1
|
Lorenzini L, Zanella L, Sannia M, Baldassarro VA, Moretti M, Cescatti M, Quadalti C, Baldi S, Bartolucci G, Di Gloria L, Ramazzotti M, Clavenzani P, Costanzini A, De Giorgio R, Amedei A, Calzà L, Giardino L. Experimental colitis in young Tg2576 mice accelerates the onset of an Alzheimer's-like clinical phenotype. Alzheimers Res Ther 2024; 16:116. [PMID: 38773640 PMCID: PMC11110243 DOI: 10.1186/s13195-024-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.
Collapse
Affiliation(s)
- Luca Lorenzini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Lorenzo Zanella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | | | - Marzia Moretti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | - Corinne Quadalti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Calzà
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy.
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Baldassarro VA, Alastra G, Lorenzini L, Giardino L, Calzà L. Photobiomodulation at Defined Wavelengths Regulates Mitochondrial Membrane Potential and Redox Balance in Skin Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7638223. [PMID: 37663921 PMCID: PMC10471456 DOI: 10.1155/2023/7638223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Starting from the discovery of phototherapy in the beginning of the last century, photobiomodulation (PBM) has been defined in late 1960s and, since then, widely described in different in vitro models. Robust evidence indicates that the effect of light exposure on the oxidative state of the cells and on mitochondrial dynamics, suggesting a great therapeutic potential. The translational scale-up of PBM, however, has often given contrasting and confusing results, mainly due to light exposure protocols which fail to adequately control or define factors such as emitting device features, emitted light characteristics, exposure time, cell target, and readouts. In this in vitro study, we describe the effects of a strictly controlled light-emitting diode (LED)-based PBM protocol on human fibroblasts, one of the main cells involved in skin care, regeneration, and repair. We used six emitter probes at different wavelengths (440, 525, 645, 660, 780, and 900 nm) with the same irradiance value of 0.1 mW/cm2, evenly distributed over the entire surface of the cell culture well. The PBM was analyzed by three main readouts: (i) mitochondrial potential (MitoTracker Orange staining), (ii) reactive oxygen species (ROS) production (CellROX staining); and (iii) cell death (nuclear morphology). The assay was also implemented by cell-based high-content screening technology, further increasing the reliability of the data. Different exposure protocols were also tested (one, two, or three subsequent 20 s pulsed exposures at 24 hr intervals), and the 645 nm wavelength and single exposure chosen as the most efficient protocol based on the mitochondrial potential readout, further confirmed by mitochondrial fusion quantification. This protocol was then tested for its potential to prevent H2O2-induced oxidative stress, including modulation of the light wave frequency. Finally, we demonstrated that the controlled PBM induced by the LED light exposure generates a preconditioning stimulation of the mitochondrial potential, which protects the cell from oxidative stress damage.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (Bologna) 40064, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
- IRET Fundation, Via Tolara di Sopra 41/E, Ozzano dell'Emilia (Bologna) 40064, Italy
| |
Collapse
|
3
|
Baldassarro VA, Perut F, Cescatti M, Pinto V, Fazio N, Alastra G, Parziale V, Bassotti A, Fernandez M, Giardino L, Baldini N, Calzà L. Intra-individual variability in the neuroprotective and promyelinating properties of conditioned culture medium obtained from human adipose mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:128. [PMID: 37170115 PMCID: PMC10173531 DOI: 10.1186/s13287-023-03344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Maura Cescatti
- IRET Foundation, Via Tolara Di Sopra 41/E, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Nicola Fazio
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Parziale
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Alessandra Bassotti
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Mercedes Fernandez
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy.
- Pharmacology and Biotecnology Department (FaBiT), University of Bologna, Via San Donato, 15, 40127, Bologna, Italy.
