1
|
Johnson CS, Williams M, Sham K, Belluschi S, Ma W, Wang X, Lau WWY, Kaufmann KB, Krivdova G, Calderbank EF, Mende N, McLeod J, Mantica G, Li J, Grey-Wilson C, Drakopoulos M, Basheer S, Sinha S, Diamanti E, Basford C, Wilson NK, Howe SJ, Dick JE, Göttgens B, Green AR, Francis N, Laurenti E. Adaptation to ex vivo culture reduces human hematopoietic stem cell activity independently of the cell cycle. Blood 2024; 144:729-741. [PMID: 38805639 PMCID: PMC7616366 DOI: 10.1182/blood.2023021426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.
Collapse
Affiliation(s)
- Carys S. Johnson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Matthew Williams
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Serena Belluschi
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wenjuan Ma
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Winnie W. Y. Lau
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gabriela Krivdova
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Emily F. Calderbank
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Mende
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jessica McLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Giovanna Mantica
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Grey-Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Drakopoulos
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shaaezmeen Basheer
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubhankar Sinha
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christina Basford
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Nicola K. Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Steven J. Howe
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - John E. Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Berthold Göttgens
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Francis
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
- Department of Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Elisa Laurenti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Selamioğlu A, Karaca M, Balcı MC, Körbeyli HK, Durmuş A, Yıldız EP, Karaman S, Gökçay GF. Triosephosphate Isomerase Deficiency: E105D Mutation in Unrelated Patients and Review of the Literature. Mol Syndromol 2023; 14:231-238. [PMID: 37323194 PMCID: PMC10267495 DOI: 10.1159/000528192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2023] Open
Abstract
Introduction Chronic haemolytic anaemia, increased susceptibility to infections, cardiomyopathy, neurodegeneration, and death in early childhood are the clinical findings of triosephosphate isomerase (TPI) deficiency, which is an ultra-rare disorder. The clinical and laboratory findings and the outcomes of 2 patients with TPI deficiency are reported, with a review of cases reported in the literature. Case Presentation Two unrelated patients with haemolytic anaemia and neurologic findings who were diagnosed as having TPI deficiency are presented. Neonatal onset of initial symptoms was observed in both patients, and the age at diagnosis was around 2 years. The patients had increased susceptibility to infections and respiratory failure, but cardiac symptoms were not remarkable. Screening for inborn errors of metabolism revealed a previously unreported metabolic alteration determined using tandem mass spectrometry in acylcarnitine analysis, causing elevated propionyl carnitine levels in both patients. The patients had p.E105D (c.315G>C) homozygous mutations in the TPI1 gene. Although severely disabled, both patients are alive at the ages of 7 and 9 years. Discussion For better management, it is important to investigate the genetic aetiology in patients with haemolytic anaemia with or without neurologic symptoms who do not have a definitive diagnosis. The differential diagnosis of elevated propionyl carnitine levels using tandem mass spectrometry screening should also include TPI deficiency.
Collapse
Affiliation(s)
- Arzu Selamioğlu
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Meryem Karaca
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Cihan Balcı
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Hüseyin Kutay Körbeyli
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Aslı Durmuş
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Edibe Pembegül Yıldız
- Division of Paediatric Neurology, Department of Pediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Division of Paediatric Haematology-Oncology, Department of Pediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Gülden Fatma Gökçay
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
