1
|
Hooper K. Supporting the evolution of infectious disease research. Dis Model Mech 2024; 17:dmm052112. [PMID: 39352121 PMCID: PMC11463951 DOI: 10.1242/dmm.052112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Summary: In anticipation of our Special Issue, ‘Infectious Disease: Evolution, Mechanism and Global Health’, we celebrate recent advances made in this field and the success of our Infectious Disease Journal Meeting.
Collapse
|
2
|
Lv Y, Wu S, Nie Q, Liu S, Xu W, Chen G, Du Y, Chen J. Extracellular vesicles derived from plasmodium-infected red blood cells alleviate cerebral malaria in plasmodium berghei ANKA-infected C57BL/6J mice. Int Immunopharmacol 2024; 132:111982. [PMID: 38569430 DOI: 10.1016/j.intimp.2024.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. To mitigate the risk of cerebral malaria (CM) among children under the age of 5, it is imperative to develop new vaccines. EVs are potential vaccine candidates as they obtain the ability of brain-targeted delivery and transfer plasmodium antigens and immunomodulators during infections. This study extracted EVs from BALB/c mice infected with Plasmodium yoelii 17XNL (P.y17XNL). C57BL/6J mice were intravenously immunized with EVs (EV-I.V. + CM group) or subcutaneously vaccinated with the combination of EVs and CpG ODN-1826 (EV + CPG ODN-S.C. + CM group) on days 0 and 20, followed by infection with Plasmodium berghei ANKA (P.bANKA) on day 20 post-second immunization. We monitored Parasitemia and survival rate. The integrity of the Blood-brain barrier (BBB) was examined using Evans blue staining.The levels of cytokines and adhesion molecules were evaluated using Luminex, RT-qPCR, and WB. Brain pathology was evaluated by hematoxylin and eosin and immunohistochemical staining. The serum levels of IgG, IgG1, and IgG2a were analyzed by enzyme-linked immunosorbent assay. Compared with those in the P.bANKA-infected group, parasitemia increased slowly, death was delayed (day 10 post-infection), and the survival rate reached 75 %-83.3 % in the EV-I.V. + ECM and EV + CPG ODN-S.C. + ECM groups. Meanwhile, compared with the EV + CPG ODN-S.C. + ECM group, although parasitemia was almost the same, the survival rate increased in the EV-I.V. + ECM group.Additionally, EVs immunization markedly downregulated inflammatory responses in the spleen and brain and ameliorated brain pathological changes, including BBB disruption and infected red blood cell (iRBC) sequestration. Furthermore, the EVs immunization group exhibited enhanced antibody responses (upregulation of IgG1 and IgG2a production) compared to the normal control group. EV immunization exerted protective effects, improving the integrity of the BBB, downregulating inflammation response of brain tissue, result in reduces the incidence of CM. The protective effects were determined by immunological pathways and brain targets elicited by EVs. Intravenous immunization exhibited better performance than subcutaneous immunization, which perhaps correlated with EVs, which can naturally cross BBB to play a better role in brain protection.
Collapse
Affiliation(s)
- Yinyi Lv
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Shuang Wu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin Distric, Weifang 261061, Shandong Province, China
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, China
| | - Wenxin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Guang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China.
| | - Yunting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Jinguang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China.