- Monetecatone Rehabilitation Institute (MRI), Via Montecatone, 37, 40026, Imola, Bologna, Italy.
| |
Collapse
|
4
|
Baldassarro VA, Cescatti M, Rocco ML, Aloe L, Lorenzini L, Giardino L, Calzà L. Nerve growth factor promotes differentiation and protects the oligodendrocyte precursor cells from in vitro hypoxia/ischemia. Front Neurosci 2023; 17:1111170. [PMID: 36875668 PMCID: PMC9978228 DOI: 10.3389/fnins.2023.1111170] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Nerve growth factor (NGF) is a pleiotropic molecule acting on different cell types in physiological and pathological conditions. However, the effect of NGF on the survival, differentiation and maturation of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), the cells responsible for myelin formation, turnover, and repair in the central nervous system (CNS), is still poorly understood and heavily debated. Methods Here we used mixed neural stem cell (NSC)-derived OPC/astrocyte cultures to clarify the role of NGF throughout the entire process of OL differentiation and investigate its putative role in OPC protection under pathological conditions. Results We first showed that the gene expression of all the neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR ) dynamically changes during the differentiation. However, only TrkA and p75NTR expression depends on T3-differentiation induction, as Ngf gene expression induction and protein secretion in the culture medium. Moreover, in the mixed culture, astrocytes are the main producer of NGF protein, and OPCs express both TrkA and p75NTR . NGF treatment increases the percentage of mature OLs, while NGF blocking by neutralizing antibody and TRKA antagonist impairs OPC differentiation. Moreover, both NGF exposure and astrocyte-conditioned medium protect OPCs exposed to oxygenglucose deprivation (OGD) from cell death and NGF induces an increase of AKT/pAKT levels in OPCs nuclei by TRKA activation. Discussion This study demonstrated that NGF is implicated in OPC differentiation, maturation, and protection in the presence of metabolic challenges, also suggesting implications for the treatment of demyelinating lesions and diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy.,IRET Foundation, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Montecatone Rehabilitation Institute, Bologna, Italy
| |
Collapse
|
5
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
6
|
Decourt B, D’Souza GX, Shi J, Ritter A, Suazo J, Sabbagh MN. The Cause of Alzheimer's Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. Aging Dis 2022; 13:37-60. [PMID: 35111361 PMCID: PMC8782548 DOI: 10.14336/ad.2021.0529] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories. Firstly, while it is undeniable that amyloid beta (Aβ) is involved in AD, in the seminal stage of the disease Aβ is unlikely pathogenic. Instead, we hypothesize that the root cause of AD is neuronal stress in the central nervous system (CNS), and Aβ is expressed as part of the physiological response to protect CNS neurons from stress. If there is no return to homeostasis, then Aβ becomes overexpressed, and this includes the generation of longer forms that are more toxic and prone to oligomerization. Secondly, AD etiology is plausibly not strictly compartmentalized within the CNS but may also result from the dysfunction of other physiological systems in the entire body. This view implies that AD may not have a single cause, but rather needs to be considered as a spectrum of multiple chronic pathological modalities converging to the persistent stressing of CNS neurons. These chronic pathological modalities, which include cardiovascular disease, metabolic disorders, and CNS structural changes, often start individually, and over time combine with other chronic modalities to incrementally escalate the amount of stress applied to CNS neurons. We present the case for considering Aβ as a marker of neuronal stress in response to hypoxic, toxic, and starvation events, rather than solely a marker of AD. We also detail numerous human chronic conditions that can lead to neuronal stress in the CNS, making the link with co-morbidities encountered in daily clinical AD practice. Finally, we explain how our theory could be leveraged to improve clinical care for AD and related dementia in personalized medicine paradigms in the near future.
