1
|
Yang L, Chen S, Zhao W, Zhang G, Zhang H, Zhang T, Xue L, Tian J, Gu Y, Li L, Wang H, Zhang J. Genome-wide association analysis reveals genetic loci and candidate genes for white diarrhea in Jingyuan chickens. Res Vet Sci 2025; 186:105568. [PMID: 39951879 DOI: 10.1016/j.rvsc.2025.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
In order to investigate the basic genetic structure of dysentery in Jingyuan chickens and to explore the genetic markers associated with dysentery resistance in chickens, the present study was based on the genome-wide association analysis (GWAS) technique to investigate the candidate SNPs and genes associated with dysentery resistance in Jingyuan chickens, and a total of 12 SNPs were associated with dysentery resistance in Jingyuan chickens. In addition, some important candidate genes inciuding frizzled class receptor 4 (FZD4), DDB1 and CUL4 associated factor 13(DCAF13), regulating synaptic membrane exocytosis 2 (RIMS2), transmembrane protein 8C (TMEM8C), and RIC1 homolog (RIC1) were identified by selection signal analysis, gene annotation, and enrichment analysis. These results can be used as potential molecular selection markers for chicken dysentery resistance in Jingyuan chickens in order to improve the breeding of disease resistance in Jingyuan chickens.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Siyu Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Guojun Zhang
- Pengyang County Animal Disease Prevention and Control Center, Guyuan, China
| | - Hu Zhang
- Pengyang County Animal Disease Prevention and Control Center, Guyuan, China
| | - Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lin Xue
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jinli Tian
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lanlan Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Hu Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China.
| |
Collapse
|
2
|
Nicolas R, Bonnin MA, Blavet C, de Lima JE, Legallais C, Duprez D. 3D-environment and muscle contraction regulate the heterogeneity of myonuclei. Skelet Muscle 2024; 14:27. [PMID: 39529179 PMCID: PMC11552141 DOI: 10.1186/s13395-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Skeletal muscle formation involves tight interactions between muscle cells and associated connective tissue fibroblasts. Every muscle displays the same type of organisation, they are innervated in the middle and attached at both extremities to tendons. Myonuclei are heterogeneous along myotubes and regionalised according to these middle and tip domains. During development, as soon as myotubes are formed, myonuclei at muscle tips facing developing tendons display their own molecular program. In addition to molecular heterogeneity, a subset of tip myonuclei has a fibroblastic origin different to the classical somitic origin, highlighting a cellular heterogeneity of myonuclei in foetal myotubes. To gain insights on the functional relevance of myonucleus heterogeneity during limb development, we used 2D culture and co-culture systems to dissociate autonomous processes (occurring in 2D-cultures) from 3D-environment of tissue development. We also assessed the role of muscle contraction in myonucleus heterogeneity in paralysed limb muscles. The regionalisation of cellular heterogeneity was not observed in 2D cell culture systems and paralyzed muscles. The molecular signature of MTJ myonuclei was lost in a dish and paralysed muscles indicating a requirement of 3D-enviroment and muscle contraction for MTJ formation. Tip genes that maintain a regionalized expression at myotube tips in cultures are linked to sarcomeres. The behaviour of regionalized markers in cultured myotubes and paralyzed muscles allows us to speculate whether the genes intervene in myogenesis, myotube attachment or MTJ formation.
Collapse
Affiliation(s)
- Rosa Nicolas
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Marie-Ange Bonnin
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Cédrine Blavet
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Joana Esteves de Lima
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
- University Paris Est Creteil, Inserm, EnvA, EFS, AP-HP, IRMB, Creteil, 94010, France
| | - Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, Compiegne, 60203, France
| | - Delphine Duprez
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France.
