1
|
Singh G, Chakraborty S, Lakhotia SC. Elevation of major constitutive heat shock proteins is heat shock factor independent and essential for establishment and growth of Lgl loss and Yorkie gain-mediated tumors in Drosophila. Cell Stress Chaperones 2022; 27:431-448. [PMID: 35704239 PMCID: PMC9346025 DOI: 10.1007/s12192-022-01283-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/03/2023] Open
Abstract
Cancer cells generally overexpress heat shock proteins (Hsps), the major components of cellular stress response, to overcome and survive the diverse stresses. However, the specific roles of Hsps in initiation and establishment of cancers remain unclear. Using loss of Lgl-mediated epithelial tumorigenesis in Drosophila, we induced tumorigenic somatic clones of different genetic backgrounds to examine the temporal and spatial expression and roles of major heat shock proteins in tumor growth. The constitutively expressed Hsp83, Hsc70 (heat shock cognate), Hsp60 and Hsp27 show elevated levels in all cells of the tumorigenic clone since early stages, which persists till their transformation. However, the stress-inducible Hsp70 is expressd only in a few cells at later stage of established tumorous clones that show high F-actin aggregation. Intriguingly, levels of heat shock factor (HSF), the master regulator of Hsps, remain unaltered in these tumorous cells and its down-regulation does not affect tumorigenic growth of lgl- clones overexpressing Yorkie, although down-regulation of Hsp83 prevents their survival and growth. Interestingly, overexpression of HSF or Hsp83 in lgl- cells makes them competitively successful in establishing tumorous clones. These results show that the major constitutively expressed Hsps, but not the stress-inducible Hsp70, are involved in early as well as late stages of epithelial tumors and their elevated expression in lgl- clones co-overexpressing Yorkie is independent of HSF.
Collapse
Affiliation(s)
- Gunjan Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - Saptomee Chakraborty
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
- Present Address: Department of Biosciences & Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subhash C. Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
2
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
3
|
Over-expression of Hsp83 in grossly depleted hsrω lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. J Biosci 2019. [DOI: 10.1007/s12038-019-9852-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Dong Z, Yang Y, Chen G, Liu D. Identification of runt family genes involved in planarian regeneration and tissue homeostasis. Gene Expr Patterns 2018; 29:24-31. [PMID: 29649632 DOI: 10.1016/j.gep.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
The runt family genes play important roles in physiological processes in eukaryotic organisms by regulation of protein transcription, such as hematopoietic system, proliferation of gastric epithelial cells and neural development. However, it remains unclear about the specific functions of these genes. In this study, the full-length cDNA sequences of two runt genes are first cloned from Dugesia japonica, and their roles are investigated by WISH and RNAi. The results show that: (1) the Djrunts are conserved during evolution; (2) the Djrunts mRNA are widely expressed in intact and regenerative worms, and their expression levels are up-regulated significantly on day 1 after amputation; (3) loss of Djrunts function lead to lysis or regeneration failure in the intact and regenerating worms. Overall, the data suggests that Djrunts play important roles in regeneration and homeostatic maintenance in planarians.