Collapse
Affiliation(s)
- Boris Decourt
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Gary X D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Jiong Shi
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Aaron Ritter
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Jasmin Suazo
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Marwan N Sabbagh
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| |
Collapse
|
7
|
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach. Int J Mol Sci 2021; 22:ijms22041744. [PMID: 33572341 PMCID: PMC7916102 DOI: 10.3390/ijms22041744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the “core” area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Zahra Khalajzeyqami
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Maura Cescatti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Marzia Moretti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola (BO), Italy
- Correspondence:
| |
Collapse
|
8
|
Oxidative Stress in Alzheimer's Disease: In Vitro Therapeutic Effect of Amniotic Fluid Stem Cells Extracellular Vesicles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2785343. [PMID: 33193997 PMCID: PMC7641262 DOI: 10.1155/2020/2785343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by abnormal protein aggregation, deposition of extracellular β-amyloid proteins (Aβ), besides an increase of oxidative stress. Amniotic fluid stem cells (AFSCs) should have a therapeutic potential for neurodegenerative disorders, mainly through a paracrine effect mediated by extracellular vesicles (EV). Here, we examined the effect of EV derived from human AFSCs (AFSC-EV) on the disease phenotypes in an AD neuron primary culture. We observed a positive effect of AFSC-EV on neuron morphology, viability, and Aβ and phospho-Tau levels. This could be due to the apoptotic and autophagic pathway modulation derived from the decrease in oxidative stress. Indeed, reactive oxygen species (ROS) were reduced, while GSH levels were enhanced. This modulation could be ascribed to the presence of ROS regulating enzymes, such as SOD1 present into the AFSC-EV themselves. This study describes the ROS-modulating effects of extracellular vesicles alone, apart from their deriving stem cell, in an AD in vitro model, proposing AFSC-EV as a therapeutic tool to stop the progression of AD.
Collapse
|
9
|
Aescin Protects Neuron from Ischemia-Reperfusion Injury via Regulating the PRAS40/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7815325. [PMID: 33062146 PMCID: PMC7547341 DOI: 10.1155/2020/7815325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023]
Abstract
Ischemic stroke is one of the major causes of disability; widely use of endovascular thrombectomy or intravenous thrombolysis leads to more attention on ischemia-reperfusion injury (I/R injury). Aescin, a natural compound isolated from the seed of the horse chestnut, has been demonstrated anti-inflammatory and antiedematous effects previously. This study was aimed at determining whether aescin could induce protective effects against ischemia-reperfusion injury and exploring the underlying mechanisms in vitro. Primary cultured neurons were subjected to 2 hours of oxygen-glucose deprivation (OGD) followed by 24 hours of simulated reperfusion. Aescin, which worked in a dose-dependent manner, could significantly attenuate neuronal death and reduce lactate dehydrogenase (LDH) release after OGD and simulated reperfusion. Aescin treatment at a concentration of 50 μg/ml provided protection with fewer side effects. Results showed that aescin upregulated the phosphorylation level of PRAS40 and proteins in the mTOR signaling pathway, including S6K and 4E-BP1. However, PRAS40 knockdown or rapamycin treatment was able to undermine and even abolish the protective effects of aescin; meanwhile, the levels of phosphorylation PRAS40 and proteins in the mTOR signaling pathway were obviously decreased. Hence, our study demonstrated that aescin provided neuronal protective effects against I/R injury through the PRAS40/mTOR signaling pathway in vitro. These results might contribute to the potential clinical application of aescin and provide a therapeutic target on subsequent cerebral I/R injury.
Collapse
|
10
|
