1
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
2
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Budny B, Karmelita-Katulska K, Stajgis M, Żemojtel T, Ruchała M, Ziemnicka K. Copy Number Variants Contributing to Combined Pituitary Hormone Deficiency. Int J Mol Sci 2020; 21:ijms21165757. [PMID: 32796691 PMCID: PMC7461210 DOI: 10.3390/ijms21165757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/25/2022] Open
Abstract
Combined pituitary hormone deficiency represents a disorder with complex etiology. For many patients, causes of the disease remain unexplained, despite usage of advanced genetic testing. Although major and common transcription factors were identified two decades ago, we still struggle with identification of rare inborn factors contributing to pituitary function. In this report, we follow up genomic screening of CPHD patient cohort that were previously tested for changes in a coding sequences of genes with the use of the whole exome. We aimed to find contribution of rare copy number variations (CNVs). As a result, we identified genomic imbalances in 7 regions among 12 CPHD patients. Five out of seven regions showed copy gains whereas two presented losses of genomic fragment. Three regions with detected gains encompassed known CPHD genes namely LHX4, HESX1, and OTX2. Among new CPHD loci, the most interesting seem to be the region covering SIX3 gene, that is abundantly expressed in developing brain, and together with HESX1 contributes to pituitary organogenesis as it was evidenced before in functional studies. In conclusion, with the use of broadened genomic approach we identified copy number imbalances for 12 CPHD patients. Although further functional studies are required in order to estimate its true impact on expression pattern during pituitary organogenesis and CPHD etiology.
Collapse
Affiliation(s)
- Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.R.); (K.Z.)
- Correspondence: ; Tel.: +48-691-814-330
| | - Katarzyna Karmelita-Katulska
- Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (K.K.-K.); (M.S.)
| | - Marek Stajgis
- Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (K.K.-K.); (M.S.)
| | - Tomasz Żemojtel
- Genomics Platform, Berlin Institute of Health, 10117 Berlin, Germany;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-569 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.R.); (K.Z.)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.R.); (K.Z.)
| |
Collapse
|
4
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
5
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
6
|
Lodge EJ, Santambrogio A, Russell JP, Xekouki P, Jacques TS, Johnson RL, Thavaraj S, Bornstein SR, Andoniadou CL. Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade. eLife 2019; 8:43996. [PMID: 30912742 PMCID: PMC6461440 DOI: 10.7554/elife.43996] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
SOX2 positive pituitary stem cells (PSCs) are specified embryonically and persist throughout life, giving rise to all pituitary endocrine lineages. We have previously shown the activation of the STK/LATS/YAP/TAZ signalling cascade in the developing and postnatal mammalian pituitary. Here, we investigate the function of this pathway during pituitary development and in the regulation of the SOX2 cell compartment. Through loss- and gain-of-function genetic approaches, we reveal that restricting YAP/TAZ activation during development is essential for normal organ size and specification from SOX2+ PSCs. Postnatal deletion of LATS kinases and subsequent upregulation of YAP/TAZ leads to uncontrolled clonal expansion of the SOX2+ PSCs and disruption of their differentiation, causing the formation of non-secreting, aggressive pituitary tumours. In contrast, sustained expression of YAP alone results in expansion of SOX2+ PSCs capable of differentiation and devoid of tumourigenic potential. Our findings identify the LATS/YAP/TAZ signalling cascade as an essential component of PSC regulation in normal pituitary physiology and tumourigenesis. The pituitary is a gland inside the head that releases hormones that control major processes in the body including growth, fertility and stress. Diseases of the pituitary gland can prevent the body from producing the appropriate amounts of hormones, and also include tumours. A population of stem cells in the pituitary known as SOX2 cells divide to make the specialist cells that produce the hormones. This population forms as the pituitary develops in the embryo and continues to contribute new hormone-producing cells throughout life. Signals from inside and outside the gland control how the pituitary develops and maintain the correct balance of different types of cells in the gland in adults. In 2016, Lodge et al. reported that a cascade of signals known as the Hippo pathway is active in mouse and human pituitary glands, but its role remained unclear. Here, Lodge et al. use genetic approaches to study this signalling pathway in the pituitary of mice. The results of the experiments show that the Hippo pathway is essential for the pituitary gland to develop normally in mouse embryos. Furthermore, in adult mice the Hippo pathway is required to maintain the population of SOX2 cells in the pituitary and to regulate their cell numbers. Increasing the level of Hippo signalling in mouse embryos and adult mice led to an expansion of SOX2 stem cells that could generate new specialist cell types, but a further increase generated aggressive tumours that originated from the uncontrolled growth of SOX2 cells. These findings are the first step to understanding how the Hippo pathway works in the pituitary, which may eventually lead to new treatments for tumours and other diseases that affect this gland. The next step towards such treatments will be to carry out further experiments that use drugs to control this pathway and alter the fate of pituitary cells in mice and other animals.
