1
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 PMCID: PMC11682651 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
2
|
DeFord L, Yoon JY. Soil microbiome characterization and its future directions with biosensing. J Biol Eng 2024; 18:50. [PMID: 39256848 PMCID: PMC11389470 DOI: 10.1186/s13036-024-00444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Soil microbiome characterization is typically achieved with next-generation sequencing (NGS) techniques. Metabarcoding is very common, and meta-omics is growing in popularity. These techniques have been instrumental in microbiology, but they have limitations. They require extensive time, funding, expertise, and computing power to be effective. Moreover, these techniques are restricted to controlled laboratory conditions; they are not applicable in field settings, nor can they rapidly generate data. This hinders using NGS as an environmental monitoring tool or an in-situ checking device. Biosensing technology can be applied to soil microbiome characterization to overcome these limitations and to complement NGS techniques. Biosensing has been used in biomedical applications for decades, and many successful commercial products are on the market. Given its previous success, biosensing has much to offer soil microbiome characterization. There is a great variety of biosensors and biosensing techniques, and a few in particular are better suited for soil field studies. Aptamers are more stable than enzymes or antibodies and are more ready for field-use biosensors. Given that any microbiome is complex, a multiplex sensor will be needed, and with large, complicated datasets, machine learning might benefit these analyses. If the signals from the biosensors are optical, a smartphone can be used as a portable optical reader and potential data-analyzing device. Biosensing is a rich field that couples engineering and biology, and applying its toolset to help advance soil microbiome characterization would be a boon to microbiology more broadly.
Collapse
Affiliation(s)
- Lexi DeFord
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Talley S, Nguyen T, Van Ye L, Valiauga R, DeCarlo J, Mustafa J, Cook B, White FA, Campbell EM. Characterization of age-associated inflammasome activation reveals tissue specific differences in transcriptional and post-translational inflammatory responses. Immun Ageing 2024; 21:60. [PMID: 39256821 PMCID: PMC11384696 DOI: 10.1186/s12979-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Aging is associated with systemic chronic, low-grade inflammation, termed 'inflammaging'. This pattern of inflammation is multifactorial and is driven by numerous inflammatory pathways, including the inflammasome. However, most studies to date have examined changes in the transcriptomes that are associated with aging and inflammaging, despite the fact that inflammasome activation is driven by a series of post-translational activation steps, culminating in the cleavage and activation of caspase-1. Here, we utilized transgenic mice expressing a caspase-1 biosensor to examine age-associated inflammasome activation in various organs and tissues to define these post-translational manifestations of inflammaging. Consistent with other studies, we observe increased inflammation, including inflammasome activation, in aged mice and specific tissues. However, we note that the degree of inflammasome activation is not uniformly associated with transcriptional changes commonly used as a surrogate for inflammasome activation in tissues. Furthermore, we used a skull thinning technique to monitor central nervous system inflammasome activation in vivo in aged mice and found that neuroinflammation is significantly amplified in aged mice in response to endotoxin challenge. Together, these data reveal that inflammaging is associated with both transcriptional and post-translational inflammatory pathways that are not uniform between tissues and establish new methodologies for measuring age-associated inflammasome activation in vivo and ex vivo.
Collapse
Affiliation(s)
- Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Lily Van Ye
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jake DeCarlo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Jabra Mustafa
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Benjamin Cook
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
4
|
Valiauga R, Talley S, Khemmani M, Fontes Noronha M, Gogliotti R, Wolfe AJ, Campbell E. Sex-dependent effects of carbohydrate source and quantity on caspase-1 activity in the mouse central nervous system. J Neuroinflammation 2024; 21:151. [PMID: 38840215 PMCID: PMC11155082 DOI: 10.1186/s12974-024-03140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Mounting evidence links glucose intolerance and diabetes as aspects of metabolic dysregulation that are associated with an increased risk of developing dementia. Inflammation and inflammasome activation have emerged as a potential link between these disparate pathologies. As diet is a key factor in both the development of metabolic disorders and inflammation, we hypothesize that long term changes in dietary factors can influence nervous system function by regulating inflammasome activity and that this phenotype would be sex-dependent, as sex hormones are known to regulate metabolism and immune processes. METHODS 5-week-old male and female transgenic mice expressing a caspase-1 bioluminescent reporter underwent cranial window surgeries and were fed control (65% complex carbohydrates, 15% fat), high glycemic index (65% carbohydrates from sucrose, 15% fat), or ketogenic (1% complex carbohydrates, 79% fat) diet from 6 to 26 weeks of age. Glucose regulation was assessed with a glucose tolerance test following a 4-h morning fast. Bioluminescence in the brain was quantified using IVIS in vivo imaging. Blood cytokine levels were measured using cytokine bead array. 16S ribosomal RNA gene amplicon sequencing of mouse feces was performed to assess alterations in the gut microbiome. Behavior associated with these dietary changes was also evaluated. RESULTS The ketogenic diet caused weight gain and glucose intolerance in both male and female mice. In male mice, the high glycemic diet led to increased caspase-1 biosensor activation over the course of the study, while in females the ketogenic diet drove an increase in biosensor activation compared to their respective controls. These changes correlated with an increase in inflammatory cytokines present in the serum of test mice and the emergence of anxiety-like behavior. The microbiome composition differed significantly between diets; however no significant link between diet, glucose tolerance, or caspase-1 signal was established. CONCLUSIONS Our findings suggest that diet composition, specifically the source and quantity of carbohydrates, has sex-specific effects on inflammasome activation in the central nervous system and behavior. This phenotype manifested as increased anxiety in male mice, and future studies are needed to determine if this phenotype is linked to alterations in microbiome composition.