Kim H, Kim B, Kim HS, Cho JY. Nicotinamide attenuates the decrease in dendritic spine density in hippocampal primary neurons from 5xFAD mice, an Alzheimer's disease animal model. Mol Brain 2020; 13:17. [PMID: 32033569 PMCID: PMC7006216 DOI: 10.1186/s13041-020-0565-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by memory loss and the presence of amyloid plaques and neurofibrillary tangles in the patients’ brains. In this study, we investigated the alterations in metabolite profiles of the hippocampal tissues from 6, 8, and 12 month-old wild-type (WT) and 5xfamiliar AD (5xFAD) mice, an AD mouse model harboring 5 early-onset familiar AD mutations, which shows memory loss from approximately 5 months of age, by exploiting the untargeted metabolomics profiling. We found that nicotinamide and adenosine monophosphate levels have been significantly decreased while lysophosphatidylcholine (LysoPC) (16:0), LysoPC (18:0), and lysophosphatidylethanolamine (LysoPE) (16:0) levels have been significantly increased in the hippocampi from 5xFAD mice at 8 months or 12 months of age, compared to those from age-matched wild-type mice. In the present study, we focused on the role of nicotinamide and examined if replenishment of nicotinamide exerts attenuating effects on the reduction in dendritic spine density in hippocampal primary neurons from 5xFAD mice. Treatment with nicotinamide attenuated the deficits in spine density in the hippocampal primary neurons derived from 5xFAD mice, indicating a potential role of nicotinamide in the pathogenesis of AD. Taken together, these findings suggest that the decreased hippocampal nicotinamide level could be linked with AD pathogenesis and be a useful therapeutic target for AD.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Bora Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Kidney Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea. .,Department of Pharmacology and Biomedical Sciences, Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
11
|
White Matter and Neuroprotection in Alzheimer's Dementia. Molecules 2020; 25:molecules25030503. [PMID: 31979414 PMCID: PMC7038211 DOI: 10.3390/molecules25030503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin is the main component of the white matter of the central nervous system (CNS), allowing the proper electrical function of the neurons by ensheathing and insulating the axons. The extensive use of magnetic resonance imaging has highlighted the white matter alterations in Alzheimer’s dementia (AD) and other neurodegenerative diseases, alterations which are early, extended, and regionally selective. Given that the white matter turnover is considerable in the adulthood, and that myelin repair is currently recognized as being the only true reparative capability of the mature CNS, oligodendrocyte precursor cells (OPCs), the cells that differentiate in oligodendrocyte, responsible for myelin formation and repair, are regarded as a potential target for neuroprotection. In this review, several aspects of the OPC biology are reviewed. The histology and functional role of OPCs in the neurovascular-neuroglial unit as described in preclinical and clinical studies on AD is discussed, such as the OPC vulnerability to hypoxia-ischemia, neuroinflammation, and amyloid deposition. Finally, the position of OPCs in drug discovery strategies for dementia is discussed.
Collapse
|
12
|
Giuliani A, Sivilia S, Baldassarro VA, Gusciglio M, Lorenzini L, Sannia M, Calzà L, Giardino L. Age-Related Changes of the Neurovascular Unit in the Cerebral Cortex of Alzheimer Disease Mouse Models: A Neuroanatomical and Molecular Study. J Neuropathol Exp Neurol 2019; 78:101-112. [PMID: 30629191 DOI: 10.1093/jnen/nly125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We describe age-related histological structure and molecular changes of the neurovascular unit (NVU) in the cerebral cortex of Tg2576 and age-matched wild-type (WT) mice. Major results can be summarized as follows: (i) β-amyloid (6E10)-immunoreactivity progressively increases in neurons and astrocytes of Tg2576 mice, reaching the highest concentration at 5 months and then decreasing as soon as extracellular plaque deposition begins; (ii) the synaptic puncta density of glutamatergic and GABAergic neurons in Tg2576 mice is unbalanced versus WT at all investigated ages, with a decrease in synaptophysin and VGLUT1; density of VGAT contacts is higher in 27-month-old Tg2576 versus WT mice; (iii) capillary density is higher in 5-month-old Tg2576 versus WT mice, then decreases to a lower density at 27 months, when the capillary-astrocyte interface is lower; and (iv) mRNA expression of genes involved in microvessel dynamics indicates age- and genotype-dependent changes in the expression levels of hypoxia-related genes, i.e. the highest level is in 5-month-old animals and there is impaired regulation in Tg2576. We conclude that at 5 months, when learning and memory impairment is already present in the absence of extracellular amyloid plaque deposition, Tg2576 mice display alterations in the structure and molecular regulation of the NVU.
