1
|
Trujillo EM, Lee SR, Aguayo A, Torosian TC, Cripps RM. Enhanced expression of the myogenic factor Myocyte enhancer factor-2 in imaginal disc myoblasts activates a partial, but incomplete, muscle development program. Dev Biol 2024; 516:82-95. [PMID: 39111615 DOI: 10.1016/j.ydbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
The Myocyte enhancer factor-2 (MEF2) transcription factor plays a vital role in orchestrating muscle differentiation. While MEF2 cannot effectively induce myogenesis in naïve cells, it can potently accelerate myogenesis in mesodermal cells. This includes in Drosophila melanogaster imaginal disc myoblasts, where triggering premature muscle gene expression in these adult muscle progenitors has become a paradigm for understanding the regulation of the myogenic program. Here, we investigated the global consequences of MEF2 overexpression in the imaginal wing disc myoblasts, by combining RNA-sequencing with RT-qPCR and immunofluorescence. We observed the formation of sarcomere-like structures that contained both muscle and cytoplasmic myosin, and significant upregulation of muscle gene expression, especially genes essential for myofibril formation and function. These transcripts were functional since numerous myofibrillar proteins were detected in discs using immunofluorescence. Interestingly, muscle genes whose expression is restricted to the adult stages were not activated in these adult myoblasts. These studies confirm a broad activation of the myogenic program in response to MEF2 expression and suggest that additional regulatory factors are required for promoting the adult muscle-specific program. Our findings contribute to understanding the regulatory mechanisms governing muscle development and highlight the multifaceted role of MEF2 in orchestrating this intricate process.
Collapse
Affiliation(s)
| | - Samuel R Lee
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Antonio Aguayo
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Tylee C Torosian
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Richard M Cripps
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
2
|
Ohhara Y, Blick M, Park D, Yoon SE, Kim YJ, Pankratz MJ, O’Connor MB, Yamanaka N. A Neuropeptide Signaling Network That Regulates Developmental Timing and Systemic Growth in Drosophila. J Comp Neurol 2024; 532:e25677. [PMID: 39415613 PMCID: PMC11488662 DOI: 10.1002/cne.25677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Animals sense chemical cues such as nutritious and noxious stimuli through the chemosensory system and adapt their behavior, physiology, and developmental schedule to the environment. In the Drosophila central nervous system, chemosensory interneurons that produce neuropeptides called Hugin (Hug) peptides receive signals from gustatory receptor neurons and regulate feeding behavior. Because Hug neurons project their axons to the higher brain region within the protocerebrum where dendrites of multiple neurons producing developmentally important neuropeptides are extended, it has been postulated that Hug neurons regulate development through the neuroendocrine system. In this study, we show that Hug neurons interact with a subset of protocerebrum neurons that produce prothoracicotropic hormone (PTTH) and regulate the onset of metamorphosis and systemic growth. Loss of the hug gene and silencing of Hug neurons caused a delay in larval-to-prepupal transition and an increase in final body size. Furthermore, deletion of Hug receptor-encoding genes also caused developmental delay and body size increase, and the phenotype was restored by expressing Hug receptors in PTTH-producing neurons. These results indicate that Hug neurons regulate developmental timing and body size via PTTH-producing neurons. This study provides a basis for understanding how chemosensation is converted into neuroendocrine signaling to control insect growth and development.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Mikkal Blick
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Donghyun Park
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center (KDRC), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Michael J. Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115 Bonn, Germany
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Tang T, Wu M, Yang L, Liu F, Zhang F. Muscle LIM protein of Macrobrachium nipponense (MnMLP) involved in immune and stress response. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109809. [PMID: 39122098 DOI: 10.1016/j.fsi.2024.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The muscle LIM protein (MLP) is a member of the cysteine and glycine-rich protein (CSRP) family, composed of CSRP1, CSRP2 and CSRP3/MLP. MLP is involved in a multitude of functional roles, including cytoskeletal organization, transcriptional regulation, and signal transduction. However, the molecular mechanisms underlying its involvement in immune and stress responses remain to be elucidated. This study identified an MnMLP in the freshwater crustacean Macrobrachium nipponense. The isothermal titration calorimetry assay demonstrated that recombinant MnMLP was capable of coordinating with Zn2+. Upon challenge by Aeromonas veronii or WSSV, and exposure to CdCl2, up-regulation was recorded in the muscle and intestinal tissues, suggesting its involvement in immune and anti-stress responses. MnMLP protein was predominantly expressed in the cytoplasm of the transfected HEK-293T cells, but after treatment with LPS, Cd2+ or H2O2, the MnMLP was observed to be transferred into the nucleus. The comet assay demonstrated that the overexpression of MnMLP could mitigate the DNA damage induced by H2O2 in HEK-293T cells, suggesting the potential involvement of MnMLP in the DNA repair process. These findings suggest that DNA repair may represent a possible mechanism by which MnMLP may be involved in the host's defense against pathogens and stress.