Collapse
Affiliation(s)
- Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - John P Russell
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Paraskevi Xekouki
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Department of Endocrinology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Thomas S Jacques
- UCL GOS Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Randy L Johnson
- Department of Cancer Biology, The University of Texas, MD Anderson Cancer Center, Houston, United States
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Stefan R Bornstein
- Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cynthia Lilian Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
|
8
|
Gregory LC, Dattani MT. Embryologic and Genetic Disorders of the Pituitary Gland. CONTEMPORARY ENDOCRINOLOGY 2019:3-27. [DOI: 10.1007/978-3-030-11339-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Thomas AC, Heux P, Santos C, Arulvasan W, Solanky N, Carey ME, Gerrelli D, Kinsler VA, Etchevers HC. Widespread dynamic and pleiotropic expression of the melanocortin-1-receptor (MC1R) system is conserved across chick, mouse and human embryonic development. Birth Defects Res 2018; 110:443-455. [PMID: 29316344 PMCID: PMC6446732 DOI: 10.1002/bdr2.1183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022]
Abstract
Background MC1R, a G‐protein coupled receptor with high affinity for alpha‐melanocyte stimulating hormone (αMSH), modulates pigment production in melanocytes from many species and is associated with human melanoma risk. MC1R mutations affecting human skin and hair color also have pleiotropic effects on the immune response and analgesia. Variants affecting human pigmentation in utero alter the congenital phenotype of both oculocutaneous albinism and congenital melanocytic naevi, and have a possible effect on birthweight. Methods and Results By in situ hybridization, RT‐PCR and immunohistochemistry, we show that MC1R is widely expressed during human, chick and mouse embryonic and fetal stages in many somatic tissues, particularly in the musculoskeletal and nervous systems, and conserved across evolution in these three amniotes. Its dynamic pattern differs from that of TUBB3, a gene overlapping the same locus in humans and encoding class III β‐tubulin. The αMSH peptide and the transcript for its precursor, pro‐opiomelanocortin (POMC), are similarly present in numerous extra‐cutaneous tissues. MC1R genotyping of variants p.(V60M) and p.(R151C) was undertaken for 867 healthy children from the Avon Longitudinal Study of Parent and Children (ALSPAC) cohort, and birthweight modeled using multiple logistic regression analysis. A significant positive association initially found between R151C and birth weight, independent of known birth weight modifiers, was not reproduced when combined with data from an independent genome‐wide association study of 6,459 additional members of the same cohort. Conclusions These data clearly show a new and hitherto unsuspected role for MC1R in noncutaneous solid tissues before birth.
Collapse
Affiliation(s)
- Anna C Thomas
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Pauline Heux
- GMGF, Aix Marseille University, INSERM, UMR_S910, Marseille, France
| | - Chloe Santos
- Birth Defects Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Wisenave Arulvasan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Nita Solanky
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Magalie E Carey
- GMGF, Aix Marseille University, INSERM, UMR_S910, Marseille, France
| | - Dianne Gerrelli
- Birth Defects Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Veronica A Kinsler
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom.,Department of Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom
| | | |
Collapse
|
10
|
Sanchez-Arrones L, Sandonís Á, Cardozo MJ, Bovolenta P. Adenohypophysis placodal precursors exhibit distinctive features within the rostral preplacodal ectoderm. Development 2017; 144:3521-3532. [PMID: 28974641 DOI: 10.1242/dev.149724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
Placodes are discrete thickenings of the vertebrate cranial ectoderm that generate morpho-functionally distinct structures, such as the adenohypophysis, olfactory epithelium and lens. All placodes arise from a horseshoe-shaped preplacodal ectoderm in which the precursors of individual placodes are intermingled. However, fate-map studies indicated that cells positioned at the preplacodal midline give rise to only the adenohypophyseal placode, suggesting a unique organization of these precursors within the preplacode. To test this possibility, we combined embryological and molecular approaches in chick embryos to show that, at gastrula stage, adenohypophyseal precursors are clustered in the median preplacodal ectoderm, largely segregated from those of the adjacent olfactory placode. Median precursors are elongated, densely packed and, at neurula stage, express a molecular signature that distinguishes them from the remaining preplacodal cells. Olfactory placode precursors and midline neural cells can replace ablated adenohypophyseal precursors up to head-fold stage, although with a more plastic organization. We thus propose that adenohypophyseal placode precursors are unique within the preplacodal ectoderm possibly because they originate the only single placode and the only one with an endocrine character.
Collapse
Affiliation(s)
- Luisa Sanchez-Arrones
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - África Sandonís
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - Marcos Julián Cardozo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain .,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| |
Collapse
|
11
|
Donson AM, Apps J, Griesinger AM, Amani V, Witt DA, Anderson RCE, Niazi TN, Grant G, Souweidane M, Johnston JM, Jackson EM, Kleinschmidt-DeMasters BK, Handler MH, Tan AC, Gore L, Virasami A, Gonzalez-Meljem JM, Jacques TS, Martinez-Barbera JP, Foreman NK, Hankinson TC. Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma. J Neuropathol Exp Neurol 2017; 76:779-788. [PMID: 28859336 DOI: 10.1093/jnen/nlx061] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pediatric adamantinomatous craniopharyngioma (ACP) is a highly solid and cystic tumor, often causing substantial damage to critical neuroendocrine structures such as the hypothalamus, pituitary gland, and optic apparatus. Paracrine signaling mechanisms driving tumor behavior have been hypothesized, with IL-6R overexpression identified as a potential therapeutic target. To identify potential novel therapies, we characterized inflammatory and immunomodulatory factors in ACP cyst fluid and solid tumor components. Cytometric bead analysis revealed a highly pro-inflammatory cytokine pattern in fluid from ACP compared to fluids from another cystic pediatric brain tumor, pilocytic astrocytoma. Cytokines and chemokines with particularly elevated concentrations in ACPs were IL-6, CXCL1 (GRO), CXCL8 (IL-8) and the immunosuppressive cytokine IL-10. These data were concordant with solid tumor compartment transcriptomic data from a larger cohort of ACPs, other pediatric brain tumors and normal brain. The majority of receptors for these cytokines and chemokines were also over-expressed in ACPs. In addition to IL-10, the established immunosuppressive factor IDO-1 was overexpressed by ACPs at the mRNA and protein levels. These data indicate that ACP cyst fluids and solid tumor components are characterized by an inflammatory cytokine and chemokine expression pattern. Further study regarding selective cytokine blockade may inform novel therapeutic interventions.