Collapse
Affiliation(s)
- Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| |
Collapse
|
5
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
7
|
Zhang J, Li H, Huang Z, He Y, Zhou X, Huang T, Dai P, Duan D, Ma X, Yin Q, Wang X, Liu H, Chen S, Zou F, Chen X. Hypoxia attenuates Hsp90 inhibitor 17-DMAG-induced cyclin B1 accumulation in hepatocellular carcinoma cells. Cell Stress Chaperones 2016; 21:339-48. [PMID: 26786409 PMCID: PMC4786521 DOI: 10.1007/s12192-015-0664-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 01/18/2023] Open
Abstract
Hypoxia stress plays a pivotal role in tumor formation, proliferation, and invasion. Conventional chemotherapy is less effective in the hypoxia microenvironment of solid tumor. Heat shock protein 90 (Hsp90) is an important molecular chaperone in cancer cells and has been a pharmaceutical target for decades. However, Hsp90 inhibitors demonstrate limited effect on solid tumor and the mechanism underlying is not clear. To determine whether hypoxia impairs the therapeutic effect of Hsp90 N-terminal inhibitor, 17-demethoxygeldanamycin hydrochloride (17-DMAG), in live cancer cells, we measured cell proliferation and cell cycle distribution. Cell proliferation assay indicates that hypoxia obviously promotes the proliferation of HepG2 and Huh7 cells after 24, 48, and 72 h and impairs 17-DMAG-induced G2/M arrest in liver cancer cells. As a client protein of Hsp90, cyclin B1 is critical for the transition from G2 to M phase and is related to the prognosis of the patients. We further checked the cyclin B1 messenger RNA (mRNA) level, protein level, ubiquitination of cyclin B1, nuclear translocation, and degradation of cyclin B1 affected by hypoxia after 17-DMAG treatment. The results demonstrate that hypoxia decreases the transcription of cyclin B1 and accelerates the ubiquitination, nuclear translocation, and degradation of cyclin B1. Taken together, our results suggest that hypoxia attenuates cyclin B1 accumulation induced by 17-DMAG and, hence, alleviates 17-DMAG-induced G2/M arrest.
Collapse
Affiliation(s)
- Jianming Zhang
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Huadan Li
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Zhizhou Huang
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Yangfan He
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Tingyuan Huang
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Peijuan Dai
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Danping Duan
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Xiaojiao Ma
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Qiangbin Yin
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Xiaojie Wang
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Hong Liu
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, 510080, China
| | - Fei Zou
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China.
| | - Xuemei Chen
- Department of Occupational Health and Medicine, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Flores-Nunes F, Gomes T, Company R, Moraes RRM, Sasaki ST, Taniguchi S, Bicego MC, Melo CMR, Bainy ACD, Bebianno MJ. Changes in protein expression of pacific oyster Crassostrea gigas exposed in situ to urban sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17267-17279. [PMID: 25398216 DOI: 10.1007/s11356-014-3821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
The composition and concentration of substances in urban effluents are complex and difficult to measure. These contaminants elicit biological responses in the exposed organisms. Proteomic analysis is a powerful tool in environmental toxicology by evidencing alterations in protein expression due to exposure to contaminants and by providing a useful framework for the development of new potential biomarkers. The aim of this study was to determine changes in protein expression signatures (PES) in the digestive gland of oysters Crassostrea gigas transplanted to two farming areas (LIS and RIB) and to one area contaminated by sanitary sewage (BUC) after 14 days of exposure. This species is one of the most cultivated molluscs in the world. The identified proteins are related to the cytoskeleton (CKAP5 and ACT2), ubiquitination pathway conjugation (UBE3C), G protein-coupled receptor and signal transduction (SVEP1), and cell cycle/division (CCNB3). CKAP5 showed higher expression in oysters kept at BUC in comparison with those kept at the farming areas, while ACT2, UBE3C, SVEP1, and CCNB3 were suppressed. The results suggest that these changes might lead to DNA damage, apoptosis, and interference with the immune system in oyster C. gigas exposed to sewage and give initial information on PES of C. gigas exposed to sanitary sewage, which can subsequently be useful in the development of more sensitive tools for biomonitoring coastal areas, particularly those devoted mainly to oyster farming activities.