VanDemark AP, Hrizo SL, Eicher SL, Kowalski J, Myers TD, Pfeifer MR, Riley KN, Koeberl DD, Palladino MJ. Itavastatin and resveratrol increase triosephosphate isomerase protein in a newly identified variant of TPI deficiency. Dis Model Mech 2022; 15:274792. [PMID: 35315486 PMCID: PMC9150114 DOI: 10.1242/dmm.049261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Triosephosphate isomerase (TPI) deficiency (TPI Df) is an untreatable glycolytic enzymopathy that results in hemolytic anemia, progressive muscular impairment and irreversible brain damage. Although there is a ‘common’ mutation (TPIE105D), other pathogenic mutations have been described. We identified patients who were compound heterozygous for a newly described mutation, TPIQ181P, and the common TPIE105D mutation. Intriguingly, these patients lacked neuropathy or cognitive impairment. We then initiated biochemical and structural studies of TPIQ181P. Surprisingly, we found that purified TPIQ181P protein had markedly impaired catalytic properties whereas crystallographic studies demonstrated that the TPIQ181P mutation resulted in a highly disordered catalytic lid. We propose that genetic complementation occurs between the two alleles, one with little activity (TPIQ181P) and one with low stability (TPIE105D). Consistent with this, TPIQ181P/E105D fibroblasts exhibit a significant reduction in the TPI protein. These data suggest that impaired stability, and not catalytic activity, is a better predictor of TPI Df severity. Lastly, we tested two recently discovered chemical modulators of mutant TPI stability, itavastatin and resveratrol, and observed a significant increase in TPI in TPIQ181P/E105D patient cells. Summary: A newly identified triosephosphate isomerase (TPI) variant (TPIQ181P) confers TPI deficiency, suggests a molecular and genetic model for its pathogenesis, and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew P VanDemark
- Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stacy L Hrizo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Biology, Slippery Rock University of Pennsylvania, Slippery Rock, PA 16057, USA
| | - Samantha L Eicher
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jules Kowalski
- Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tracey D Myers
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Megan R Pfeifer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kacie N Riley
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael J Palladino
- Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Lei M, Tao MQ, Wu YJ, Xu L, Yang Z, Li Y, Olatunji OJ, Wang XW, Zuo J. Metabolic Enzyme Triosephosphate Isomerase 1 and Nicotinamide Phosphoribosyltransferase, Two Independent Inflammatory Indicators in Rheumatoid Arthritis: Evidences From Collagen-Induced Arthritis and Clinical Samples. Front Immunol 2022; 12:795626. [PMID: 35111160 PMCID: PMC8801790 DOI: 10.3389/fimmu.2021.795626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 01/13/2023] Open
Abstract
Metabolic intervention is a novel anti-rheumatic approach. The glycolytic regulator NAMPT has been identified as a therapeutic target of rheumatoid arthritis (RA), while other metabolic regulators coordinating NAMPT to perpetuate inflammation are yet to be investigated. We continuously monitored and validated expression changes of Nampt and inflammatory indicators in peripheral while blood cells from rats with collagen-induced arthritis (CIA). Gene transcriptional profiles of Nampt+ and Nampt++ samples from identical CIA rats were compared by RNA-sequencing. Observed gene expression changes were validated in another batch of CIA rats, and typical metabolic regulators with persistent changes during inflammatory courses were further investigated in human subjects. According to expression differences of identified genes, RA patients were assigned into different subsets. Clinical manifestation and cytokine profiles among them were compared afterwards. Nampt overexpression typically occurred in CIA rats during early stages, when iNos and Il-1β started to be up-regulated. Among differentially expressed genes between Nampt+ and Nampt++ CIA rat samples, changes of Tpi1, the only glycolytic enzyme identified were sustained in the aftermath of acute inflammation. Similar to NAMPT, TPI1 expression in RA patients was higher than general population, which was synchronized with increase in RFn as well as inflammatory monocytes-related cytokines like Eotaxin. Meanwhile, RANTES levels were relatively low when NAMPT and TPI1 were overexpressed. Reciprocal interactions between TPI1 and HIF-1α were observed. HIF-1α promoted TPI1 expression, while TPI1 co-localized with HIF-1α in nucleus of inflammatory monocytes. In short, although NAMPT and TPI1 dominate different stages of CIA, they similarly provoke monocyte-mediated inflammation.
