBLs and BLs with the same efficiency (4/12 each, 33%). Regardless of original blastocyst stage, bESC lines had a similar phenotype, including differentiation capacity, stable karyotype, and pluripotency marker expression over feeder-free transition and long-term culture. Transcriptome and functional analyses indicated that eBL- and BL-derived lines were in primed pluripotency. We additionally compared RNA-sequencing data from our lines to bovine embryos and stem cells from other recent reports, finding that base medium was the predominant source of variation among cell lines. In conclusion, our results show that indistinguishable bESC lines can be readily derived from eBL and BL, widening the pool of embryos available for bESC establishment. Finally, our investigation points to sources of variation in cell phenotype among recently reported bESC conditions, opening the door to future studies investigating the impact of factors aside from signaling molecules on ESC derivation, maintenance, and performance.
Collapse
Affiliation(s)
- Carly Guiltinan
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Ramon C. Botigelli
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | | | - Justin M. Smith
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Rachel B. Arcanjo
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Anna C. Denicol
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2025; 20:102388. [PMID: 39793577 PMCID: PMC11864139 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
6
|
Xiao Y, Wang Y, Zhang M, Zhang Y, Ju Z, Wang J, Zhang Y, Yang C, Wang X, Jiang Q, Gao Y, Wei X, Liu W, Gao Y, Hu P, Huang J. Tankyrase inhibitor IWR-1 modulates HIPPO and Transforming Growth Factor β signaling in primed bovine embryonic stem cells cultured on mouse embryonic fibroblasts. Theriogenology 2025; 233:100-111. [PMID: 39613494 DOI: 10.1016/j.theriogenology.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF). Notably, bESC exhibited significant differentiation after one month of IWR-1 withdrawal, without a clear bias toward any specific germ layer. IWR-1 effectively inhibited TNKS2 activity in bESC, whereas it suppressed TNKS1 protein level in growth-arrested MEF. Early differentiation upon IWR-1 removal induced more substantial transcriptomic changes in MEF than in bESC. Furthermore, cell communication analysis predicted that IWR-1 influenced several paracrine and autocrine signals within the culture system. We also observed that IWR-1 repressed protein abundance of the HIPPO pathway components including TEAD4 and YAP1 in bESC and decreased transcription of HIPPO targeted genes CYR61. Protein analysis in growth-arrested MEF suggested that IWR-1 modulated MEF function by impeding TGF-β1 activation and activin A secretion which mitigated nuclear localization of SMAD2/3 in the bESC. This study underscores the role of tankyrase inhibitors in ESC self-renewal by modulating key signaling pathways and orchestrating cell-cell interactions, which may be meaningful in understanding the delicate signaling control of pluripotency in livestock and improving the culture system.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yujie Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Minghao Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhang
- Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
7
|
Olenic M, Deelkens C, Heyman E, De Vlieghere E, Zheng X, van Hengel J, De Schauwer C, Devriendt B, De Smet S, Thorrez L. Review: Livestock cell types with myogenic differentiation potential: Considerations for the development of cultured meat. Animal 2025; 19 Suppl 1:101242. [PMID: 39097434 DOI: 10.1016/j.animal.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024] Open
Abstract
With the current environmental impact of large-scale animal production and societal concerns about the welfare of farm animals, researchers are questioning whether we can cultivate animal cells for the purpose of food production. This review focuses on a pivotal aspect of the cellular agriculture domain: cells. We summarised information on the various cell types from farm animals currently used for the development of cultured meat, including mesenchymal stromal cells, myoblasts, and pluripotent stem cells. The review delves into the advantages and limitations of each cell type and considers factors like the selection of the appropriate cell source, as well as cell culture conditions that influence cell performance. As current research in cultured meat seeks to create muscle fibers to mimic the texture and nutritional profile of meat, we focused on the myogenic differentiation capacity of the cells. The most commonly used cell type for this purpose are myoblasts or satellite cells, but given their limited proliferation capacity, efforts are underway to formulate myogenic differentiation protocols for mesenchymal stromal cells and pluripotent stem cells. The multipotent character of the latter cell types might enable the creation of other tissues found in meat, such as adipose and connective tissues. This review can help guiding the selection of a cell type or culture conditions in the context of cultured meat development.
Collapse
Affiliation(s)
- M Olenic
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C Deelkens
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - E Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E De Vlieghere
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Belgium
| | - X Zheng
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - J van Hengel
- Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - C De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium.
| |
Collapse
|
8
|
Pera MF. A brief chronicle of research on human pluripotent stem cells. Bioessays 2024; 46:e2400092. [PMID: 39058898 DOI: 10.1002/bies.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Today, human pluripotent stem cell technologies find widespread application across biomedical research, as models for early human development, as platforms for functional human genomics, as tools for the study of disease, drug screening and toxicology, and as a renewable source of cellular therapeutics for a range of intractable diseases. The foundations of this human pluripotent stem cell revolution rest on advances in a wide range of disciplines, including cancer biology, assisted reproduction, cell culture and organoid technology, somatic cell nuclear transfer, primate embryology, single-cell biology, and gene editing. This review surveys the slow emergence of the study of human pluripotency and the exponential growth of the field during the past several decades.