Collapse
Affiliation(s)
- Fabrício Flores-Nunes
- Laboratory for Biomarkers of Aquatic Contamination and Immunochemistry, Federal University Santa Catarina, Florianópolis, Brazil
| | - Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rui Company
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Roberta R M Moraes
- Laboratory for Biomarkers of Aquatic Contamination and Immunochemistry, Federal University Santa Catarina, Florianópolis, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Márcia C Bicego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Cláudio M R Melo
- Laboratory of Marine Molluscs, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Afonso C D Bainy
- Laboratory for Biomarkers of Aquatic Contamination and Immunochemistry, Federal University Santa Catarina, Florianópolis, Brazil
| | - Maria J Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
9
|
Jilani Y, Lu S, Lei H, Karnitz LM, Chadli A. UNC45A localizes to centrosomes and regulates cancer cell proliferation through ChK1 activation. Cancer Lett 2014; 357:114-120. [PMID: 25444911 DOI: 10.1016/j.canlet.2014.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
The UCS family of proteins regulates cellular functions through their interactions with myosin. Here we show that one member of this family, UNC45A, is also a novel centrosomal protein. UNC45A is required for cellular proliferation of cancer cell in vitro and for tumor growth in vivo through its ability to bind and regulate ChK1 nuclear-cytoplasmic localization in an Hsp90-independent manner. Immunocytochemical and biochemical fractionation studies revealed that UNC45A and ChK1 co-localize to the centrosome. Inhibition of UNC45A expression reduced ChK1 activation and its tethering to the centrosome, events required for proper centrosome function. Lack of UNC45A caused the accumulation of multi-nucleated cells, consistent with a defect in Chk1 regulation of centrosomes. These findings identify a novel centrosomal function for UNC45A and its role in cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Yasmeen Jilani
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA
| | - Su Lu
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA
| | - Huang Lei
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ahmed Chadli
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
Wang H, Zou X, Wei Z, Wu Y, Li R, Zeng R, Chen Z, Liao K. Hsp90α forms a stable complex at the cilium neck for the interaction of signalling molecules in IGF-1 receptor signalling. J Cell Sci 2014; 128:100-8. [PMID: 25359884 DOI: 10.1242/jcs.155101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The primary cilium is composed of an axoneme that protrudes from the cell surface, a basal body beneath the membrane and a transition neck in between. It is a sensory organelle on the plasma membrane, involved in mediating extracellular signals. In the transition neck region of the cilium, the microtubules change from triplet to doublet microtubules. This region also contains the transition fibres that crosslink the axoneme with the membrane and the necklace proteins that regulate molecules being transported into and out of the cilium. In this protein-enriched, complex area it is important to maintain the correct assembly of all of these proteins. Here, through immunofluorescent staining and protein isolation, we identify the molecular chaperone Hsp90α clustered at the periciliary base. At the transition neck region, phosphorylated Hsp90α forms a stable ring around the axoneme. Heat shock treatment causes Hsp90α to dissipate and induces resorption of cilia. We further identify that Hsp90α at the transition neck region represents a signalling platform on which IRS-1 interacts with intracellular downstream signalling molecules involved in IGF-1 receptor signalling.
Collapse
Affiliation(s)
- Hongzhong Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinle Zou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhuang Wei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rongxia Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengjun Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kan Liao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 2013; 24:188-97. [PMID: 24268653 DOI: 10.1016/j.tcb.2013.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 12/12/2022]
Abstract
The centrosome influences the shape, orientation and activity of the microtubule cytoskeleton. The pericentriolar material (PCM), determines this functionality by providing a dynamic platform for nucleating microtubules and acts as a nexus for molecular signaling. Although great strides have been made in understanding PCM activity, its diffraction-limited size and amorphous appearance on electron microscopy (EM) have limited analysis of its high-order organization. Here, we outline current knowledge of PCM architecture and assembly, emphasizing recent super-resolution imaging studies that revealed the PCM has a layered structure made of fibers and matrices conserved from flies to humans. Notably, these studies debunk the long-standing view of an amorphous PCM and provide a paradigm to dissect the supramolecular organization of organelles in cells.