Collapse
Affiliation(s)
- Ming Lei
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Meng-Qing Tao
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yi-Jin Wu
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Liang Xu
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhe Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Yan Li
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | | | - Xiao-Wan Wang
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Jian Zuo
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Miyasaka Y, Okuda K, Miura I, Motegi H, Wakana S, Ohno T. A novel ENU-induced Cpox mutation causes microcytic hypochromic anemia in mice. Exp Anim 2022; 71:433-441. [PMID: 35527013 PMCID: PMC9671764 DOI: 10.1538/expanim.22-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mouse models of red blood cell abnormalities are important for understanding the underlying molecular mechanisms of human erythrocytic diseases. DBA.B6-Mha (Microcytic hypochromic anemia) congenic mice were generated from the cross between N-ethyl-N-nitrosourea (ENU)-mutagenized male C57BL/6J and female DBA/2J mice as part of the RIKEN large-scale ENU mutagenesis project. The mice were established by backcrossing with DBA/2J mice for more than 20 generations. These mice showed autosomal-dominant microcytic hypochromic anemia with decreased mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) levels and increased red blood cell distribution width (RDW) and plasma ferritin levels. Linkage analysis indicated that the Mha locus was located within an interval of approximately 1.95-Mb between D16Nut1 (58.35 Mb) and D16Mit185 (60.30 Mb) on mouse chromosome 16. Mutation analysis revealed that DBA.B6-Mha mice had a point mutation (c.921-2A>G) at the acceptor site of intron 4 in the coproporphyrinogen oxidase (Cpox) gene, a heme-synthesizing gene. RT-PCR revealed that the Cpox mRNA in DBA.B6-Mha mice caused splicing errors. Our results suggest that microcytic hypochromic anemia in DBA.B6-Mha mice is owing to impaired heme synthesis caused by splice mutations in Cpox. Therefore, the DBA.B6-Mha mice may be used to elucidate the molecular mechanisms underlying microcytic hypochromic anemia caused by mutations in Cpox. Although low MCV levels are known to confer malarial resistance to the host, there were no marked changes in the susceptibility of DBA.B6-Mha mice to rodent malarial (Plasmodium yoelii 17XL) infection.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kento Okuda
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Ikuo Miura
- Technology and Developmental Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiromi Motegi
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shigeharu Wakana
- Technology and Developmental Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan,Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Creative Lab for Innovation in Kobe, 5F 6-3-7,
Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
6
|
Fermo E, Vercellati C, Marcello AP, Keskin EY, Perrotta S, Zaninoni A, Brancaleoni V, Zanella A, Giannotta JA, Barcellini W, Bianchi P. Targeted Next Generation Sequencing and Diagnosis of Congenital Hemolytic Anemias: A Three Years Experience Monocentric Study. Front Physiol 2021; 12:684569. [PMID: 34093240 PMCID: PMC8176228 DOI: 10.3389/fphys.2021.684569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Congenital hemolytic anemias (CHAs) are heterogeneous and rare disorders caused by alterations in structure, membrane transport, metabolism, or red blood cell production. The pathophysiology of these diseases, in particular the rarest, is often poorly understood, and easy-to-apply tools for diagnosis, clinical management, and patient stratification are still lacking. We report the 3-years monocentric experience with a 43 genes targeted Next Generation Sequencing (t-NGS) panel in diagnosis of CHAs; 122 patients from 105 unrelated families were investigated and the results compared with conventional laboratory pathway. Patients were divided in two groups: 1) cases diagnosed with hematologic investigations to be confirmed at molecular level, and 2) patients with unexplained anemia after extensive hematologic investigation. The overall sensitivity of t-NGS was 74 and 35% for families of groups 1 and 2, respectively. Inside this cohort of patients we identified 26 new pathogenic variants confirmed by functional evidence. The implementation of laboratory work-up with t-NGS increased the number of diagnoses in cases with unexplained anemia; cytoskeleton defects are well detected by conventional tools, deserving t-NGS to atypical cases; the diagnosis of Gardos channelopathy, some enzyme deficiencies, familial siterosterolemia, X-linked defects in females and other rare and ultra-rare diseases definitely benefits of t-NGS approaches.
Collapse
Affiliation(s)
- Elisa Fermo
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Vercellati
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Paola Marcello
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ebru Yilmaz Keskin
- Department of Pediatric Hematology and Oncology, Suleyman Demirel University, Isparta, Turkey
| | - Silverio Perrotta
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | - Anna Zaninoni
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Brancaleoni
- UOC Medicina Generale, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Juri A Giannotta
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wilma Barcellini
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Harris C, Nelson B, Farber D, Bickel S, Huxol H, Asamoah A, Morton R. Child Neurology: Triosephosphate isomerase deficiency. Neurology 2020; 95:e3448-e3451. [PMID: 32873690 DOI: 10.1212/wnl.0000000000010745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Corrie Harris
- From the Divisions of Pediatric Hospitalist Medicine (C.H., H.H.), Pediatric Neurology (D.F.), Pediatric Pulmonology (S.B., R.M.), and Pediatric Genetics (A.A.), University of Louisville School of Medicine (B.N.), KY.