Collapse
Affiliation(s)
- Martin F Pera
- JAX Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
9
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
10
|
Zhi M, Gao D, Yao Y, Zhao Z, Wang Y, He P, Feng Z, Zhang J, Huang Z, Gu W, Zhao J, Zhang H, Wang S, Li X, Zhang Q, Zhao Z, Chen X, Zhang X, Qin L, Liu J, Liu C, Cao S, Gao S, Yu W, Ma Z, Han J. Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines. Cell Mol Life Sci 2024; 81:427. [PMID: 39377807 PMCID: PMC11461730 DOI: 10.1007/s00018-024-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The establishment of epiblast-derived pluripotent stem cells (PSCs) from cattle, which are important domestic animals that provide humans with milk and meat while also serving as bioreactors for producing valuable proteins, poses a challenge due to the unclear molecular signaling required for embryonic epiblast development and maintenance of PSC self-renewal. Here, we selected six key stages of bovine embryo development (E5, E6, E7, E10, E12, and E14) to track changes in pluripotency and the dependence on signaling pathways via modified single-cell transcription sequencing technology. The remarkable similarity of the gene expression patterns between cattle and pigs during embryonic lineage development contributed to the successful establishment of bovine epiblast stem cells (bEpiSCs) using 3i/LAF (WNTi, GSK3βi, SRCi, LIF, Activin A, and FGF2) culture system. The generated bEpiSCs exhibited consistent expression patterns of formative epiblast pluripotency genes and maintained clonal morphology, normal karyotypes, and proliferative capacity for more than 112 passages. Moreover, these cells exhibited high-efficiency teratoma formation as well as the ability to differentiate into various cell lineages. The potential of bEpiSCs for myogenic differentiation, primordial germ cell like cells (PGCLCs) induction, and as donor cells for cell nuclear transfer was also assessed, indicating their promise in advancing cell-cultured meat production, gene editing, and animal breeding.
Collapse
Affiliation(s)
- Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengfeng Gao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zimo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Pengcheng He
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhiqiang Feng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wenyuan Gu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunxin Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Li
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lun Qin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chengjun Liu
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China.
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
11
|
Lambert EG, O'Keeffe CJ, Ward AO, Anderson TA, Yip Q, Newman PLH. Enhancing the palatability of cultivated meat. Trends Biotechnol 2024; 42:1112-1127. [PMID: 38531694 DOI: 10.1016/j.tibtech.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Cultivated meat (CM) has transitioned from a futuristic concept to a present reality, with select products approved for consumption and sale in Singapore, Israel, and the USA. This evolution has emphasized scalable, cost-effective, and sustainable production, as well as navigation of regulatory pathways. As CM develops, a crucial challenge lies in delivering products that are highly appealing to consumers. Central to this will be refining CM palatability, a term encompassing food's taste, aroma, texture, tenderness, juiciness, and color. We explore the scientific and engineering approaches to producing palatable CM, including cell-line selection, cell differentiation, and post-processing techniques. This includes a discussion of the structural and compositional properties of meat that are intrinsically coupled to palatability.
Collapse
Affiliation(s)
- Ella G Lambert
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia; School of Materials Science and Engineering, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | | | - Alexander O Ward
- Vow Group Pty Ltd., Sydney, NSW 2015, Australia; Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia; ARTA Bioanalytics, Sydney, NSW 2000, Australia
| | - Tim A Anderson
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia
| | - Queenie Yip
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia
| | - Peter L H Newman
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2008, Australia; EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Choi KH, Lee DK, Jeong J, Ahn Y, Go DM, Kim DY, Lee CK. Inhibition of BMP-mediated SMAD pathway supports the pluripotency of pig embryonic stem cells in the absence of feeder cells. Theriogenology 2024; 225:67-80. [PMID: 38795512 DOI: 10.1016/j.theriogenology.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Here, we examined the effects of the BMP signaling pathway inhibitor LDN-193189 on the pluripotency of porcine embryonic stem cells (ESCs) in the absence of feeder cells using molecular and transcriptomic techniques. Additionally, the effects of some extracellular matrix components on porcine ESC pluripotency were evaluated to develop an optimized and sustainable feeder-free culture system for porcine ESCs. Feeder cells were found to play an important role in supporting the pluripotency of porcine ESCs by blocking trophoblast and mesodermal differentiation through the inhibition of the BMP pathway. Additionally, treatment with LDN-193189, an inhibitor of the BMP pathway, maintained the pluripotency and homogeneity of porcine ESCs for an extended period in the absence of feeder cells by stimulating the secretion of chemokines and suppressing differentiation, based on transcriptome analysis. Conclusively, these results suggest that LDN-193189 could be a suitable replacement for feeder cells in the maintenance of porcine ESC pluripotency during culture. Additionally, these findings contribute to the understanding of pluripotency gene networks and comparative embryogenesis.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Research and Development Center, Space F Corporation, Hwaseong, Gyeonggi-do, 18471, Republic of Korea; Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dong-Kyung Lee
- Research and Development Center, Space F Corporation, Hwaseong, Gyeonggi-do, 18471, Republic of Korea; Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yelim Ahn
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Du-Min Go
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, 25354, Republic of Korea.
| |
Collapse
|
13
|
Choi H, Oh D, Kim M, Jawad A, Zheng H, Cai L, Lee J, Kim E, Lee G, Jang H, Moon C, Hyun SH. Establishment of porcine embryonic stem cells in simplified serum free media and feeder free expansion. Stem Cell Res Ther 2024; 15:245. [PMID: 39113095 PMCID: PMC11304784 DOI: 10.1186/s13287-024-03858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.