Collapse
|
12
|
Sarkars R, Mukherjee S, Roy M. Targeting heat shock proteins by phenethyl isothiocyanate results in cell-cycle arrest and apoptosis of human breast cancer cells. Nutr Cancer 2013; 65:480-93. [PMID: 23530648 DOI: 10.1080/01635581.2013.767366] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heat shock proteins (HSPs) are chaperones for several client proteins involved in transcriptional regulation, signal transduction, and cell cycle control. HSPs (27, 70, and 90) are abundantly expressed in a wide range of cancers and are transcriptionally regulated by heat shock factor (HSF1). Most of the synthetic HSP inhibitors exhibit toxicity, therefore, searching for inhibitors with limited or no toxicity will be of help. The objective of the present study was to determine the effect of natural isothiocyanate (phenethyl isothiocyanate; PEITC) on different HSPs (27, 70, and 90) and HSF1 in 2 breast cancer cell lines, namely breast adenocarcinoma MCF-7 (with wild type p53) and highly metastatic breast cancer cell MDA-MB-231 (with mutated p53). PEITC significantly inhibited the expression of HSPs (particularly HSP 90) and HSF1. Molecular consequences due to HSP inhibition were downregulation of cell-cycle regulatory proteins like Cyclin B1, CDK1, Cdc25C, PLK-1, and upregulation of p21 irrespective of p53 status. These modulations were accompanied by cell-cycle arrest at G2/M phase and apoptosis by activation of caspases 3 and 9. PEITC therefore may be regarded as a potent HSP inhibitor and an antitumor agent in the treatment of breast cancer.
Collapse
Affiliation(s)
- Ruma Sarkars
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | |
Collapse
|
13
|
Meyer KJ, Shapiro TA. Potent antitrypanosomal activities of heat shock protein 90 inhibitors in vitro and in vivo. J Infect Dis 2013; 208:489-99. [PMID: 23630365 DOI: 10.1093/infdis/jit179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
African sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is universally fatal if untreated, and current drugs are limited by severe toxicities and difficult administration. New antitrypanosomals are greatly needed. Heat shock protein 90 (Hsp90) is a conserved and ubiquitously expressed molecular chaperone essential for stress responses and cellular signaling. We investigated Hsp90 inhibitors for their antitrypanosomal activity. Geldanamycin and radicicol had nanomolar potency in vitro against bloodstream-form T. brucei; novobiocin had micromolar activity. In structure-activity studies of geldanamycin analogs, 17-AAG and 17-DMAG were most selective against T. brucei as compared to mammalian cells. 17-AAG treatment sensitized trypanosomes to heat shock and caused severe morphological abnormalities and cell cycle disruption. Both oral and parenteral 17-DMAG cured mice of a normally lethal infection of T. brucei. These promising results support the use of inhibitors to study Hsp90 function in trypanosomes and to expand current clinical development of Hsp90 inhibitors to include T. brucei.
Collapse
Affiliation(s)
- Kirsten J Meyer
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins UniversitySchool of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
14
|
Wu X, Marmarelis ME, Hodi FS. Activity of the heat shock protein 90 inhibitor ganetespib in melanoma. PLoS One 2013; 8:e56134. [PMID: 23418523 PMCID: PMC3572008 DOI: 10.1371/journal.pone.0056134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/05/2013] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 90 (HSP90) is involved in the regulation of diverse biological processes such as cell signaling, proliferation and survival, and has been recently recognized as a potential target for cancer therapy. Ganetespib is a potent ATP competitive inhibitor of HSP90. Ganetespib downregulated the expression of multiple signal transducing molecules including EGFR, IGF-1R, c-Met, Akt, B-RAF and C-RAF, resulting in pronounced decrease in phosphorylation of Akt and Erk1/2 in a panel of five cutaneous melanoma cell lines including those harboring B-RAF and N-RAS mutations. Ganetespib exhibited potent antiproliferative activity on all five of these cell lines, with IC50 values between 37.5 and 84 nM. Importantly, Ganetespib is active on B-RAF mutated melanoma cells that have acquired resistance to B-RAF inhibition. Ganetespib induced apoptosis and cell cycle arrest at G1 and/or G2/M phase. Ganetespib induced cell cycle arrest was accompanied by altered expression of cyclin-dependent kinase inhibitor (CDKI) p21(Cip1) and p27(Kip1), cyclins B1, D1 and E, and/or cyclin-dependent kinases 1, 2 and 4. HSP90 is functionally important for melanoma cells and HSP90 inhibitors such as ganetespib could potentially be effective therapeutics for melanoma with various genetic mutations and acquired resistance to B-RAF inhibition.