| | - Bailey Nelson
- From the Divisions of Pediatric Hospitalist Medicine (C.H., H.H.), Pediatric Neurology (D.F.), Pediatric Pulmonology (S.B., R.M.), and Pediatric Genetics (A.A.), University of Louisville School of Medicine (B.N.), KY
| | - Darren Farber
- From the Divisions of Pediatric Hospitalist Medicine (C.H., H.H.), Pediatric Neurology (D.F.), Pediatric Pulmonology (S.B., R.M.), and Pediatric Genetics (A.A.), University of Louisville School of Medicine (B.N.), KY
| | - Scott Bickel
- From the Divisions of Pediatric Hospitalist Medicine (C.H., H.H.), Pediatric Neurology (D.F.), Pediatric Pulmonology (S.B., R.M.), and Pediatric Genetics (A.A.), University of Louisville School of Medicine (B.N.), KY
| | - Heather Huxol
- From the Divisions of Pediatric Hospitalist Medicine (C.H., H.H.), Pediatric Neurology (D.F.), Pediatric Pulmonology (S.B., R.M.), and Pediatric Genetics (A.A.), University of Louisville School of Medicine (B.N.), KY
| | - Alexander Asamoah
- From the Divisions of Pediatric Hospitalist Medicine (C.H., H.H.), Pediatric Neurology (D.F.), Pediatric Pulmonology (S.B., R.M.), and Pediatric Genetics (A.A.), University of Louisville School of Medicine (B.N.), KY
| | - Ronald Morton
- From the Divisions of Pediatric Hospitalist Medicine (C.H., H.H.), Pediatric Neurology (D.F.), Pediatric Pulmonology (S.B., R.M.), and Pediatric Genetics (A.A.), University of Louisville School of Medicine (B.N.), KY
| |
Collapse
|
8
|
Justice MJ, Hmeljak J, Sankaran VG, Socolovsky M, Zon LI. From blood development to disease: a paradigm for clinical translation. Dis Model Mech 2020; 13:dmm043661. [PMID: 31836582 PMCID: PMC6994934 DOI: 10.1242/dmm.043661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Translating basic research to the clinic is a primary aim of Disease Models & Mechanisms, and the recent successes in hematopoiesis research provide a blueprint of how fundamental biological research can provide solutions to important clinical problems. These advances were the main motivation for choosing hematopoiesis disorders as the focus of our inaugural meeting, 'Blood Disorders: Models, Mechanisms and Therapies', which was held in early October 2019. This Editorial discusses the reasons for and the challenges of interdisciplinary research in hematopoiesis, provides examples of how research in model systems is a key translational step towards effective treatments for blood disorders and summarizes what the community believes are the key exciting developments and challenges in this field.
Collapse
|
9
|
Segal J, Mülleder M, Krüger A, Adler T, Scholze‐Wittler M, Becker L, Calzada‐Wack J, Garrett L, Hölter SM, Rathkolb B, Rozman J, Racz I, Fischer R, Busch DH, Neff F, Klingenspor M, Klopstock T, Grüning N, Michel S, Lukaszewska‐McGreal B, Voigt I, Hartmann L, Timmermann B, Lehrach H, Wolf E, Wurst W, Gailus‐Durner V, Fuchs H, H. de Angelis M, Schrewe H, Yuneva M, Ralser M. Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase deficiency. J Inherit Metab Dis 2019; 42:839-849. [PMID: 31111503 PMCID: PMC7887927 DOI: 10.1002/jimd.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 01/26/2023]
Abstract
Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.