Collapse
Affiliation(s)
- Hyerin Choi
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Haomiao Zheng
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins Medicine, Baltimore, ML, USA
| | - Hyewon Jang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
14
|
Navarro M, Laiz-Quiroga L, Blüguermann C, Mutto A. Livestock embryonic stem cells for reproductive biotechniques and genetic improvement. Anim Reprod 2024; 21:e20240029. [PMID: 39175999 PMCID: PMC11340801 DOI: 10.1590/1984-3143-ar2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 08/24/2024] Open
Abstract
Embryonic stem cells (ESCs) have proven to be a great in vitro model that faithfully recapitulates the events that occur during in vivo embryogenesis, making them a unique tool to study the cellular and molecular mechanisms that define tissue specification during embryonic development. Livestock ESCs are particularly attractive and have broad prospects including drug selection and human disease modeling, improvement of reproductive biotechniques and agriculture-related applications such as production of genetically modified animals. While mice and human ESCs have been established many years ago, no significant advances were made in livestock species until recently. Nowadays, livestock ESCs are available from cattle, pigs, sheep, horses and rabbits with different states of pluripotency. In this review, we summarize the current advances on livestock ESCs establishment and maintenance along with their present and future applications.
Collapse
Affiliation(s)
- Micaela Navarro
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - Lucia Laiz-Quiroga
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - Carolina Blüguermann
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - Adrián Mutto
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| |
Collapse
|
15
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
16
|
Xiang J, Wang H, Shi B, Li J, Liu D, Wang K, Wang Z, Min Q, Zhao C, Pei D. Pig blastocyst-like structure models from embryonic stem cells. Cell Discov 2024; 10:72. [PMID: 38956027 PMCID: PMC11219778 DOI: 10.1038/s41421-024-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Pluripotent stem cells have the potential to generate embryo models that can recapitulate developmental processes in vitro. Large animals such as pigs may also benefit from stem-cell-based embryo models for improving breeding. Here, we report the generation of blastoids from porcine embryonic stem cells (pESCs). We first develop a culture medium 4FIXY to derive pESCs. We develop a 3D two-step differentiation strategy to generate porcine blastoids from the pESCs. The resulting blastoids exhibit similar morphology, size, cell lineage composition, and single-cell transcriptome characteristics to blastocysts. These porcine blastoids survive and expand for more than two weeks in vitro under two different culture conditions. Large animal blastoids such as those derived from pESCs may enable in vitro modeling of early embryogenesis and improve livestock species' breeding practices.
Collapse
Affiliation(s)
- Jinzhu Xiang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Hanning Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Bingbo Shi
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiajun Li
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dong Liu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Kaipeng Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhuangfei Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qiankun Min
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
18
|
Simpson L, Strange A, Klisch D, Kraunsoe S, Azami T, Goszczynski D, Le Minh T, Planells B, Holmes N, Sang F, Henson S, Loose M, Nichols J, Alberio R. A single-cell atlas of pig gastrulation as a resource for comparative embryology. Nat Commun 2024; 15:5210. [PMID: 38890321 PMCID: PMC11189408 DOI: 10.1038/s41467-024-49407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Andrew Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Sophie Kraunsoe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takuya Azami
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Daniel Goszczynski
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Triet Le Minh
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Benjamin Planells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sonal Henson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
19
|
Ruan D, Xuan Y, Tam TTKK, Li Z, Wang X, Xu S, Herrmann D, Niemann H, Lai L, Gao X, Nowak-Imialek M, Liu P. An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells. Nat Protoc 2024; 19:1710-1749. [PMID: 38509352 DOI: 10.1038/s41596-024-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 03/22/2024]
Abstract
Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4-6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.
Collapse
Affiliation(s)
- Degong Ruan
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Timothy Theodore Ka Ki Tam
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - ZhuoXuan Li
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xiao Wang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shao Xu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Neustadt, Germany
| | - Heiner Niemann
- Hannover Medical School (MHH), Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover, Germany
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Monika Nowak-Imialek
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- First Department of Medicine, Cardiology, Klinikum rechts der Isar-Technical University of Munich, Munich, Germany.
| | - Pentao Liu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China.