Collapse
Affiliation(s)
- Xinqi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Melanoma Disease Center, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, United States of America
| | | | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Melanoma Disease Center, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Krtková J, Zimmermann A, Schwarzerová K, Nick P. Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1329-39. [PMID: 22840326 DOI: 10.1016/j.jplph.2012.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 05/13/2023]
Abstract
Microtubules (MTs) are essential for many processes in plant cells. MT-associated proteins (MAPs) influence MT polymerization dynamics and enable them to perform their functions. The molecular chaperone Hsp90 has been shown to associate with MTs in animal and plant cells. However, the role of Hsp90-MT binding in plants has not yet been investigated. Here, we show that Hsp90 associates with cortical MTs in tobacco cells and decorates MTs in the phragmoplast. Further, we show that tobacco Hsp90_MT binds directly to polymerized MTs in vitro. The inhibition of Hsp90 by geldanamycin (GDA) severely impairs MT re-assembly after cold-induced de-polymerization. Our results indicate that the plant Hsp90 interaction with MTs plays a key role in cellular events, where MT re-organization is needed.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Experimental Plant Biology, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Samadi AK, Zhang X, Mukerji R, Donnelly AC, Blagg BS, Cohen MS. A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett 2011; 312:158-67. [PMID: 21924824 DOI: 10.1016/j.canlet.2011.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) is differentially expressed in tumor cells including melanoma and involved in proper folding, stabilization and regulation of cellular proteins. We investigated a novobiocin-derived Hsp90 C-terminal inhibitor, KU135, for anti-proliferative effects in melanoma cells. The results indicate that KU135 reduced cell viability and cell proliferation in melanoma cells and IC(50) values for A735(DRO), M14(NPA), B16F10 and SKMEL28 cells were 0.82, 0.92, 1.33 and 1.30μM respectively. KU135 induced a more potent anti-proliferative effect in most melanoma cells versus N-terminal Hsp90 inhibitor 17AAG. KU135 induced apoptosis in melanoma cells, as indicated by annexin V/PI staining, reduction in the mitochondrial membrane potential, mitochondrial cytochrome C release and caspase 3 activation. KU135 reduced levels of Hsp90 client proteins Akt, BRAF, RAF-1, cyclin B and cdc25. Additionally, levels of Hsp90 and Hsp70 did not increase, while the levels of phosphorylated HSF1 levels decreased. KU135 induced strong G2/M cell cycle arrest, associated with decreased expression of cdc25c, cyclin B and increased phosphorylation of cdc25c. These finding show that KU135 reduced cell survival, proliferation, and induces apoptosis in melanoma cells. We suggest that KU135 may be a potential candidate for cancer therapy against melanoma.
Collapse
Affiliation(s)
- Abbas K Samadi
- Department of Surgery, University of Kansas Medical Center, Kansas City, United States.