Collapse
Affiliation(s)
- Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John Apps
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vladimir Amani
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Davis A Witt
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard C E Anderson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Toba N Niazi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gerald Grant
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mark Souweidane
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James M Johnston
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric M Jackson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bette K Kleinschmidt-DeMasters
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael H Handler
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lia Gore
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alex Virasami
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jose Mario Gonzalez-Meljem
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas S Jacques
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Juan Pedro Martinez-Barbera
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd C Hankinson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | |
Collapse
|
12
|
Carreno G, Apps JR, Lodge EJ, Panousopoulos L, Haston S, Gonzalez-Meljem JM, Hahn H, Andoniadou CL, Martinez-Barbera JP. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development 2017; 144:3289-3302. [PMID: 28807898 DOI: 10.1242/dev.153387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022]
Abstract
Sonic hedgehog (SHH) is an essential morphogenetic signal that dictates cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3+/LHX4+ Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead a crucial role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3+/LHX4+ RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 days post coitum (dpc) and total loss of pituitary tissue by 12.5 dpc. Conversely, overactivation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2+ stem cell compartment by the end of gestation.
Collapse
Affiliation(s)
- Gabriela Carreno
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - John R Apps
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Leonidas Panousopoulos
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jose Mario Gonzalez-Meljem
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Heidi Hahn
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, 37073 Göttingen, Germany
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.,Department of Internal Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
13
|
Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, Gonzalez-Meljem JM, Apps JR, Virasami A, Thavaraj S, Gutteridge A, Forshew T, Marais R, Brandner S, Jacques TS, Andoniadou CL, Martinez-Barbera JP. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development 2017; 144:2141-2152. [PMID: 28506993 PMCID: PMC5482995 DOI: 10.1242/dev.150490] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/03/2017] [Indexed: 01/19/2023]
Abstract
Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ cells and suggest that persistent proliferative capacity of Sox2+ cells may underlie the pathogenesis of PCP.
Collapse
Affiliation(s)
- Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sara Pozzi
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriela Carreno
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Saba Manshaei
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Leonidas Panousopoulos
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jose Mario Gonzalez-Meljem
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - John R Apps
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alex Virasami
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3NN, UK
| | - Selvam Thavaraj
- Head and Neck Pathology, Dental Institute, King's College London, London SE1 9RT, UK
| | - Alice Gutteridge
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Tim Forshew
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3NN, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
14
|
Pozzi S, Tan WH, Martinez-Barbera J. Characterization of a novel HESX1 mutation in a pediatric case of septo-optic dysplasia. Clin Case Rep 2017; 5:463-470. [PMID: 28396770 PMCID: PMC5378840 DOI: 10.1002/ccr3.868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/13/2016] [Accepted: 01/29/2017] [Indexed: 11/08/2022] Open
Abstract
Septo‐optic dysplasia (SOD) is a rare condition for which the precise etiology is still unclear. Elucidating the genetic component of SOD is a difficult but necessary task for the future. We describe herein a novel HESX1 c.475C>T (p.R159W) mutation and demonstrate its potential pathogenicity in the development of this rare disease.
Collapse
Affiliation(s)
- Sara Pozzi
- Developmental Biology and Cancer Research Programme Birth Defects Research Centre UCL Great Ormond Street Institute of Child Health London UK
| | - Wen-Hann Tan
- Division of Genetics and Genomics Boston Children's Hospital Boston Massachusetts USA
| | - JuanPedro Martinez-Barbera
- Developmental Biology and Cancer Research Programme Birth Defects Research Centre UCL Great Ormond Street Institute of Child Health London UK
| |
Collapse
|
15
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
16
|
Fang Q, Figueredo Benedetti AF, Ma Q, Gregory L, Li JZ, Dattani M, Sadeghi-Nejad A, Arnhold IJ, de Mendonça BB, Camper SA, Carvalho LR. HESX1 mutations in patients with congenital hypopituitarism: variable phenotypes with the same genotype. Clin Endocrinol (Oxf) 2016; 85:408-14. [PMID: 27000987 PMCID: PMC4988903 DOI: 10.1111/cen.13067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/22/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mutations in the transcription factor HESX1 can cause isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD) with or without septo-optic dysplasia (SOD). So far there is no clear genotype-phenotype correlation. PATIENTS AND RESULTS We report four different recessive loss-of-function mutations in three unrelated families with CPHD and no midline defects or SOD. A homozygous p.R160C mutation was found by Sanger sequencing in two siblings from a consanguineous family. These patients presented with ACTH, TSH and GH deficiencies, severe anterior pituitary hypoplasia (APH) or pituitary aplasia (PA) and normal posterior pituitary. The p.R160C mutation was previously reported in a case with SOD, CPHD and ectopic posterior pituitary (EPP). Using exome sequencing, a homozygous p.I26T mutation was found in a Brazilian patient born to consanguineous parents. This patient had evolving CPHD, normal ACTH, APH and normal posterior pituitary (NPP). A previously reported patient homozygous for p.I26T had evolving CPHD and EPP. Finally, we identified compound heterozygous mutations in HESX1, p.[R159W];[R160H], in a patient with PA and CPHD. We showed that both of these mutations abrogate the ability of HESX1 to repress PROP1-mediated transcriptional activation. A patient homozygous for p.R160H was previously reported in a patient with CPHD, EPP, APH. CONCLUSION These three examples demonstrate that HESX1 mutations cause variable clinical features in patients, which suggests an influence of modifier genes or environmental factors on the phenotype.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anna Flavia Figueredo Benedetti