Collapse
Affiliation(s)
- Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | - Rocco Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Edward Campbell
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
5
|
Justice MJ. Sex matters in preclinical research. Dis Model Mech 2024; 17:dmm050759. [PMID: 38450661 PMCID: PMC10941654 DOI: 10.1242/dmm.050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
International Women's Day 2024 has a theme of inclusion. As publishers of preclinical research, we aim to show how inclusion of females in research advances scientific rigor and improves treatment reliability. Sexual reproduction is key to all life across the plant and animal kingdoms. Biological sex takes many forms that are morphologically differentiated during development: stamens versus pistils in plants; color and plumage in birds; fallopian tubes versus vas deferens in mammals; and differences in size, for instance, males are smaller in the fruit fly Drosophila melanogaster. Physical differences may be obvious, but many traits may be more obscure, including hormonal, physiological and metabolic factors. These traits have a big influence on disease and responses to treatment. Thus, we call for improved inclusion, analysis and reporting of sex as a biological variable in preclinical animal modeling research.
Collapse
Affiliation(s)
- Monica J. Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| |
Collapse
|
6
|
Neupane KR, Ramon GS, Harvey B, Chun B, Aryal SP, Masud AA, McCorkle JR, Kolesar JM, Kekenes‐Huskey PM, Richards CI. Programming Cell-Derived Vesicles with Enhanced Immunomodulatory Properties. Adv Healthc Mater 2023; 12:e2301163. [PMID: 37377147 PMCID: PMC11070110 DOI: 10.1002/adhm.202301163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Tumor-associated macrophages are the predominant immune cells present in the tumor microenvironment and mostly exhibit a pro-tumoral M2-like phenotype. However, macrophage biology is reversible allowing them to acquire an anti-tumoral M1-like phenotype in response to external stimuli. A potential therapeutic strategy for treating cancer may be achieved by modulating macrophages from an M2 to an M1-like phenotype with the tumor microenvironment. Here, programmed nanovesicles are generated as an immunomodulatory therapeutic platform with the capability to re-polarize M2 macrophages toward a proinflammatory phenotype. Programmed nanovesicles are engineered from cellular membranes to have specific immunomodulatory properties including the capability to bidirectionally modulate immune cell polarization. These programmed nanovesicles decorated with specific membrane-bound ligands can be targeted toward specific cell types including immune cells. Macrophage-derived vesicles are engineered to enhance immune cell reprogramming toward a proinflammatory phenotype.
Collapse
Affiliation(s)
- Khaga R. Neupane
- Department of ChemistryUniversity of Kentucky506 Library Drive, 125 Chemistry‐Physics BuildingLexingtonKY40506USA
| | - Geraldine S. Ramon
- Department of Cell and Molecular PhysiologyLoyola University ChicagoChicagoILUSA
| | - Brock Harvey
- Department of ChemistryUniversity of Kentucky506 Library Drive, 125 Chemistry‐Physics BuildingLexingtonKY40506USA
| | - Byeong Chun
- Department of Cell and Molecular PhysiologyLoyola University ChicagoChicagoILUSA
| | - Surya P. Aryal
- Department of ChemistryUniversity of Kentucky506 Library Drive, 125 Chemistry‐Physics BuildingLexingtonKY40506USA
| | - Abdullah A. Masud
- Department of ChemistryUniversity of Kentucky506 Library Drive, 125 Chemistry‐Physics BuildingLexingtonKY40506USA
| | - J. Robert McCorkle
- Department of Pharmacy Practice and ScienceCollege of PharmacyUniversity of KentuckyLexingtonKY40508USA
| | - Jill M. Kolesar
- Department of Pharmacy Practice and ScienceCollege of PharmacyUniversity of KentuckyLexingtonKY40508USA
| | | | - Christopher I. Richards
- Department of ChemistryUniversity of Kentucky506 Library Drive, 125 Chemistry‐Physics BuildingLexingtonKY40506USA
| |
Collapse
|