| | | | | | | | | | | |
Collapse
|
17
|
Lyman SK, Crawley SC, Gong R, Adamkewicz JI, McGrath G, Chew JY, Choi J, Holst CR, Goon LH, Detmer SA, Vaclavikova J, Gerritsen ME, Blake RA. High-content, high-throughput analysis of cell cycle perturbations induced by the HSP90 inhibitor XL888. PLoS One 2011; 6:e17692. [PMID: 21408192 PMCID: PMC3049797 DOI: 10.1371/journal.pone.0017692] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 02/10/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Many proteins that are dysregulated or mutated in cancer cells rely on the molecular chaperone HSP90 for their proper folding and activity, which has led to considerable interest in HSP90 as a cancer drug target. The diverse array of HSP90 client proteins encompasses oncogenic drivers, cell cycle components, and a variety of regulatory factors, so inhibition of HSP90 perturbs multiple cellular processes, including mitogenic signaling and cell cycle control. Although many reports have investigated HSP90 inhibition in the context of the cell cycle, no large-scale studies have examined potential correlations between cell genotype and the cell cycle phenotypes of HSP90 inhibition. METHODOLOGY/PRINCIPAL FINDINGS To address this question, we developed a novel high-content, high-throughput cell cycle assay and profiled the effects of two distinct small molecule HSP90 inhibitors (XL888 and 17-AAG [17-allylamino-17-demethoxygeldanamycin]) in a large, genetically diverse panel of cancer cell lines. The cell cycle phenotypes of both inhibitors were strikingly similar and fell into three classes: accumulation in M-phase, G2-phase, or G1-phase. Accumulation in M-phase was the most prominent phenotype and notably, was also correlated with TP53 mutant status. We additionally observed unexpected complexity in the response of the cell cycle-associated client PLK1 to HSP90 inhibition, and we suggest that inhibitor-induced PLK1 depletion may contribute to the striking metaphase arrest phenotype seen in many of the M-arrested cell lines. CONCLUSIONS/SIGNIFICANCE Our analysis of the cell cycle phenotypes induced by HSP90 inhibition in 25 cancer cell lines revealed that the phenotypic response was highly dependent on cellular genotype as well as on the concentration of HSP90 inhibitor and the time of treatment. M-phase arrest correlated with the presence of TP53 mutations, while G2 or G1 arrest was more commonly seen in cells bearing wt TP53. We draw upon previous literature to suggest an integrated model that accounts for these varying observations.
Collapse
Affiliation(s)
- Susan K Lyman
- Department of Molecular and Cellular Pharmacology, Exelixis, Inc., South San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Røe OD, Anderssen E, Sandeck H, Christensen T, Larsson E, Lundgren S. Malignant pleural mesothelioma: genome-wide expression patterns reflecting general resistance mechanisms and a proposal of novel targets. Lung Cancer 2010; 67:57-68. [PMID: 19380173 DOI: 10.1016/j.lungcan.2009.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/12/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
Malignant pleural mesothelioma is an asbestos-related multi-resistant tumour with increasing incidence worldwide. Well-characterized snap-frozen normal parietal, visceral pleura and mesothelioma samples were analysed with Affymetrix Human Genome U133 Plus 2.0 GeneChip oligoarray of 38500 genes. We discovered a close relation between gene profile and resistance towards topoisomerase poisons, alkylating agents, antitubulines, antifolates, platinum compounds and radiation therapy. Target genes of chemo- (e.g. TOP2A, BIRC5/Survivin and proteasome) and radiotherapy (e.g. BRCA2, FANCA, FANCD2, CCNB1 and RAD50) were significantly overexpressed. The Fanconi anemia/BRCA2 pathway, responsible for homologous recombination DNA repair appears as a key pathway in both chemo- and radio-resistance of mesothelioma. Leukocyte trans-endothelial migration gene down-regulation could partly explain resistance against immunological therapies. Gene expression features found in other resistant cancer types related to DNA repair and replication are shared by mesothelioma and could represent general features of tumour resistance. Targeted suppression of some of those key genes and pathways combined with chemotherapy or radiation could improve the outcome of mesothelioma therapy. We propose CHEK1, RAD21, FANCD2 and RAN as new co-targets for mesothelioma treatment. The pro-angiogenic AGGF1 mRNA and protein was highly overexpressed in all tumours and may serve as a target for anti-angiogenic treatment. Overexpression of NQO1 may render mesothelioma sensitive to the novel compound beta-Lapachone.