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Louise Gregory
- Developmental Endocrinology Research Group, Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London, Institute of Child Health, London, UK
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mehul Dattani
- Developmental Endocrinology Research Group, Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London, Institute of Child Health, London, UK
| | - Abdollah Sadeghi-Nejad
- Division of Pediatric Endocrinology, Floating Hospital for Children at Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ivo J.P. Arnhold
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho de Mendonça
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Correspondence should be addressed to: Sally A. Camper, Ph.D., Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA, Fax: 1-734-763-3784, , Luciani R. Carvalho, M.D., Ph.D., Endocrinology Discipline of Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil, Fax: 55-11-2661-7519,
| | - Luciani R. Carvalho
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
- Correspondence should be addressed to: Sally A. Camper, Ph.D., Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA, Fax: 1-734-763-3784, , Luciani R. Carvalho, M.D., Ph.D., Endocrinology Discipline of Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil, Fax: 55-11-2661-7519,
| |
Collapse
|
17
|
Avbelj Stefanija M, Kotnik P, Bratanič N, Žerjav Tanšek M, Bertok S, Bratina N, Battelino T, Trebušak Podkrajšek K. Novel Mutations in HESX1 and PROP1 Genes in Combined Pituitary Hormone Deficiency. Horm Res Paediatr 2016; 84:153-8. [PMID: 26111865 DOI: 10.1159/000433468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The HESX1 gene is essential in forebrain development and pituitary organogenesis, and its mutations are the most commonly identified genetic cause of septo-optic dysplasia (SOD). The PROP1 gene is involved in anterior pituitary cell lineage specification and is commonly implicated in non-syndromic combined pituitary hormone deficiency (CPHD). We aimed to assess the involvement of HESX1 and PROP1 mutations in a cohort of patients with SOD and CPHD. METHODS Six patients with sporadic SOD and 16 patients with CPHD from 14 pedigrees were screened for mutations in HESX1 and PROP1 genes by exon sequencing. Half of the CPHD patients had variable associated clinical characteristics, such as hearing loss, orofacial cleft, kidney disorder or developmental delay. Novel variants were evaluated in silico and verified in SNP databases. RESULTS A novel heterozygous p.Glu102Gly mutation in the HESX1 gene and a novel homozygous p.Arg121Thr mutation in the PROP1 gene were detected in 2 pedigrees with CPHD. A small previously reported deletion in PROP1 c.301_302delAG was detected in a separate patient with CPHD, in heterozygous state. No mutations were identified in patients with SOD. CONCLUSIONS Our results expand the spectrum of mutations implicated in CPHD. The frequency of 15% of the PROP1 mutations in CPHD was low, likely due to the clinical heterogeneity of the cohort.
Collapse
Affiliation(s)
- Magdalena Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Goldsmith S, Lovell-Badge R, Rizzoti K. SOX2 is sequentially required for progenitor proliferation and lineage specification in the developing pituitary. Development 2016; 143:2376-88. [PMID: 27226320 PMCID: PMC4958329 DOI: 10.1242/dev.137984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 02/01/2023]
Abstract
Sox2 mutations are associated with pituitary hormone deficiencies and the protein is required for pituitary progenitor proliferation, but its function has not been well characterized in this context. SOX2 is known to activate expression of Six6, encoding a homeodomain transcription factor, in the ventral diencephalon. Here, we find that the same relationship likely exists in the pituitary. Moreover, because Six6 deletion is associated with a similar phenotype as described here for loss of Sox2, Six6 appears to be an essential downstream target of SOX2 in the gland. We also uncover a second role for SOX2. Whereas cell differentiation is reduced in Sox2 mutants, some endocrine cells are generated, such as POMC-positive cells in the intermediate lobe. However, loss of SOX2 here results in complete downregulation of the melanotroph pioneer factor PAX7, and subsequently a switch of identity from melanotrophs to ectopic corticotrophs. Rescuing proliferation by ablating the cell cycle negative regulator p27 (also known as Cdkn1b) in Sox2 mutants does not restore melanotroph emergence. Therefore, SOX2 has two independent roles during pituitary morphogenesis; firstly, promotion of progenitor proliferation, and subsequently, acquisition of melanotroph identity. Summary: SOX2 has two independent roles during pituitary morphogenesis: promoting progenitor proliferation via SIX6 and determining melanotroph identity via PAX7.
Collapse
Affiliation(s)
- Sam Goldsmith
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Robin Lovell-Badge
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Karine Rizzoti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
19
|
Lodge EJ, Russell JP, Patist AL, Francis-West P, Andoniadou CL. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development. Front Physiol 2016; 7:114. [PMID: 27065882 PMCID: PMC4814506 DOI: 10.3389/fphys.2016.00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023] Open
Abstract
The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumors. Multiple signaling pathways, including WNT, BMP, FGF, and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridization method (RNAscope) to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.