Collapse
Affiliation(s)
- Ting Tang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mengjia Wu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Likun Yang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, 071002, China.
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Michael AH, Hana TA, Mousa VG, Ormerod KG. Muscle-fiber specific genetic manipulation of Drosophila sallimus severely impacts neuromuscular development, morphology, and physiology. Front Physiol 2024; 15:1429317. [PMID: 39351283 PMCID: PMC11439786 DOI: 10.3389/fphys.2024.1429317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
The ability of skeletal muscles to contract is derived from the unique genes and proteins expressed within muscles, most notably myofilaments and elastic proteins. Here we investigated the role of the sallimus (sls) gene, which encodes a structural homologue of titin, in regulating development, structure, and function of Drosophila melanogaster. Knockdown of sls using RNA interference (RNAi) in all body-wall muscle fibers resulted in embryonic lethality. A screen for muscle-specific drivers revealed a Gal4 line that expresses in a single larval body wall muscle in each abdominal hemisegment. Disrupting sls expression in single muscle fibers did not impact egg or larval viability nor gross larval morphology but did significantly alter the morphology of individual muscle fibers. Ultrastructural analysis of individual muscles revealed significant changes in organization. Surprisingly, muscle-cell specific disruption of sls also severely impacted neuromuscular junction (NMJ) formation. The extent of motor-neuron (MN) innervation along disrupted muscles was significantly reduced along with the number of glutamatergic boutons, in MN-Is and MN-Ib. Electrophysiological recordings revealed a 40% reduction in excitatory junctional potentials correlating with the extent of motor neuron loss. Analysis of active zone (AZ) composition revealed changes in presynaptic scaffolding protein (brp) abundance, but no changes in postsynaptic glutamate receptors. Ultrastructural changes in muscle and NMJ development at these single muscle fibers were sufficient to lead to observable changes in neuromuscular transduction and ultimately, locomotory behavior. Collectively, the data demonstrate that sls mediates critical aspects of muscle and NMJ development and function, illuminating greater roles for sls/titin.
Collapse
Affiliation(s)
| | | | | | - Kiel G. Ormerod
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
5
|
Wishard R, Jayaram M, Ramesh SR, Nongthomba U. Spatial and temporal requirement of Mlp60A isoforms during muscle development and function in Drosophila melanogaster. Exp Cell Res 2023; 422:113430. [PMID: 36423661 DOI: 10.1016/j.yexcr.2022.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Many myofibrillar proteins undergo isoform switching in a spatio-temporal manner during muscle development. The biological significance of the variants of several of these myofibrillar proteins remains elusive. One such myofibrillar protein, the Muscle LIM Protein (MLP), is a vital component of the Z-discs. In this paper, we show that one of the Drosophila MLP encoding genes, Mlp60A, gives rise to two isoforms: a short (279 bp, 10 kDa) and a long (1461 bp, 54 kDa) one. The short isoform is expressed throughout development, but the long isoform is adult-specific, being the dominant of the two isoforms in the indirect flight muscles (IFMs). A concomitant, muscle-specific knockdown of both isoforms leads to partial developmental lethality, with most of the surviving flies being flight defective. A global loss of both isoforms in a Mlp60A-null background also leads to developmental lethality, with muscle defects in the individuals that survive to the third instar larval stage. This lethality could be rescued partially by a muscle-specific overexpression of the short isoform. Genetic perturbation of only the long isoform, through a P-element insertion in the long isoform-specific coding sequence, leads to defective flight, in around 90% of the flies. This phenotype was completely rescued when the P-element insertion was precisely excised from the locus. Hence, our data show that the two Mlp60A isoforms are functionally specialized: the short isoform being essential for normal embryonic muscle development and the long isoform being necessary for normal adult flight muscle function.