| |
Collapse
|
3
|
Rai S, Girdhar M, Siraj F, Sharma S, Kumar M, Katyal A. Mechanistic insights into immunopathogenesis of murine cerebral malaria: Cues from "young" C57BL/6J and BALB/c mice. Immunol Lett 2023; 256-257:9-19. [PMID: 36931472 DOI: 10.1016/j.imlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Cerebral malaria (CM), a major cause of mortality in children <5 years, presents disparity in pathophysiological features and poor prognosis compared to adults. Adult C57BL/6J mice infected with Plasmodium berghei ANKA (PbA) are widely used to understand CM pathogenesis compared to relatively less prone BALB/c mice; however, age and immune status of the host also influence disease sequelae and cerebral manifestations. Murine models of CM known so far do not project complete disease spectrum of pediatric CM. The present study was designed to dissect and differentiate CM immunopathogenesis in "young" BALB/c and C57BL/6J mice infected with PbA, in search of a competent mouse model mimicking pediatric CM. Multipronged approach including the analysis of blood-brain barrier (BBB) permeability and parasite infiltration, histopathology, nitric oxide levels, and pro/anti-inflammatory (TNF-α, IFN-γ, IL-4, and IL-10) cytokine expression were compared in the cortices of both young BALB/c and C57BL/6J mice. The results illustrate severe course of infection and typical CM like histopathological alterations including monocytic plugging in PbA-infected "young" BALB/c compared to C57BL/6J mice. The decreased expression of tight junction proteins (ZO-1 and Claudin-3) and Evan's blue extravasation was also more evident in BALB/c mice indicating a more permeable BBB. The increased cortical expression of TNF-α, IFN-γ, IL-4, IL-10, iNOS, eNOS, nNOS, and associated activation of brain resident cells in cortices of BALB/c with progressive parasitaemia depicts the cumulative involvement of host immune responses and parasite accumulation in progression of CM. Thus, the incongruity of cytokine balance resulted in worsening of disease manifestation in "young" BALB/c similar to pediatric CM.
Collapse
Affiliation(s)
- Shweta Rai
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Meetali Girdhar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Fouzia Siraj
- Department of Pathology, National Institute of Pathology, ICMR, Safdarjung Hospital, New Delhi, India
| | - Sheetal Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Mukesh Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India.
| |
Collapse
|
4
|
Li JX, Liao WZ, Huang ZM, Yin X, Ouyang S, Gu B, Guo XG. Identifying effective diagnostic biomarkers for childhood cerebral malaria in Africa integrating coexpression analysis with machine learning algorithm. Eur J Med Res 2023; 28:76. [PMID: 36782344 PMCID: PMC9926768 DOI: 10.1186/s40001-022-00980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/30/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a manifestation of malaria caused by plasmodium infection. It has a high mortality rate and severe neurological sequelae, existing a significant research gap and requiring further study at the molecular level. METHODS We downloaded the GSE117613 dataset from the Gene Expression Omnibus (GEO) database to determine the differentially expressed genes (DEGs) between the CM group and the control group. Weighted gene coexpression network analysis (WGCNA) was applied to select the module and hub genes most relevant to CM. The common genes of the key module and DEGs were selected to perform further analysis. The least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) were applied to screen and verify the diagnostic markers of CM. Eventually, the hub genes were validated in the external dataset. Gene set enrichment analysis (GSEA) was applied to investigate the possible roles of the hub genes. RESULTS The GO and KEGG results showed that DEGs were enriched in some neutrophil-mediated pathways and associated with some lumen structures. Combining LASSO and the SVM-RFE algorithms, LEF1 and IRAK3 were identified as potential hub genes in CM. Through the GSEA enrichment results, we found that LEF1 and IRAK3 participated in maintaining the integrity of the blood-brain barrier (BBB), which contributed to improving the prognosis of CM. CONCLUSIONS This study may help illustrate the pathophysiology of CM at the molecular level. LEF1 and IRAK3 can be used as diagnostic biomarkers, providing new insight into the diagnosis and prognosis prediction in pediatric CM.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Zhe Liao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Nanshan College of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin Yin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Pediatrics, The Pediatrics School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi Ouyang
- Department of Infectious Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Ramamurthy RM, Atala A, Porada CD, Almeida-Porada G. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Front Immunol 2022; 13:1011143. [PMID: 36225917 PMCID: PMC9549755 DOI: 10.3389/fimmu.2022.1011143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA’s approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.
Collapse
|
6
|
Bernabeu M, Conroy AL, Craig AG, Renia L. Editorial: Models to study malaria parasite-host interactions and pathogenesis. Front Cell Infect Microbiol 2022; 12:1039887. [PMID: 36211953 PMCID: PMC9535354 DOI: 10.3389/fcimb.2022.1039887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Andrea L. Conroy
- Ryan White Center for Paediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alister G. Craig
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- *Correspondence: Alister G. Craig,
| | - Laurent Renia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|