Collapse
Affiliation(s)
- Emily J Lodge
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - John P Russell
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Amanda L Patist
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Philippa Francis-West
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Cynthia L Andoniadou
- Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| |
Collapse
|
20
|
Gaston-Massuet C, McCabe MJ, Scagliotti V, Young RM, Carreno G, Gregory LC, Jayakody SA, Pozzi S, Gualtieri A, Basu B, Koniordou M, Wu CI, Bancalari RE, Rahikkala E, Veijola R, Lopponen T, Graziola F, Turton J, Signore M, Mousavy Gharavy SN, Charolidi N, Sokol SY, Andoniadou CL, Wilson SW, Merrill BJ, Dattani MT, Martinez-Barbera JP. Transcription factor 7-like 1 is involved in hypothalamo-pituitary axis development in mice and humans. Proc Natl Acad Sci U S A 2016; 113:E548-57. [PMID: 26764381 PMCID: PMC4747739 DOI: 10.1073/pnas.1503346113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aberrant embryonic development of the hypothalamus and/or pituitary gland in humans results in congenital hypopituitarism (CH). Transcription factor 7-like 1 (TCF7L1), an important regulator of the WNT/β-catenin signaling pathway, is expressed in the developing forebrain and pituitary gland, but its role during hypothalamo-pituitary (HP) axis formation or involvement in human CH remains elusive. Using a conditional genetic approach in the mouse, we first demonstrate that TCF7L1 is required in the prospective hypothalamus to maintain normal expression of the hypothalamic signals involved in the induction and subsequent expansion of Rathke's pouch progenitors. Next, we reveal that the function of TCF7L1 during HP axis development depends exclusively on the repressing activity of TCF7L1 and does not require its interaction with β-catenin. Finally, we report the identification of two independent missense variants in human TCF7L1, p.R92P and p.R400Q, in a cohort of patients with forebrain and/or pituitary defects. We demonstrate that these variants exhibit reduced repressing activity in vitro and in vivo relative to wild-type TCF7L1. Together, our data provide support for a conserved molecular function of TCF7L1 as a transcriptional repressor during HP axis development in mammals and identify variants in this transcription factor that are likely to contribute to the etiology of CH.
Collapse
Affiliation(s)
- Carles Gaston-Massuet
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Mark J McCabe
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Gabriela Carreno
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Louise C Gregory
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Sujatha A Jayakody
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Sara Pozzi
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Basudha Basu
- Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029
| | - Markela Koniordou
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Chun-I Wu
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, IL 60607
| | - Rodrigo E Bancalari
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Elisa Rahikkala
- Research Unit for Pediatrics, Dermatology, Clinical Genetics, Obstetrics and Gynecology (PEDEGO) and Medical Research Center (MRC) Oulu, University of Oulu, FIN-90029, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital, FIN-90029, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO and MRC Oulu, Oulu University Hospital, University of Oulu, FIN-90014, Oulu, Finland
| | - Tuija Lopponen
- Department of Child Neurology, Kuopio University Hospital, FIN 70029, Kuopio, Finland
| | - Federica Graziola
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - James Turton
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Massimo Signore
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Seyedeh Neda Mousavy Gharavy
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Nicoletta Charolidi
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Sergei Y Sokol
- Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029
| | - Cynthia Lilian Andoniadou
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, IL 60607
| | - Mehul T Dattani
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Juan Pedro Martinez-Barbera
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, University College London Institute of Child Health, London, WC1N 1EH, United Kingdom;
| |
Collapse
|
21
|
Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol 2015; 227:R51-71. [PMID: 26416826 PMCID: PMC4629398 DOI: 10.1530/joe-15-0341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 01/23/2023]
Abstract
Central congenital hypothyroidism (CCH) may occur in isolation, or more frequently in combination with additional pituitary hormone deficits with or without associated extrapituitary abnormalities. Although uncommon, it may be more prevalent than previously thought, affecting up to 1:16 000 neonates in the Netherlands. Since TSH is not elevated, CCH will evade diagnosis in primary, TSH-based, CH screening programs and delayed detection may result in neurodevelopmental delay due to untreated neonatal hypothyroidism. Alternatively, coexisting growth hormones or ACTH deficiency may pose additional risks, such as life threatening hypoglycaemia. Genetic ascertainment is possible in a minority of cases and reveals mutations in genes controlling the TSH biosynthetic pathway (TSHB, TRHR, IGSF1) in isolated TSH deficiency, or early (HESX1, LHX3, LHX4, SOX3, OTX2) or late (PROP1, POU1F1) pituitary transcription factors in combined hormone deficits. Since TSH cannot be used as an indicator of euthyroidism, adequacy of treatment can be difficult to monitor due to a paucity of alternative biomarkers. This review will summarize the normal physiology of pituitary development and the hypothalamic-pituitary-thyroid axis, then describe known genetic causes of isolated central hypothyroidism and combined pituitary hormone deficits associated with TSH deficiency. Difficulties in diagnosis and management of these conditions will then be discussed.