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
20
|
Conrad JV, Neira JA, Rusteika M, Meyer S, Clegg DO, Chu LF. Establishment of Transgene-Free Porcine Induced Pluripotent Stem Cells. Curr Protoc 2024; 4:e1012. [PMID: 38712688 DOI: 10.1002/cpz1.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although protocols to generate authentic transgene-free mouse and human induced pluripotent stem cells (iPSCs) are now well established, standard methods for reprogramming porcine somatic cells still suffer from low efficiency and transgene retention. The Basic Protocol describes reprogramming procedures to establish transgene-free porcine iPSCs (PiPSCs) from porcine fibroblasts. This method uses episomal plasmids encoding POU5F1, SOX2, NANOG, KLF4, SV40LT, c-MYC, LIN28A, and microRNA-302/367, combined with an optimized medium, to establish PiPSC lines. Support protocols describe the establishment and characterization of clonal PiPSC lines, as well as the preparation of feeder cells and EBNA1 mRNA. This optimized, step-by-step approach tailored to this species enables the efficient derivation of PiPSCs in ∼4 weeks. The establishment of transgene-free PiPSCs provides a new and valuable model for studies of larger mammalian species' development, disease, and regenerative biology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Reprogramming of porcine fibroblasts with episomal plasmids Support Protocol 1: Preparation of mouse embryonic fibroblasts for feeder layer Support Protocol 2: Preparation of in vitro-transcribed EBNA1 mRNA Support Protocol 3: Establishment of clonal porcine induced pluripotent stem cell (PiPSC) lines Support Protocol 4: PiPSC characterization: Genomic DNA PCR and RT-PCR Support Protocol 5: PiPSC characterization: Immunostaining.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Shirasawa A, Hayashi M, Shono M, Ideta A, Yoshino T, Hayashi K. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J Reprod Dev 2024; 70:82-95. [PMID: 38355134 PMCID: PMC11017101 DOI: 10.1262/jrd.2023-087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024] Open
Abstract
The induction of the germ cell lineage from pluripotent stem cells (in vitro gametogenesis) will help understand the mechanisms underlying germ cell differentiation and provide an alternative source of gametes for reproduction. This technology is especially important for cattle, which are among the most important livestock species for milk and meat production. Here, we developed a new method for robust induction of primordial germ cell-like cells (PGCLCs) from newly established bovine embryonic stem (bES) cells. First, we refined the pluripotent culture conditions for pre-implantation embryos and ES cells. Inhibition of RHO increased the number of epiblast cells in the pre-implantation embryos and dramatically improved the efficiency of ES cell establishment. We then determined suitable culture conditions for PGCLC differentiation using bES cells harboring BLIMP1-tdTomato and TFAP2C-mNeonGreen (BTTN) reporter constructs. After a 24-h culture with bone morphogenetic protein 4 (BMP4), followed by three-dimensional culture with BMP4 and a chemical agonist and WNT signaling chemical antagonist, bES cells became positive for the reporters. A set of primordial germ cells (PGC) marker genes, including PRDM1/BLIMP1, TFAP2C, SOX17, and NANOS3, were expressed in BTTN-positive cells. These bovine PGCLCs (bPGCLCs) were isolated as KIT/CD117-positive and CD44-negative cell populations. We anticipate that this method for the efficient establishment of bES cells and induction of PGCLCs will be useful for stem cell-based reproductive technologies in cattle.
Collapse
Affiliation(s)
- Atsushi Shirasawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Masafumi Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mayumi Shono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Ideta
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Takashi Yoshino
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
MacCarthy CM, Wu G, Malik V, Menuchin-Lasowski Y, Velychko T, Keshet G, Fan R, Bedzhov I, Church GM, Jauch R, Cojocaru V, Schöler HR, Velychko S. Highly cooperative chimeric super-SOX induces naive pluripotency across species. Cell Stem Cell 2024; 31:127-147.e9. [PMID: 38141611 DOI: 10.1016/j.stem.2023.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.
Collapse
Affiliation(s)
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; International Bio Island, Guangzhou, China; MingCeler Biotech, Guangzhou, China
| | - Vikas Malik
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Taras Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gal Keshet
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rui Fan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; University of Utrecht, Utrecht, the Netherlands; STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
24
|
Simpson L, Alberio R. Interspecies control of development during mammalian gastrulation. Emerg Top Life Sci 2023; 7:397-408. [PMID: 37933589 PMCID: PMC10754326 DOI: 10.1042/etls20230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Gastrulation represents a pivotal phase of development and aberrations during this period can have major consequences, from minor anatomical deviations to severe congenital defects. Animal models are used to study gastrulation, however, there is considerable morphological and molecular diversity of gastrula across mammalian species. Here, we provide an overview of the latest research on interspecies developmental control across mammals. This includes single-cell atlases of several mammalian gastrula which have enabled comparisons of the temporal and molecular dynamics of differentiation. These studies highlight conserved cell differentiation regulators and both absolute and relative differences in differentiation dynamics between species. Recent advances in in vitro culture techniques have facilitated the derivation, maintenance and differentiation of cell lines from a range of species and the creation of multi-species models of gastrulation. Gastruloids are three-dimensional aggregates capable of self-organising and recapitulating aspects of gastrulation. Such models enable species comparisons outside the confines of the embryo. We highlight recent in vitro evidence that differentiation processes such as somitogenesis and neuronal maturation scale with known in vivo differences in developmental tempo across species. This scaling is likely due to intrinsic differences in cell biochemistry. We also highlight several studies which provide examples of cell differentiation dynamics being influenced by extrinsic factors, including culture conditions, chimeric co-culture, and xenotransplantation. These collective studies underscore the complexity of gastrulation across species, highlighting the necessity of additional datasets and studies to decipher the intricate balance between intrinsic cellular programs and extrinsic signals in shaping embryogenesis.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| |