Collapse
Affiliation(s)
- Joanna Segal
- The Molecular Biology of Metabolism Laboratory, Francis Crick InstituteLondonUK
| | - Michael Mülleder
- The Molecular Biology of Metabolism Laboratory, Francis Crick InstituteLondonUK
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Antje Krüger
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute for Medical Microbiology, Immunology, and HygieneMunichGermany
| | | | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Julia Calzada‐Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Pathology, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Developmental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Sabine M. Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Developmental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Chair for Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
- Member of German Center for Diabetes Research (DZD)Neuherberg/MunichGermany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Member of German Center for Diabetes Research (DZD)Neuherberg/MunichGermany
- Molecular Nutritional MedicineElse Kröner‐Fresenius Center, TUMFreising‐WeihenstephanGermany
| | - Ildiko Racz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Ralf Fischer
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology, and HygieneMunichGermany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Pathology, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Martin Klingenspor
- Molecular Nutritional MedicineElse Kröner‐Fresenius Center, TUMFreising‐WeihenstephanGermany
- ZIEL – Institute for Food and HealthTechnical University MunichFreising‐WeihenstephanGermany
| | - Thomas Klopstock
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Adolf‐Butenandt‐Institut, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Site MunichMunichGermany
| | | | - Steve Michel
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | | | - Ingo Voigt
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | | | | | - Hans Lehrach
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Adolf‐Butenandt‐Institut, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Site MunichMunichGermany
- Chair of Developmental GeneticsTUMFreising‐WeihenstephanGermany
| | - Valérie Gailus‐Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Martin H. de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Member of German Center for Diabetes Research (DZD)Neuherberg/MunichGermany
- Chair of Experimental GeneticsCenter of Life and Food Sciences Weihenstephan, TUMFreising‐WeihenstephanGermany
| | | | - Mariia Yuneva
- Oncogenes and Tumour Metabolism LaboratoryThe Francis Crick InstituteLondonUK
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, Francis Crick InstituteLondonUK
- Max Planck Institute for Molecular GeneticsBerlinGermany
- Cambridge Systems Biology Centre and Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryCharitè Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
10
|
Roland BP, Richards KR, Hrizo SL, Eicher S, Barile ZJ, Chang TC, Savon G, Bianchi P, Fermo E, Ricerca BM, Tortorolo L, Vockley J, VanDemark AP, Palladino MJ. Missense variant in TPI1 (Arg189Gln) causes neurologic deficits through structural changes in the triosephosphate isomerase catalytic site and reduced enzyme levels in vivo. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2257-2266. [PMID: 31075491 DOI: 10.1016/j.bbadis.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
Mutations in the gene triosephosphate isomerase (TPI) lead to a severe multisystem condition that is characterized by hemolytic anemia, a weakened immune system, and significant neurologic symptoms such as seizures, distal neuropathy, and intellectual disability. No effective therapy is available. Here we report a compound heterozygous patient with a novel TPI pathogenic variant (NM_000365.5:c.569G>A:p.(Arg189Gln)) in combination with the common (NM_000365.5:c.315G>C:p.(Glu104Asp)) allele. We characterized the novel variant by mutating the homologous Arg in Drosophila using a genomic engineering system, demonstrating that missense mutations at this position cause a strong loss of function. Compound heterozygote animals were generated and exhibit motor behavioural deficits and markedly reduced protein levels. Furthermore, examinations of the TPIArg189Gln/TPIGlu104Asp patient fibroblasts confirmed the reduction of TPI levels, suggesting that Arg189Gln may also affect the stability of the protein. The Arg189 residue participates in two salt bridges on the backside of the TPI enzyme dimer, and we reveal that a mutation at this position alters the coordination of the substrate-binding site and important catalytic residues. Collectively, these data reveal a new human pathogenic variant associated with TPI deficiency, identify the Arg189 salt bridge as critical for organizing the catalytic site of the TPI enzyme, and demonstrates that reduced TPI levels are associated with human TPI deficiency. These findings advance our understanding of the molecular pathogenesis of the disease, and suggest new therapeutic avenues for pre-clinical trials.
Collapse
Affiliation(s)
- Bartholomew P Roland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristen R Richards
- Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stacy L Hrizo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Biology, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Samantha Eicher
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zackery J Barile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Tien-Chien Chang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Grace Savon
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOC Ematologia, UOS Fisiopatologia delle Anemie, Via F Sforza, 35, 20122 Milan, Italy
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOC Ematologia, UOS Fisiopatologia delle Anemie, Via F Sforza, 35, 20122 Milan, Italy
| | - Bianca Maria Ricerca
- Hematology Institute, Universitary Hospital A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Luca Tortorolo
- Pediatric Intensive Care Unit, Universitary Hospital A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Jerry Vockley
- Department of Pediatrics and Human Genetics, University of Pittsburgh Schools of Medicine and Public health, Pittsburgh, PA 15261, USA
| | - Andrew P VanDemark
- Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|