Collapse
Affiliation(s)
- Nadia Schoenmakers
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Kyriaki S Alatzoglou
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - V Krishna Chatterjee
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Mehul T Dattani
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
22
|
Menke DB. Engineering subtle targeted mutations into the mouse genome. Genesis 2013; 51:605-18. [PMID: 23913666 DOI: 10.1002/dvg.22422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
Homologous recombination in embryonic stem (ES) cells offers an exquisitely precise mechanism to introduce targeted modifications to the mouse genome. This ability to produce specific alterations to the mouse genome has become an essential tool for the analysis of gene function and the development of mouse models of human disease. Of the many thousands of mouse alleles that have been generated by gene targeting, the majority are designed to completely ablate gene function, to create conditional alleles that are inactivated in the presence of Cre recombinase, or to produce reporter alleles that label-specific tissues or cell populations (Eppig et al., 2012, Nucleic Acids Res 40:D881-D886). However, there is a variety of powerful motivations for the introduction of subtle targeted mutations (STMs) such as point mutations, small deletions, or small insertions into the mouse genome. The introduction of STMs allows the ablation of specific transcript isoforms, permits the functional investigation of particular domains or amino acids within a protein, provides the ability to study the role of specific sites with in cis-regulatory elements, and can result in better mouse models of human genetic disorders. In this review, I examine the current strategies that are commonly used to introduce STMs into the mouse genome and highlight new gene targeting technologies, including TALENs and CRISPR/Cas, which are likely to influence the future of gene targeting in mice.
Collapse
Affiliation(s)
- Douglas B Menke
- Department of Genetics, University of Georgia, Athens, Georgia
| |
Collapse
|
23
|
Prince KL, Colvin SC, Park S, Lai X, Witzmann FA, Rhodes SJ. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease. Endocrinology 2013; 154:738-48. [PMID: 23288907 PMCID: PMC3548188 DOI: 10.1210/en.2012-1790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.
Collapse
Affiliation(s)
- Kelly L Prince
- Departments of Cellular and Integrative Physiology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
24
|
Jayakody SA, Andoniadou CL, Gaston-Massuet C, Signore M, Cariboni A, Bouloux PM, Le Tissier P, Pevny LH, Dattani MT, Martinez-Barbera JP. SOX2 regulates the hypothalamic-pituitary axis at multiple levels. J Clin Invest 2012; 122:3635-46. [PMID: 22945632 DOI: 10.1172/jci64311] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/17/2012] [Indexed: 12/30/2022] Open
Abstract
Sex-determining region Y (SRY) box 2 (SOX2) haploinsufficiency causes a form of hypopituitarism in humans that is characterized by gonadotrophin deficiency known as hypogonadotrophic hypogonadism. Here, we conditionally deleted Sox2 in mice to investigate the pathogenesis of hypogonadotrophic hypogonadism. First, we found that absence of SOX2 in the developing Rathke pouch of conditional embryos led to severe anterior lobe hypoplasia with drastically reduced expression of the pituitary-specific transcription factor POU class 1 homeobox 1 (POU1F1) as well as severe disruption of somatotroph and thyrotroph differentiation. In contrast, corticotrophs, rostral-tip POU1F1-independent thyrotrophs, and, interestingly, lactotrophs and gonadotrophs were less affected. Second, we identified a requirement for SOX2 in normal proliferation of periluminal progenitors; in its absence, insufficient precursors were available to produce all cell lineages of the anterior pituitary. Differentiated cells derived from precursors exiting cell cycle at early stages, including corticotrophs, rostral-tip thyrotrophs, and gonadotrophs, were generated, while hormone-producing cells originating from late-born precursors, such as somatotrophs and POU1F1-dependent thyrotrophs, were severely reduced. Finally, we found that 2 previously characterized patients with SOX2 haploinsufficiency and associated hypogonadotrophic hypogonadism had a measurable response to gonadotropin-releasing hormone (GnRH) stimulation, suggesting that it is not the absence of gonadotroph differentiation, but rather the deficient hypothalamic stimulation of gonadotrophs, that underlies typical hypogonadotrophic hypogonadism.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Neural Development Unit, Institute of Child Health, and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mech Dev 2012; 129:1-12. [PMID: 22522080 DOI: 10.1016/j.mod.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 12/19/2022]
Abstract
Haploinsufficiency for the HMG-box transcription factor SOX2 results in abnormalities of the human ventral forebrain and its derivative structures. These defects include anophthalmia (absence of eye), microphthalmia (small eye) and hypothalamic hamartoma (HH), an overgrowth of the ventral hypothalamus. To determine how Sox2 deficiency affects the morphogenesis of the ventral diencephalon and eye, we generated a Sox2 allelic series (Sox2(IR), Sox2(LP), and Sox2(EGFP)), allowing for the generation of mice that express germline hypomorphic levels (<40%) of SOX2 protein and that faithfully recapitulate SOX2 haploinsufficient human phenotypes. We find that Sox2 hypomorphism significantly disrupts the development of the posterior hypothalamus, resulting in an ectopic protuberance of the prechordal floor, an upregulation of Shh signaling, and abnormal hypothalamic patterning. In the anterior diencephalon, both the optic stalks and optic cups (OC) of Sox2 hypomorphic (Sox2(HYP)) embryos are malformed. Furthermore, Sox2(HYP) eyes exhibit a loss of neural potential and coloboma, a common phenotype in SOX2 haploinsufficient humans that has not been described in a mouse model of SOX2 deficiency. These results establish for the first time that germline Sox2 hypomorphism disrupts the morphogenesis and patterning of the hypothalamus, optic stalk, and the early OC, establishing a model of the development of the abnormalities that are observed in SOX2 haploinsufficient humans.