Collapse
|
25
|
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, Mamott D, Duffin B, Bautista M, Zhang J, Hiles E, Higgins EM, Steill J, Freeman J, Ni Z, Liu S, Ungrin M, Rancourt D, Clegg DO, Stewart R, Thomson JA, Chu LF. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 2023; 18:2328-2343. [PMID: 37949072 PMCID: PMC10724057 DOI: 10.1016/j.stemcr.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pranav S Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel Mamott
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bret Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Monica Bautista
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Emily Hiles
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Eve M Higgins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - John Steill
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack Freeman
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Zijian Ni
- Department of Statistics, University of Wisconsin, Madison, WI 53706, USA
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derrick Rancourt
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
26
|
Xu T, Su P, Wu L, Li D, Qin W, Li Q, Zhou J, Miao YL. OCT4 regulates WNT/β-catenin signaling and prevents mesoendoderm differentiation by repressing EOMES in porcine pluripotent stem cells. J Cell Physiol 2023; 238:2855-2866. [PMID: 37942811 DOI: 10.1002/jcp.31135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The regulatory network between signaling pathways and transcription factors (TFs) is crucial for the maintenance of pluripotent stem cells. However, little is known about how the key TF OCT4 coordinates signaling pathways to regulate self-renewal and lineage differentiation of porcine pluripotent stem cells (pPSCs). Here, we explored the function of OCT4 in pPSCs by transcriptome and chromatin accessibility analysis. The TFs motif enrichment analysis revealed that, following OCT4 knockdown, the regions of increased chromatin accessibility were enriched with EOMES, GATA6, and FOXA1, indicating that pPSCs differentiated toward the mesoendoderm (ME) lineage. Besides, pPSCs rapidly differentiated into ME when the WNT/β-catenin inhibitor XAV939 was removed. However, the ME differentiation of pPSCs caused by OCT4 knockdown did not rely on the activation of WNT/β-catenin signaling because the target gene of WNT/β-catenin signaling, AXIN2 was not upregulated after OCT4 knockdown, despite significant upregulation of WLS and some WNT ligands. Importantly, OCT4 is directly bound to the promoter and enhancers of EOMES and repressed its transcription. Overexpression of EOMES was sufficient to induce ME differentiation in the presence of XAV939. These results demonstrate that OCT4 can regulate WNT/β-catenin signaling and prevent ME differentiation of pPSCs by repressing EOMES transcription.
Collapse
Affiliation(s)
- Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Delong Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wei Qin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
27
|
Zehorai E, Maor-Shoshani A, Molotski N, Dorojkin A, Marelly N, Dvash T, Lavon N. From fertilised oocyte to cultivated meat - harnessing bovine embryonic stem cells in the cultivated meat industry. Reprod Fertil Dev 2023; 36:124-132. [PMID: 38064188 DOI: 10.1071/rd23169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Global demand for animal protein is on the rise, but many practices common in conventional production are no longer scalable due to environmental impact, public health concerns, and fragility of food systems. For these reasons and more, a pressing need has arisen for sustainable, nutritious, and animal welfare-conscious sources of protein, spurring research dedicated to the production of cultivated meat. Meat mainly consists of muscle, fat, and connective tissue, all of which can be sourced and differentiated from pluripotent stem cells to resemble their nutritional values in muscle tissue. In this paper, we outline the approach that we took to derive bovine embryonic stem cell lines (bESCs) and to characterise them using FACS (fluorescence-activated cell sorting), real-time PCR and immunofluorescence staining. We show their cell growth profile and genetic stability and demonstrate their induced differentiation to mesoderm committed cells. In addition, we discuss our strategy for preparation of master and working cell banks, by which we can expand and grow cells in suspension in quantities suitable for mass production. Consequently, we demonstrate the potential benefits of harnessing bESCs in the production of cultivated meat.
Collapse
Affiliation(s)
| | | | | | | | | | - Tami Dvash
- Aleph Farms Ltd, Rehovot 7670401, Israel
| | - Neta Lavon
- Aleph Farms Ltd, Rehovot 7670401, Israel
| |
Collapse
|
28
|
Zhu Q, Wang F, Gao D, Gao J, Li G, Jiao D, Zhu G, Xu K, Guo J, Chen T, Cao S, Zhi M, Zhang J, Wang Y, Zhang X, Zhang D, Yao Y, Song J, Wei H, Han J. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition. Cell Prolif 2023; 56:e13487. [PMID: 37190930 PMCID: PMC10623960 DOI: 10.1111/cpr.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Genome integration-free pig induced pluripotent stem cells (iPSCs) bring tremendous value in pre-clinical testing of regenerative medicine, as well as conservation and exploitation of endangered or rare local pig idioplasmatic resources. However, due to a lack of appropriate culture medium, efficient induction and stable maintenance of pig iPSCs with practical value remains challenging. Here, we established an efficient induction system for exogenous gene-independent iPSCs under chemically defined culture condition previously used for generation of stable pig pre-gastrulation epiblast stem cells (pgEpiSCs). WNT suppression was found to play an essential role in establishment of exogenous gene-independent iPSCs. Strikingly, stable integration-free pig iPSCs could be established from pig somatic cells using episomal vectors in this culture condition. The iPSCs had pluripotency features and transcriptome characteristics approximating pgEpiSCs. More importantly, this induction system may be used to generate integration-free iPSCs from elderly disabled rare local pig somatic cells and the iPSCs could be gene-edited and used as donor cells for nuclear transfer. Our results provide novel insights into potential applications for genetic breeding of livestock species and pre-clinical evaluation of regenerative medicine.