Collapse
Affiliation(s)
- Alessandro Giuliani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Italy.,Pharmacy and Biotechnology Department (FaBiT), University of Bologna, Bologna, Italy
| | | | - Luca Lorenzini
- IRET Foundation, Ozzano Emilia, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Michele Sannia
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Laura Calzà
- IRET Foundation, Ozzano Emilia, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Pharmacy and Biotechnology Department (FaBiT), University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Amyloid β-Induced Upregulation of Na v1.6 Underlies Neuronal Hyperactivity in Tg2576 Alzheimer's Disease Mouse Model. Sci Rep 2019; 9:13592. [PMID: 31537873 PMCID: PMC6753212 DOI: 10.1038/s41598-019-50018-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperexcitability and alterations in neuronal networks contribute to cognitive impairment in Alzheimer’s Disease (AD). Voltage-gated sodium channels (NaV), which are crucial for regulating neuronal excitability, have been implicated in AD-related hippocampal hyperactivity and higher incidence of spontaneous non-convulsive seizures. Here, we show by using primary hippocampal neurons exposed to amyloid-β1–42 (Aβ1–42) oligomers and from Tg2576 mouse embryos, that the selective upregulation of NaV1.6 subtype contributes to membrane depolarization and to the increase of spike frequency, thereby resulting in neuronal hyperexcitability. Interestingly, we also found that NaV1.6 overexpression is responsible for the aberrant neuronal activity observed in hippocampal slices from 3-month-old Tg2576 mice. These findings identify the NaV1.6 channels as a determinant of the hippocampal neuronal hyperexcitability induced by Aβ1–42 oligomers. The selective blockade of NaV1.6 overexpression and/or hyperactivity might therefore offer a new potential therapeutic approach to counteract early hippocampal hyperexcitability and subsequent cognitive deficits in the early stages of AD.
Collapse
|
14
|
Kechko OI, Petrushanko IY, Brower CS, Adzhubei AA, Moskalev AA, Piatkov KI, Mitkevich VA, Makarov AA. Beta-amyloid induces apoptosis of neuronal cells by inhibition of the Arg/N-end rule pathway proteolytic activity. Aging (Albany NY) 2019; 11:6134-6152. [PMID: 31446431 PMCID: PMC6738421 DOI: 10.18632/aging.102177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is accompanied by the dysfunction of intracellular protein homeostasis systems, in particular the ubiquitin-proteasome system (UPS). Beta-amyloid peptide (Aβ), which is involved in the processes of neurodegeneration in AD, is a substrate of this system, however its effect on UPS activity is still poorly explored. Here we found that Aβ peptides inhibited the proteolytic activity of the antiapoptotic Arg/N-end rule pathway that is a part of UPS. We identified arginyltransferase Ate1 as a specific component of the Arg/N-end rule pathway targeted by Aβs. Aβ bearing the familial English H6R mutation, known to cause early-onset AD, had an even greater inhibitory effect on protein degradation through the Arg/N-end rule pathway than intact Aβ. This effect was associated with a significant decrease in Ate1-1 and Ate1-3 catalytic activity. We also found that the loss of Ate1 in neuroblastoma Neuro-2a cells eliminated the apoptosis-inducing effects of Aβ peptides. Together, our results show that the apoptotic effect of Aβ peptides is linked to their impairment of Ate1 catalytic activity leading to suppression of the Arg/N-end rule pathway proteolytic activity and ultimately cell death.
Collapse
Affiliation(s)
- Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexei A Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Biology, Komi Science Center, Russian Academy of Sciences, Syktyvkar 167000, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Konstantin I Piatkov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
15
|
Mukai T, Tojo A, Nagamura-Inoue T. Umbilical Cord-Derived Mesenchymal Stromal Cells Contribute to Neuroprotection in Neonatal Cortical Neurons Damaged by Oxygen-Glucose Deprivation. Front Neurol 2018; 9:466. [PMID: 29963009 PMCID: PMC6013549 DOI: 10.3389/fneur.2018.00466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Several studies have reported that human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) restore neurological damage in vivo through their secretion of paracrine factors. We previously found that UC-MSCs attenuate brain injury by secreting neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and hepatocyte growth factor (HGF). However, how these factors contribute to neuroprotection remains unknown. In this study, we aimed to investigate to what extent UC-MSC-derived HGF and BDNF contribute to neuroprotection using a Transwell co-culture system of neonatal cortical neurons damaged by oxygen-glucose deprivation. The influence of HGF and BDNF were determined by investigating neurons in both the presence and absence of UC-MSCs as these cells consistently secrete both factors and can be blocked by neutralizing antibodies. In the co-culture, UC-MSCs significantly improved neuronal injury, as indicated by an increase in immature neuron number, neurite outgrowth, and cell proliferation. Co-culture of damaged neurons with UC-MSCs also exhibited a reduction in the number of neurons displaying signs of apoptosis/necrosis. The neuroprotective actions of UC-MSCs were partially reverted by neutralizing antibodies. Together, our findings reveal that UC-MSC-secreted HGF and BDNF have neuroprotective effects on damaged neurons. Further studies should address the existence of other potential neurotrophic paracrine factors.