Collapse
|
26
|
Andoniadou CL, Signore M, Young RM, Gaston-Massuet C, Wilson SW, Fuchs E, Martinez-Barbera JP. HESX1- and TCF3-mediated repression of Wnt/β-catenin targets is required for normal development of the anterior forebrain. Development 2011; 138:4931-42. [PMID: 22007134 DOI: 10.1242/dev.066597] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Wnt/β-catenin pathway plays an essential role during regionalisation of the vertebrate neural plate and its inhibition in the most anterior neural ectoderm is required for normal forebrain development. Hesx1 is a conserved vertebrate-specific transcription factor that is required for forebrain development in Xenopus, mice and humans. Mouse embryos deficient for Hesx1 exhibit a variable degree of forebrain defects, but the molecular mechanisms underlying these defects are not fully understood. Here, we show that injection of a hesx1 morpholino into a 'sensitised' zygotic headless (tcf3) mutant background leads to severe forebrain and eye defects, suggesting an interaction between Hesx1 and the Wnt pathway during zebrafish forebrain development. Consistent with a requirement for Wnt signalling repression, we highlight a synergistic gene dosage-dependent interaction between Hesx1 and Tcf3, a transcriptional repressor of Wnt target genes, to maintain anterior forebrain identity during mouse embryogenesis. In addition, we reveal that Tcf3 is essential within the neural ectoderm to maintain anterior character and that its interaction with Hesx1 ensures the repression of Wnt targets in the developing forebrain. By employing a conditional loss-of-function approach in mouse, we demonstrate that deletion of β-catenin, and concomitant reduction of Wnt signalling in the developing anterior forebrain of Hesx1-deficient embryos, leads to a significant rescue of the forebrain defects. Finally, transcriptional profiling of anterior forebrain precursors from mouse embryos expressing eGFP from the Hesx1 locus provides molecular evidence supporting a novel function of Hesx1 in mediating repression of Wnt/β-catenin target activation in the developing forebrain.
Collapse
Affiliation(s)
- Cynthia L Andoniadou
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Prince KL, Walvoord EC, Rhodes SJ. The role of homeodomain transcription factors in heritable pituitary disease. Nat Rev Endocrinol 2011; 7:727-37. [PMID: 21788968 DOI: 10.1038/nrendo.2011.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anterior pituitary gland secretes hormones that regulate developmental and physiological processes, including growth, the stress response, metabolic status, reproduction and lactation. During embryogenesis, cellular determination and differentiation events establish specialized hormone-secreting cell types within the anterior pituitary gland. These developmental decisions are mediated in part by the actions of a cascade of transcription factors, many of which belong to the homeodomain class of DNA-binding proteins. The discovery of some of these regulatory proteins has facilitated genetic analyses of patients with hormone deficiencies. The findings of these studies reveal that congenital defects-ranging from isolated hormone deficiencies to combined pituitary hormone deficiency syndromes-are sometimes associated with mutations in the genes encoding pituitary-acting developmental transcription factors. The phenotypes of affected individuals and animal models have together provided useful insights into the biology of these transcription factors and have suggested new hypotheses for testing in the basic science laboratory. Here, we summarize the gene regulatory pathways that control anterior pituitary development, with emphasis on the role of the homeodomain transcription factors in normal pituitary organogenesis and heritable pituitary disease.
Collapse
Affiliation(s)
- Kelly L Prince
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Science Room 362A, 635 North Barnhill Drive, Indianapolis, IN 46202-5120, USA
| | | | | |
Collapse
|
28
|
McCabe MJ, Alatzoglou KS, Dattani MT. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab 2011; 25:115-24. [PMID: 21396578 DOI: 10.1016/j.beem.2010.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Septo-optic dysplasia (SOD) is a highly heterogeneous condition comprising variable phenotypes including midline and forebrain abnormalities, optic nerve and pituitary hypoplasia. Most instances of SOD are sporadic and several aetiologies including drug and alcohol abuse have been suggested to account for the pathogenesis of the condition. However, a number of familial cases have been described with an increasing number of mutations in developmental transcription factors including HESX1, SOX2, SOX3 and OTX2 being implicated in its aetiology. These factors are essential for normal forebrain/pituitary development, and disruptions to these genes could account for the features observed in SOD and other midline disorders. The variable phenotypes observed within the condition are most likely due to the varying contributions of genetic and environmental factors. This review will discuss the current knowledge about SOD. Further study of these and other novel factors may shed light on the complex aetiology of this condition.
Collapse
Affiliation(s)
- Mark James McCabe
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| | | | | |
Collapse
|
29
|
Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping. Neuroimage 2010; 54:769-78. [PMID: 20656039 DOI: 10.1016/j.neuroimage.2010.07.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/11/2010] [Accepted: 07/19/2010] [Indexed: 11/22/2022] Open
Abstract
Ambitious international efforts are underway to produce gene-knockout mice for each of the 25,000 mouse genes, providing a new platform to study mammalian development and disease. Robust, large-scale methods for morphological assessment of prenatal mice will be essential to this work. Embryo phenotyping currently relies on histological techniques but these are not well suited to large volume screening. The qualitative nature of these approaches also limits the potential for detailed group analysis. Advances in non-invasive imaging techniques such as magnetic resonance imaging (MRI) may surmount these barriers. We present a high-throughput approach to generate detailed virtual histology of the whole embryo, combined with the novel use of a whole-embryo atlas for automated phenotypic assessment. Using individual 3D embryo MRI histology, we identified new pituitary phenotypes in Hesx1 mutant mice. Subsequently, we used advanced computational techniques to produce a whole-body embryo atlas from 6 CD-1 embryos, creating an average image with greatly enhanced anatomical detail, particularly in CNS structures. This methodology enabled unsupervised assessment of morphological differences between CD-1 embryos and Chd7 knockout mice (n=5 Chd7(+/+) and n=8 Chd7(+/-), C57BL/6 background). Using a new atlas generated from these three groups, quantitative organ volumes were automatically measured. We demonstrated a difference in mean brain volumes between Chd7(+/+) and Chd7(+/-) mice (42.0 vs. 39.1mm(3), p<0.05). Differences in whole-body, olfactory and normalised pituitary gland volumes were also found between CD-1 and Chd7(+/+) mice (C57BL/6 background). Our work demonstrates the feasibility of combining high-throughput embryo MRI with automated analysis techniques to distinguish novel mouse phenotypes.