Collapse
Affiliation(s)
- Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Fengchong Wang
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guilin Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deling Jiao
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Suying Cao
- Animal Science and Technology CollegeBeijing University of AgricultureBeijingChina
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Danru Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jian Song
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hong‐Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
29
|
Jara TC, Park K, Vahmani P, Van Eenennaam AL, Smith LR, Denicol AC. Stem cell-based strategies and challenges for production of cultivated meat. NATURE FOOD 2023; 4:841-853. [PMID: 37845547 DOI: 10.1038/s43016-023-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.
Collapse
Affiliation(s)
- T C Jara
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - K Park
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - P Vahmani
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - A L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - L R Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - A C Denicol
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
30
|
Oback B, Cossey DA. Chimaeras, complementation, and controlling the male germline. Trends Biotechnol 2023; 41:1237-1247. [PMID: 37173191 DOI: 10.1016/j.tibtech.2023.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023]
Abstract
Animal breeding drives genetic progress mainly through the male germline. This process is slow to respond to rapidly mounting environmental pressures that threaten sustainable food security from animal protein production. New approaches promise to accelerate breeding by producing chimaeras, which comprise sterile host and fertile donor genotypes, to exclusively transmit elite male germlines. Following gene editing to generate sterile host cells, the missing germline can be restored by transplanting either: (i) spermatogonial stem cells (SSCs) into the testis; or (ii) embryonic stem cells (ESCs) into early embryos. Here we compare these alternative germline complementation strategies and their impact on agribiotechnology and species conservation. We propose a novel breeding platform that integrates embryo-based complementation with genomic selection, multiplication, and gene modification.
Collapse
Affiliation(s)
- Björn Oback
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand; School of Sciences, University of Waikato, Hamilton, New Zealand; School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| | - Daniel A Cossey
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand; School of Sciences, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
31
|
Iwatsuki K, Oikawa M, Kobayashi H, Penfold CA, Sanbo M, Yamamoto T, Hochi S, Kurimoto K, Hirabayashi M, Kobayashi T. Rat post-implantation epiblast-derived pluripotent stem cells produce functional germ cells. CELL REPORTS METHODS 2023; 3:100542. [PMID: 37671016 PMCID: PMC10475792 DOI: 10.1016/j.crmeth.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
In mammals, pluripotent cells transit through a continuum of distinct molecular and functional states en route to initiating lineage specification. Capturing pluripotent stem cells (PSCs) mirroring in vivo pluripotent states provides accessible in vitro models to study the pluripotency program and mechanisms underlying lineage restriction. Here, we develop optimal culture conditions to derive and propagate post-implantation epiblast-derived PSCs (EpiSCs) in rats, a valuable model for biomedical research. We show that rat EpiSCs (rEpiSCs) can be reset toward the naive pluripotent state with exogenous Klf4, albeit not with the other five candidate genes (Nanog, Klf2, Esrrb, Tfcp2l1, and Tbx3) effective in mice. Finally, we demonstrate that rat EpiSCs retain competency to produce authentic primordial germ cell-like cells that undergo functional gametogenesis leading to the birth of viable offspring. Our findings in the rat model uncover principles underpinning pluripotency and germline competency across species.
Collapse
Affiliation(s)
- Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Christopher A. Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto 606-8501, Japan
| | - Shinichi Hochi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- The Graduate University of Advanced Studies, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| |
Collapse
|
32
|
Xuan Y, Petersen B, Liu P. Human and Pig Pluripotent Stem Cells: From Cellular Products to Organogenesis and Beyond. Cells 2023; 12:2075. [PMID: 37626885 PMCID: PMC10453631 DOI: 10.3390/cells12162075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pluripotent stem cells (PSCs) are important for studying development and hold great promise in regenerative medicine due to their ability to differentiate into various cell types. In this review, we comprehensively discuss the potential applications of both human and pig PSCs and provide an overview of the current progress and challenges in this field. In addition to exploring the therapeutic uses of PSC-derived cellular products, we also shed light on their significance in the study of interspecies chimeras, which has led to the creation of transplantable human or humanized pig organs. Moreover, we emphasize the importance of pig PSCs as an ideal cell source for genetic engineering, facilitating the development of genetically modified pigs for pig-to-human xenotransplantation. Despite the achievements that have been made, further investigations and refinement of PSC technologies are necessary to unlock their full potential in regenerative medicine and effectively address critical healthcare challenges.
Collapse
Affiliation(s)
- Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, 31535 Neustadt am Rübenberge, Germany;
| | - Pentao Liu
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
- Center for Translational Stem Cell Biology, Hong Kong, China
| |
Collapse
|
33
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
34
|
Samandari M, Saeedinejad F, Quint J, Chuah SXY, Farzad R, Tamayol A. Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities. Trends Biotechnol 2023; 41:887-906. [PMID: 36914431 PMCID: PMC11412388 DOI: 10.1016/j.tibtech.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Cellular agriculture is an emerging field rooted in engineering meat-mimicking cell-laden structures using tissue engineering practices that have been developed for biomedical applications, including regenerative medicine. Research and industrial efforts are focused on reducing the cost and improving the throughput of cultivated meat (CM) production using these conventional practices. Due to key differences in the goals of muscle tissue engineering for biomedical versus food applications, conventional strategies may not be economically and technologically viable or socially acceptable. In this review, these two fields are critically compared, and the limitations of biomedical tissue engineering practices in achieving the important requirements of food production are discussed. Additionally, the possible solutions and the most promising biomanufacturing strategies for cellular agriculture are highlighted.