| |
Collapse
|
3
|
Iwamori K, Kubota M, Zhang L, Kodama K, Kubo A, Kokubo H, Akimoto T, Fukada SI. Decreased number of satellite cells-derived myonuclei in both fast- and slow-twitch muscles in HeyL-KO mice during voluntary running exercise. Skelet Muscle 2024; 14:25. [PMID: 39449015 PMCID: PMC11515490 DOI: 10.1186/s13395-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Skeletal muscles possess unique abilities known as adaptation or plasticity. When exposed to external stimuli, such as mechanical loading, both myofiber size and myonuclear number increase. Muscle stem cells, also known as muscle satellite cells (MuSCs), play vital roles in these changes. HeyL, a direct target of Notch signaling, is crucial for efficient muscle hypertrophy because it ensures MuSC proliferation in surgically overloaded muscles by inhibiting the premature differentiation. However, it remains unclear whether HeyL is essential for MuSC expansion in physiologically exercised muscles. Additionally, the influence of myofiber type on the requirement for HeyL in MuSCs within exercised muscles remains unclear. METHODS We used a voluntary wheel running model and HeyL-knockout mice to investigate the impact of HeyL deficiency on MuSC-derived myonuclei, MuSC behavior, muscle weight, myofiber size, and myofiber type in the running mice. RESULTS The number of new MuSC-derived myonuclei was significantly lower in both slow-twitch soleus and fast-twitch plantaris muscles from exercised HeyL-knockout mice than in control mice. However, expect for the frequency of Type IIb myofiber in plantaris muscle, exercised HeyL-knockout mice exhibited similar responses to control mice regarding myofiber size and type. CONCLUSIONS HeyL expression is crucial for MuSC expansion during physiological exercise in both slow and fast muscles. The frequency of Type IIb myofiber in plantaris muscle of HeyL-knockout mice was not significantly reduced compared to that of control mice. However, the absence of HeyL did not affect the increased size and frequency of Type IIa myofiber in plantaris muscles. In this model, no detectable changes in myofiber size or type were observed in the soleus muscles of either control or HeyL-knockout mice. These findings imply that the requirement for MuSCs in the wheel-running model is difficult to observe due to the relatively low degree of hypertrophy compared to surgically overloaded models.
Collapse
Affiliation(s)
- Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Manami Kubota
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Lidan Zhang
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 40016, China
| | - Kazuki Kodama
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, 359-1192, Saitama, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
4
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. Development 2024; 151:dev202968. [PMID: 39114943 PMCID: PMC11441980 DOI: 10.1242/dev.202968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Broer T, Tsintolas N, Purkey K, Hammond S, DeLuca S, Wu T, Gupta I, Khodabukus A, Bursac N. Engineered myovascular tissues for studies of endothelial/satellite cell interactions. Acta Biomater 2024; 188:65-78. [PMID: 39299621 PMCID: PMC11486565 DOI: 10.1016/j.actbio.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In native skeletal muscle, capillaries reside in close proximity to muscle stem cells (satellite cells, SCs) and regulate SC numbers and quiescence through partially understood mechanisms that are difficult to study in vivo. This challenge could be addressed by the development of a 3-dimensional (3D) in vitro model of vascularized skeletal muscle harboring both a pool of quiescent SCs and a robust network of capillaries. Still, studying interactions between SCs and endothelial cells (ECs) within a tissue-engineered muscle environment has been hampered by the incompatibility of commercially available EC media with skeletal muscle differentiation. In this study, we first optimized co-culture media and cellular ratios to generate highly functional vascularized human skeletal muscle tissues ("myovascular bundles") with contractile properties (∼10 mN/mm2) equaling those of avascular, muscle-only tissues ("myobundles"). Within one week of muscle differentiation, ECs in these tissues formed a dense network of capillaries that co-aligned with muscle fibers and underwent initial lumenization. Incorporating vasculature within myobundles increased the total SC number by 82%, with SC density and quiescent signature being increased proximal (≤20μm) to EC networks. In vivo, at two weeks post-implantation into dorsal window chambers in nude mice, vascularized myobundles exhibited improved calcium handling compared to avascular implants. In summary, we engineered highly functional myovascular tissues that enable studies of the roles of EC-SC crosstalk in human muscle development, physiology, and disease. STATEMENT OF SIGNIFICANCE: In native skeletal muscle, intricate relationships between vascular cells and muscle stem cells ("satellite cells") play critical roles in muscle growth and regeneration. Current methods for in vitro engineering of contractile skeletal muscle do not recreate capillary networks present in vivo. Our study for the first time generates in vitro robustly vascularized, highly functional engineered human skeletal muscle tissues. Within these tissues, satellite cells are more abundant and, similar to in vivo, they are more dense and less proliferative proximal to endothelial cells. Upon implantation in mice, vascularized engineered muscles show improved calcium handling compared to muscle-only implants. We expect that this versatile in vitro system will enable studies of muscle-vasculature crosstalk in human development and disease.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC 27708, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Ishika Gupta
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Yan Y, Zhu S, Jia M, Chen X, Qi W, Gu F, Valencak TG, Liu JX, Sun HZ. Advances in single-cell transcriptomics in animal research. J Anim Sci Biotechnol 2024; 15:102. [PMID: 39090689 PMCID: PMC11295521 DOI: 10.1186/s40104-024-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding biological mechanisms is fundamental for improving animal production and health to meet the growing demand for high-quality protein. As an emerging biotechnology, single-cell transcriptomics has been gradually applied in diverse aspects of animal research, offering an effective method to study the gene expression of high-throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identified cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions in animals using single-cell transcriptomics. In this paper, we introduce the development of single-cell technology and review the processes, advancements, and applications of single-cell transcriptomics in animal research. We summarize recent efforts using single-cell transcriptomics to obtain a more profound understanding of animal nutrition and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the practical experience accumulated based on a large number of cases is highlighted to provide a reference for determining key factors (e.g., sample size, cell clustering, and cell type annotation) in single-cell transcriptomics analysis. We also discuss the limitations and outlook of single-cell transcriptomics in the current stage. This paper describes the comprehensive progress of single-cell transcriptomics in animal research, offering novel insights and sustainable advancements in agricultural productivity and animal health.