Collapse
|
30
|
Webb EA, Dattani MT. Septo-optic dysplasia. Eur J Hum Genet 2010; 18:393-397. [PMID: 19623216 PMCID: PMC2987262 DOI: 10.1038/ejhg.2009.125] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 11/09/2022] Open
Abstract
This review summarises the key clinical features of septo-optic dysplasia (SOD), the significant inroads that progress in genetics has made into our understanding of the aetiology of the condition over the last decade, and the pitfalls and challenges that we face in the management of these phenotypically variable patients.
Collapse
Affiliation(s)
- Emma A Webb
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, London, UK
| | - Mehul T Dattani
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, London, UK
| |
Collapse
|
31
|
Carvalho LR, Brinkmeier ML, Castinetti F, Ellsworth BS, Camper SA. Corepressors TLE1 and TLE3 interact with HESX1 and PROP1. Mol Endocrinol 2010; 24:754-65. [PMID: 20181723 DOI: 10.1210/me.2008-0359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pituitary hormone deficiency causes short stature in one in 4000 children born and can be caused by mutations in transcription factor genes, including HESX1, PROP1, and POU1F1. HESX1 interacts with a member of the groucho-related gene family, TLE1, through an engrailed homology domain and represses PROP1 activity. Mice with Prop1 deficiency exhibit failed differentiation of the POU1F1 lineage, resulting in lack of TSH, GH, and prolactin. In addition, these mutants exhibit profound pituitary dysmorphology and excess Hesx1 and Tle3 expression. The ability of HESX1 to interact with TLE3 has not been explored previously. We tested the ability of TLE3 to enhance HESX1-mediated repression of PROP1 in cell culture. Both TLE3 and TLE1 repress PROP1 in conjunction with HESX1 with similar efficiencies. TLE1 and TLE3 can each repress PROP1 in the absence of HESX1 via a protein-protein interaction. We tested the functional consequences of ectopic TLE3 and HESX1 expression in transgenic mice by driving constitutive expression in pituitary thyrotrophs and gonadotrophs. Terminal differentiation of these cells was suppressed by HESX1 alone and by TLE3 and HESX1 together but not by TLE3 alone. In summary, we present evidence that HESX1 is a strong repressor that can be augmented by the corepressors TLE1 and TLE3. Our in vitro studies suggest that TLE1 and TLE3 might also play roles independent of HESX1 by interacting with other transcription factors like PROP1.
Collapse
Affiliation(s)
- Luciani R Carvalho
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
32
|
Gaston-Massuet C, Kelberman D, Dattani M, Martinez-Barbera JP. Absence of SIX3 mutations in patients with congenital hypopituitarism. Am J Med Genet A 2009; 149A:2874-6. [PMID: 19921650 DOI: 10.1002/ajmg.a.33103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carles Gaston-Massuet
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH London, UK.
| | | | | | | |
Collapse
|
33
|
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson ICAF, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 2009; 30:790-829. [PMID: 19837867 PMCID: PMC2806371 DOI: 10.1210/er.2009-0008] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Romero CJ, Nesi-França S, Radovick S. The molecular basis of hypopituitarism. Trends Endocrinol Metab 2009; 20:506-16. [PMID: 19854060 PMCID: PMC2787976 DOI: 10.1016/j.tem.2009.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 01/31/2023]
Abstract
Hypopituitarism is defined as the deficiency of one or more of the hormones secreted by the pituitary gland. Several developmental factors necessary for pituitary embryogenesis and hormone secretion have been described, and mutations of these genes in humans provide a molecular understanding of hypopituitarism. Genetic studies of affected patients and their families provide insights into possible mechanisms of abnormal pituitary development; however, mutations are rare. This review characterizes several of these developmental proteins and their role in the pathogenesis of hypopituitarism. Continuing research is required to better understand the complexities and interplay between these pituitary factors and to make improvements in genetic diagnosis that can lead to early detection and provide a future cure.
Collapse
Affiliation(s)
- Christopher J Romero
- Department of Pediatrics, The Johns Hopkins University School of Medicine, CMSC 4-106, Baltimore, MD 21208, USA
| | | | | |
Collapse
|
35
|
Abstract
The anterior pituitary gland is a central regulator of growth, reproduction and homeostasis. The development of the pituitary gland depends on the sequential temporal and spatial expression of transcription factors and signalling molecules. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, OTX2, SOX2 and SOX3. Mutations in any of the genes involved in pituitary development may result in congenital hypopituitarism, which manifests as the deficiency in one or more pituitary hormones. The phenotype can be highly variable and may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Neonates with congenital hypopituitarism may present with non-specific symptoms, with or without associated developmental defects such as ocular, midline and genital abnormalities. Alternatively, they may be initially asymptomatic but at risk of developing pituitary hormone deficiencies over time. The overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified. Their characterization will further elucidate the pathogenesis of this complex condition and will shed light on normal pituitary development.
Collapse
|