Collapse
Affiliation(s)
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Sharon Xin Ying Chuah
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Razieh Farzad
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA.
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
35
|
Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, Scatolin G, Liu L, Sakurai M, Ye J, Hao Ming, Yu L, Li B, Jiang Z, Wu J. Bovine blastocyst-like structures derived from stem cell cultures. Cell Stem Cell 2023; 30:611-616.e7. [PMID: 37146582 PMCID: PMC10230549 DOI: 10.1016/j.stem.2023.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows. Bovine blastoids represent an accessible in vitro model for studying embryogenesis and improving reproductive efficiency in livestock species.
Collapse
Affiliation(s)
- Carlos A Pinzón-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China, Agricultural University, Beijing 100193, China
| | - Ana E Ribeiro Orsi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leijie Li
- SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Giovanna Scatolin
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA; Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA; Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
36
|
Ledesma AV, Mueller ML, Van Eenennaam AL. Review: Progress in producing chimeric ungulate livestock for agricultural applications. Animal 2023; 17 Suppl 1:100803. [PMID: 37567671 DOI: 10.1016/j.animal.2023.100803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
The progress made in recent years in the derivation and culture of pluripotent stem cells from farm animals opens up the possibility of creating livestock chimeras. Chimeras producing gametes exclusively derived from elite donor stem cells could pass superior genetics on to the next generation and thereby reduce the genetic lag that typically exists between the elite breeding sector and the commercial production sector, especially for industries like beef and sheep where genetics is commonly disseminated through natural service mating. Chimeras carrying germ cells generated from genome-edited or genetically engineered pluripotent stem cells could further disseminate useful genomic alterations such as climate adaptation, animal welfare improvements, the repair of deleterious genetic conditions, and/or the elimination of undesired traits such as disease susceptibility to the next generation. Despite the successful production of chimeras with germ cells generated from pluripotent donor stem cells injected into preimplantation-stage blastocysts in model species, there are no documented cases of this occurring in livestock. Here, we review the literature on the derivation of pluripotent stem cells from ungulates, and progress in the production of chimeric ungulate livestock for agricultural applications, drawing on insights from studies done in model species, and discuss future possibilities of this fast-moving and developing field. Aside from the technical aspects, the consistency of the regulatory approach taken by different jurisdictions towards chimeric ungulate livestock with germ cells generated from pluripotent stem cells and their progeny will be an important determinant of breeding industry uptake and adoption in animal agriculture.
Collapse
Affiliation(s)
- Alba V Ledesma
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Maci L Mueller
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Alison L Van Eenennaam
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Goszczynski DE, Navarro M, Mutto AA, Ross PJ. Review: Embryonic stem cells as tools for in vitro gamete production in livestock. Animal 2023; 17 Suppl 1:100828. [PMID: 37567652 DOI: 10.1016/j.animal.2023.100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
The goal of in vitro gametogenesis is to reproduce the events of sperm and oocyte development in the laboratory. Significant advances have been made in the mouse in the last decade, but evolutionary divergence from the murine developmental program has prevented the replication of these advances in large mammals. In recent years, intensive work has been done in humans, non-human primates and livestock to elucidate species-specific differences that regulate germ cell development, due to the number of potential applications. One of the most promising applications is the use of in vitro gametes to optimize the spread of elite genetics in cattle. In this context, embryonic stem cells have been posed as excellent candidates for germ cell platforms. Here, we present the most relevant advances in in vitro gametogenesis of interest to livestock science, including new types of pluripotent stem cells with potential for germline derivation, characterization of the signaling environment in the gonadal niche, and experimental systems used to reproduce different stages of germ cell development in the laboratory.
Collapse
Affiliation(s)
- D E Goszczynski
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - P J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA; STgenetics, Navasota, TX, USA.
| |
Collapse
|
38
|
Strange A, Alberio R. Review: A barnyard in the lab: prospect of generating animal germ cells for breeding and conservation. Animal 2023; 17 Suppl 1:100753. [PMID: 37567650 DOI: 10.1016/j.animal.2023.100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro gametogenesis (IVG) offers broad opportunities for gaining detailed new mechanistic knowledge of germ cell biology that will enable progress in the understanding of human infertility, as well as for applications in the conservation of endangered species and for accelerating genetic selection of livestock. The realisation of this potential depends on overcoming key technical challenges and of gaining more detailed knowledge of the ontogeny and developmental programme in different species. Important differences in the molecular mechanisms of germ cell determination and epigenetic reprogramming between mice and other animals have been elucidated in recent years. These must be carefully considered when developing IVG protocols, as cellular kinetics in mice may not accurately reflect mechanisms in other mammals. Similarly, diverse stem cell models with potential for germ cell differentiation may reflect alternative routes to successful IVG. In conclusion, the fidelity of the developmental programme recapitulated during IVG must be assessed against reference information from each species to ensure the production of healthy animals using these methods, as well as for developing genuine models of gametogenesis.