Collapse
Affiliation(s)
- Yunan Yan
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Jia
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Chen
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenlingli Qi
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Teresa G Valencak
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Agency for Health and Food Safety Austria, 1220, Vienna, Austria
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Hirsinger E, Blavet C, Bonnin MA, Bellenger L, Gharsalli T, Duprez D. Limb connective tissue is organized in a continuum of promiscuous fibroblast identities during development. iScience 2024; 27:110305. [PMID: 39050702 PMCID: PMC11267076 DOI: 10.1016/j.isci.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Connective tissue (CT), which includes tendon and muscle CT, plays critical roles in development, in particular as positional cue provider. Nonetheless, our understanding of fibroblast developmental programs is hampered because fibroblasts are highly heterogeneous and poorly characterized. Combining single-cell RNA-sequencing-based strategies including trajectory inference and in situ hybridization analyses, we address the diversity of fibroblasts and their developmental trajectories during chicken limb fetal development. We show that fibroblasts switch from a positional information to a lineage diversification program at the fetal period onset. Muscle CT and tendon are composed of several fibroblast populations that emerge asynchronously. Once the final muscle pattern is set, transcriptionally close populations are found in neighboring locations in limbs, prefiguring the adult fibroblast layers. We propose that the limb CT is organized in a continuum of promiscuous fibroblast identities, allowing for the robust and efficient connection of muscle to bone and skin.
Collapse
Affiliation(s)
- Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, Inserm U1156, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Paris, Institut Français de Bioinformatique (IFB), 75005 Paris, France
| | - Tarek Gharsalli
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| |
Collapse
|
8
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
9
|
Wherley TJ, Thomas S, Millay DP, Saunders T, Roy S. Molecular regulation of myocyte fusion. Curr Top Dev Biol 2024; 158:53-82. [PMID: 38670716 PMCID: PMC11503471 DOI: 10.1016/bs.ctdb.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Myocyte fusion is a pivotal process in the development and regeneration of skeletal muscle. Failure during fusion can lead to a range of developmental as well as pathological consequences. This review aims to comprehensively explore the intricate processes underlying myocyte fusion, from the molecular to tissue scale. We shed light on key players, such as the muscle-specific fusogens - Myomaker and Myomixer, in addition to some lesser studied molecules contributing to myocyte fusion. Conserved across vertebrates, Myomaker and Myomixer play a crucial role in driving the merger of plasma membranes of fusing myocytes, ensuring the formation of functional muscle syncytia. Our multiscale approach also delves into broader cell and tissue dynamics that orchestrate the timing and positioning of fusion events. In addition, we explore the relevance of muscle fusogens to human health and disease. Mutations in fusogen genes have been linked to congenital myopathies, providing unique insights into the molecular basis of muscle diseases. We conclude with a discussion on potential therapeutic avenues that may emerge from manipulating the myocyte fusion process to remediate skeletal muscle disorders.
Collapse
Affiliation(s)
- Tanner J Wherley
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Serena Thomas
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Timothy Saunders
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Pediatrics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583753. [PMID: 38559144 PMCID: PMC10979880 DOI: 10.1101/2024.03.06.583753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is only expressed in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. While in vertebrates Myogenic Regulatory Factors (MRFs) like MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF/MyoD and Early B-Cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
11
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
12
|
Fukada SI, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle 2022; 12:17. [PMID: 35794679 PMCID: PMC9258228 DOI: 10.1186/s13395-022-00300-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of cells. A noticeable aspect of skeletal muscle biology is the drastic cell-cell communication changes that occur in multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, whereas during mechanical loading-dependent muscle hypertrophy, MuSCs do not undergo such stepwise processes (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy processes are discussed.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tatsuyoshi Higashimoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
13
|
Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle 2022; 12:9. [PMID: 35459219 PMCID: PMC9027478 DOI: 10.1186/s13395-022-00293-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
Collapse
Affiliation(s)
- Stamatia Gioftsidi
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
| | - Frederic Relaix
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
- EnvA, IMRB, F-94700, Maisons-Alfort, France
- Etablissement Français du Sang (EFS), IMRB, F-94010, Creteil, France
- Assistance Publique-Hôpitaux de Paris, Hopital Mondor, Service d'Histologie, F-94010, Creteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France.
| |
Collapse
|