Collapse
Affiliation(s)
- Takeo Mukai
- Division of Molecular of Therapy, Center for Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular of Therapy, Center for Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Ling J, Yang S, Huang Y, Wei D, Cheng W. Identifying key genes, pathways and screening therapeutic agents for manganese-induced Alzheimer disease using bioinformatics analysis. Medicine (Baltimore) 2018; 97:e10775. [PMID: 29851783 PMCID: PMC6392515 DOI: 10.1097/md.0000000000010775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be critical for Mn neurotoxicity prevention and Mn-induced AD treatment.
Collapse
Affiliation(s)
- JunJun Ling
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing
| | - Shengyou Yang
- Department of Medical Image, Guizhou Provincial People's Hospital
| | - Yi Huang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weidong Cheng
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou
| |
Collapse
|
17
|
The Protective Effects of IGF-I against β-Amyloid-related Downregulation of Hippocampal Somatostatinergic System Involve Activation of Akt and Protein Kinase A. Neuroscience 2018; 374:104-118. [PMID: 29406271 DOI: 10.1016/j.neuroscience.2018.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
Somatostatin (SRIF), a neuropeptide highly distributed in the hippocampus and involved in learning and memory, is markedly reduced in the brain of Alzheimer's disease patients. The effects of insulin-like growth factor-I (IGF-I) against β amyloid (Aβ)-induced neuronal death and associated cognitive disorders have been extensively reported in experimental models of this disease. Here, we examined the effect of IGF-I on the hippocampal somatostatinergic system in Aβ-treated rats and the molecular mechanisms associated with changes in this peptidergic system. Intracerebroventricular Aβ25-35 administration during 14 days (300 pmol/day) to male rats increased Aβ25-35 levels and cell death and markedly reduced SRIF and SRIF receptor 2 levels in the hippocampus. These deleterious effects were associated with reduced Akt and cAMP response element-binding protein (CREB) phosphorylation and activation of c-Jun N-terminal kinase (JNK). Subcutaneous IGF-I co-administration (50 µg/kg/day) reduced hippocampal Aβ25-35 levels, cell death and JNK activation. In addition, IGF-I prevented the reduction in the components of the somatostatinergic system affected by Aβ infusion. Its co-administration also augmented protein kinase A (PKA) activity, as well as Akt and CREB phosphorylation. These results suggest that IGF-I co-administration may have protective effects on the hippocampal somatostatinergic system against Aβ insult through up-regulation of PKA activity and Akt and CREB phosphorylation.
Collapse
|
18
|
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 2017; 10:499-502. [PMID: 28468935 PMCID: PMC5451177 DOI: 10.1242/dmm.030205] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration is a feature of many debilitating, incurable diseases that are rapidly rising in prevalence, such as Parkinson's disease. There is an urgent need to develop new and more effective therapeutic strategies to combat these devastating diseases. Models - from cell-based systems, to unicellular organisms, to complex animals - have proven to be a useful tool to help the research community shed light on the mechanisms underlying neurodegenerative diseases, and these advances have now begun to provide promising therapeutic avenues. In this themed issue of Disease Models & Mechanisms, a special collection of articles focused on neurodegenerative diseases is introduced. The collection includes original research articles that provide new insights into the complex pathophysiology of such diseases, revealing candidate biomarkers or therapeutic targets. Some of the articles describe a new disease model that enables deeper exploration of key mechanisms. We also present a series of reviews that highlight some of the recent translational advances made in studies of neurodegenerative diseases. In this Editorial, we summarize the articles featured in this collection, emphasizing the impact that model-based studies have made in this exciting area of research.
Collapse
Affiliation(s)
- Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94404, USA
| | - Paraminder Dhillon
- Reviews Editor, Disease Models & Mechanisms, The Company of Biologists, Cambridge CB24 9LF, UK
| | - James Shorter
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|