Collapse
Affiliation(s)
- A Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - R Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.
| |
Collapse
|
39
|
Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proc Natl Acad Sci U S A 2022; 119:e2204716119. [PMID: 36161929 DOI: 10.1073/pnas.2204716119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.
Collapse
|
40
|
Botigelli RC, Pieri NCG, Bessi BW, Machado LS, Bridi A, de Souza AF, Recchia K, Neto PF, Ross PJ, Bressan FF, Nogueira MFG. Acquisition and maintenance of pluripotency are influenced by fibroblast growth factor, leukemia inhibitory factor, and 2i in bovine-induced pluripotent stem cells. Front Cell Dev Biol 2022; 10:938709. [PMID: 36187479 PMCID: PMC9515551 DOI: 10.3389/fcell.2022.938709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Several opportunities for embryo development, stem cell maintenance, cell fate, and differentiation have emerged using induced pluripotent stem cells (iPSCs). However, the difficulty in comparing bovine iPSCs (biPSCs) with embryonic stem cells (ESCs) was a challenge for many years. Here, we reprogrammed fetal fibroblasts by transient expression of the four transcription factors (Oct4, Sox2, Klf4, and c-Myc, collectively termed “OSKM” factors) and cultured in iPSC medium, supplemented with bFGF, bFGF2i, leukemia inhibitory factor (LIF), or LIF2i, and then compared these biPSC lines with bESC to evaluate the pluripotent state. biPSC lines were generated in all experimental groups. Particularly, reprogrammed cells treated with bFGF were more efficient in promoting the acquisition of pluripotency. However, LIF2i treatment did not promote continuous self-renewal. biPSCs (line 2) labeled with GFP were injected into early embryos (day 4.5) to assess the potential to contribute to chimeric blastocysts. The biPSC lines show a pluripotency state and are differentiated into three embryonic layers. Moreover, biPSCs and bESCs labeled with GFP were able to contribute to chimeric blastocysts. Additionally, biPSCs have shown promising potential for contributing to chimeric blastocysts and for future studies.
Collapse
Affiliation(s)
- Ramon Cesar Botigelli
- Multiuser Facility (FitoFarmaTec), Department of Pharmacology, Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
- Correspondence: Ramon Cesar Botigelli, ; Marcelo Fábio Gouveia Nogueira,
| | - Naira Carolina Godoy Pieri
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
| | - Brendon William Bessi
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
| | - Lucas Simões Machado
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
- Paulista School of Medicine (EPM), Laboratory of Neurobiology, Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Alessandra Bridi
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
| | - Aline Fernanda de Souza
- Laboratory Biomedical Science, Department of Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON, Canada
| | - Kaiana Recchia
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
| | - Paulo Fantinato Neto
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
| | - Pablo Juan Ross
- Laboratory Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Fabiana Fernandes Bressan
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Multiuser Facility (FitoFarmaTec), Department of Pharmacology, Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, Brazil
- School of Sciences and Languages, Laboratory of Embryonic Micromanipulation, Department of Biological Sciences, São Paulo State University (UNESP), Assis, Brazil
- Correspondence: Ramon Cesar Botigelli, ; Marcelo Fábio Gouveia Nogueira,
| |
Collapse
|
41
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
42
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Pluripotent Core in Bovine Embryos: A Review. Animals (Basel) 2022; 12:ani12081010. [PMID: 35454256 PMCID: PMC9032358 DOI: 10.3390/ani12081010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.
Collapse
|
44
|
Quan Y, Wang X, Li L. In vitro investigation of mammalian peri-implantation embryogenesis†. Biol Reprod 2022; 107:205-211. [PMID: 35294001 DOI: 10.1093/biolre/ioac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
The embryos attach and invade into the uterus and establish the connection with their mother in peri-implantation development. During this period, the pluripotent epiblast cells of embryo undergo symmetry breaking, cell lineage allocation, and morphogenetic remodeling, accompanying with the dramatic changes of transcriptome, epigenome, and signal pathways, to prepare a state for their differentiation and gastrulation. The progresses in mouse genetics and stem cell biology have largely advanced the knowledge of these transformations which are largely hindered by the hard accessibility of natural embryos. To gain insight into mammalian peri-implantation development, great efforts have been made in the field. Recently, the advances in the prolonged in vitro culture of blastocysts, the derivation of multiple pluripotent stem cells, as well as the construction of stem cell-based embryo-like models have opened novel avenues to investigate peri-implantation development in mammals, especially for the humans. Combining with other emerging new technologies, these new models will substantially promote the comprehension of mammalian peri-implantation development, accelerating the progress of reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Yujun Quan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
The people behind the papers - Masaki Kinoshita, Toshihiro Kobayashi, Hiroshi Nagashima, Ramiro Alberio and Austin Smith. Development 2021; 148:273643. [PMID: 34874451 DOI: 10.1242/dev.200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to derive and maintain pluripotent stem cells (PSCs) from livestock species in defined media conditions will contribute to many new research avenues, including comparative embryology and xenotransplantation. In a new paper in Development, Masaki Kinoshita, Toshihiro Kobayashi, Hiroshi Nagashima, Ramiro Alberio, Austin Smith and colleagues describe their three-component medium, which supports long-term propagation of PSCs in the absence of feeders or serum factors. We caught up with the authors to find out more about their research and their future plans.
Collapse
|