Collapse
Affiliation(s)
- Rohan Wishard
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| | - Mohan Jayaram
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India; Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India
| | - Saraf R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India; Department of Life Sciences, Pooja Bhagvat Memorial Mahajana Education Center, K. R. S. Road, Mysuru, 570016, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
6
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
7
|
She M, Zhang J, Jiang T, Zhang Y, Liu Y, Tang M, Zeng Q. The function of Lmpt in Drosophila heart tissue. Biochem Biophys Res Commun 2022; 612:15-21. [DOI: 10.1016/j.bbrc.2022.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
|
8
|
Zeng F, Yi C, Zhang W, Cheng S, Sun C, Luo F, Feng Z, Hu W. A new ferritin SjFer0 affecting the growth and development of Schistosoma japonicum. Parasit Vectors 2022; 15:177. [PMID: 35610663 PMCID: PMC9128280 DOI: 10.1186/s13071-022-05247-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Schistosomiasis, an acute and chronic parasitic disease, causes substantial morbidity and mortality in tropical and subtropical regions of the world. Iron is an essential constituent of numerous macromolecules involving in important cellular reactions in virtually all organisms. Trematodes of the genus Schistosoma live in iron-rich blood, feed on red blood cells and store abundant iron in vitelline cells. Ferritins are multi-meric proteins that store iron inside cells. Three ferritin isoforms in Schistosoma japonicum are known, namely SjFer0, SjFer1 and SjFer2; however, their impact on the growth and development of the parasites is still unknown. In this study we report on and characterize the ferritins in S. japonicum. METHODS A phylogenetic tree of the SjFer0, SjFer1 and SjFer2 genes was constructed to show the evolutionary relationship among species of genus Schistosoma. RNA interference in vivo was used to investigate the impact of SjFer0 on schistosome growth and development. Immunofluorescence assay was applied to localize the expression of the ferritins. RNA-sequencing was performed to characterize the iron transport profile after RNA interference. RESULTS SjFer0 was found to have low similarity with SjFer1 and SjFer2 and contain an additional signal peptide sequence. Phylogenetic analysis revealed that SjFer0 can only cluster with some ferritins of other trematodes and tapeworms, suggesting that this ferritin branch might be unique to these parasites. RNA interference in vivo showed that SjFer0 significantly affected the growth and development of schistosomula but did not affect egg production of adult female worms. SjFer1 and SjFer2 had no significant impact on growth and development. The immunofluorescence study showed that SjFer0 was widely expressed in the somatic cells and vitelline glands but not in the testicle or ovary. RNA-sequencing indicated that, in female, the ion transport process and calcium ion binding function were downregulated after SjFer0 RNA interference. Among the differentially downregulated genes, Sj-cpi-2, annexin and insulin-like growth factor-binding protein may be accounted for the suppression of schistosome growth and development. CONCLUSIONS The results indicate that SjFer0 affects the growth and development of schistosomula but does not affect egg production of adult female worms. SjFer0 can rescue the growth of the fet3fet4 double mutant Saccharomyces cerevisiae (strain DEY1453), suggesting being able to promote iron absorption. The RNA interference of SjFer0 inferred that the suppression of worm growth and development may via down-regulating Sj-cpi-2, annexin, and IGFBP.