Collapse
|
19
|
Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer 2009; 8:8. [PMID: 19216791 PMCID: PMC2657106 DOI: 10.1186/1476-4598-8-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 02/13/2009] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, control mechanisms have developed that restrain cell-cycle transitions in response to stress. These regulatory pathways are termed cell-cycle checkpoints. The G(2)/M checkpoint prevents cells from entering mitosis when DNA is damaged in order to afford these cells an opportunity to repair the damaged DNA before propagating genetic defects to the daughter cells. If the damage is irreparable, checkpoint signaling might activate pathways that lead to apoptosis. Since alteration of cell-cycle control is a hallmark of tumorigenesis, cell-cycle regulators represent potential targets for therapy. The centrosome has recently come into focus as a critical cellular organelle that integrates G(2)/M checkpoint control and repairs signals in response to DNA damage. A growing number of G(2)/M checkpoint regulators have been found in the centrosome, suggesting that centrosome has an important role in G(2)/M checkpoint function. In this review, we discuss centrosome-associated regulators of the G(2)/M checkpoint, the dysregulation of this checkpoint in cancer, and potential candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Yingmei Wang
- Tianjin General Hospital, Tianjin Medical University, Tianjin, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Schwock J, Pham NA, Cao MP, Hedley DW. Efficacy of Hsp90 inhibition for induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitro and in vivo. Cancer Chemother Pharmacol 2007; 61:669-81. [PMID: 17579866 DOI: 10.1007/s00280-007-0522-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 05/07/2007] [Indexed: 12/21/2022]
Abstract
PURPOSE Heat shock protein 90 (Hsp90) is a conserved chaperone involved in crucial signaling events in normal and malignant cells. Previous research suggests that tumor cells are particularly dependent on Hsp90 for survival as well as malignant progression. Hsp90 inhibitors which are derivates of the natural compound geldanamycin, such as the orally bioavailable 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), are currently being tested in clinical trials and small molecule inhibitors are in development. In this study we investigated the response of a panel of cervical carcinoma cell lines in vitro and in vivo to determine potential factors that might influence the sensitivity towards Hsp90 inhibition. METHODS Cell viability, proliferation and drug-induced changes on Hsp90 chaperoned "client" factors were examined with focus on G2/M cell cycle regulators, and a comparison with immortalized and normal keratinocytes was performed. ME180 and CaSki cells were grown as subcutaneous xenografts in mice treated with 6-10 mg/kg 17-DMAG by oral gavage 2x/day on a chronic schedule. Tissue concentrations of 17-DMAG were measured by high performance liquid chromatography. RESULTS Cell death during abnormal mitosis was observed within 48 h after treatment start. ME180 and CaSki showed more cell death at this time point than SiHa and HeLa, and higher levels of pre-treatment Akt activity. IC(50) values ranged between 17 and 37 nanoM geldanamycin (MTS). Keratinocytes were at least as sensitive as carcinoma cells. All cell lines responded with an increase of the G2/M fraction. Despite in vitro effectiveness and tissue concentrations of 1 microM, only a limited tumor growth reduction was observed with 17-DMAG given close to the maximum tolerated dose level. Lower levels of Hsp90 protein, a lower Akt activity and signs of tissue hypoxia were observed in xenografts compared to cell cultures. CONCLUSIONS We show here that Hsp90 inhibition effectively induces apoptosis and growth arrest in cervical carcinoma cells in vitro. Mitotic catastrophe was identified as one mechanism of cell death. In contrast, a limited efficacy of 17-DMAG was observed in subcutaneous xenograft models. Induction of a heat shock response has previously been implicated in resistance towards Hsp90 inhibition. Additional factors might be (1) an altered abundance and/or activity of primary (Hsp90) and secondary (e.g., Akt) target(s), (2) a narrow therapeutic range of 17-DMAG by oral application and (3) response-modifying factors within the tumor environment. The further development of synthetic Hsp90 inhibitors with increased therapeutic window is warranted.
Collapse
Affiliation(s)
- Jörg Schwock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 610 University Ave., 5th Floor, Rm 203, M5G 2M9, Toronto, ON, Canada
| | | | | | | |
Collapse
|