Collapse
Affiliation(s)
- Fanyuan Zeng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Shaoyun Cheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030, People's Republic of China.
| |
Collapse
|
9
|
She M, Tang M, Jiang T, Zeng Q. The Roles of the LIM Domain Proteins in Drosophila Cardiac and Hematopoietic Morphogenesis. Front Cardiovasc Med 2021; 8:616851. [PMID: 33681304 PMCID: PMC7928361 DOI: 10.3389/fcvm.2021.616851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster has been used as a model organism for study on development and pathophysiology of the heart. LIM domain proteins act as adaptors or scaffolds to promote the assembly of multimeric protein complexes. We found a total of 75 proteins encoded by 36 genes have LIM domain in Drosophila melanogaster by the tools of SMART, FLY-FISH, and FlyExpress, and around 41.7% proteins with LIM domain locate in lymph glands, muscles system, and circulatory system. Furthermore, we summarized functions of different LIM domain proteins in the development and physiology of fly heart and hematopoietic systems. It would be attractive to determine whether it exists a probable "LIM code" for the cycle of different cell fates in cardiac and hematopoietic tissues. Next, we aspired to propose a new research direction that the LIM domain proteins may play an important role in fly cardiac and hematopoietic morphogenesis.
Collapse
Affiliation(s)
- Meihua She
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Min Tang
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Tingting Jiang
- Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| |
Collapse
|
10
|
Liang S, Luo J, Alariqi M, Xu Z, Wang A, Zafar MN, Ren J, Wang F, Liu X, Xin Y, Xu H, Guo W, Wang Y, Ma W, Chen L, Lindsey K, Zhang X, Jin S. Silencing of a LIM gene in cotton exhibits enhanced resistance against Apolygus lucorum. J Cell Physiol 2021; 236:5921-5936. [PMID: 33481281 DOI: 10.1002/jcp.30281] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/06/2020] [Accepted: 12/26/2020] [Indexed: 01/18/2023]
Abstract
Plant bugs (Miridae species) have become major agricultural pests that cause increasing and severe economic damage. Plant-mediated RNA interference (RNAi) is emerging as an eco-friendly, efficient, and reliable strategy for pest management. In this study, we isolated and characterized a lethal gene of Apolygus lucorum and named it Apolygus lucorum LIM (AlLIM), which produced A. lucorum mortality rates ranging from 38% to 81%. Downregulation of the AlLIM gene expression in A. lucorum by injection of a double-stranded RNA (dsRNA) led to muscle structural disorganization that resulted in metamorphosis deficiency and increased mortality. Then we constructed a plant expression vector that enabled transgenic cotton to highly and stably express dsRNA of AlLIM (dsAlLIM) by Agrobacterium-mediated genetic transformation. In the field bioassay, dsAlLIM transgenic cotton was protected from A. lucorum damage with high efficiency, with almost no detectable yield loss. Therefore, our study successfully provides a promising genetically modified strategy to overpower A. lucorum attack.
Collapse
Affiliation(s)
- Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.,Academy of Industry innovation and Development, Huanghuai University, Zhumadian, Henan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Muhammad Naeem Zafar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jun Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuefei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanfeng Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haonan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weifeng Guo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
12
|
Luo J, Shen H, Ren Q, Guan G, Zhao B, Yin H, Chen R, Zhao H, Luo J, Li X, Liu G. Characterization of an MLP Homologue from Haemaphysalis longicornis (Acari: Ixodidae) Ticks. Pathogens 2020; 9:pathogens9040284. [PMID: 32295244 PMCID: PMC7238268 DOI: 10.3390/pathogens9040284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Members of the cysteine-rich protein (CRP) family are known to participate in muscle development in vertebrates. Muscle LIM protein (MLP) belongs to the CRP family and has an important function in the differentiation and proliferation of muscle cells. In this study, the full-length cDNA encoding MLP from Haemaphysalis longicornis (H. longicornis; HLMLP) ticks was obtained by 5' rapid amplification of cDNA ends (RACE). To verify the transcriptional status of MLP in ticks, HLMLP gene expression was assessed during various developmental stages by real-time PCR (RT-PCR). Interestingly, HLMLP expression in the integument was significantly (P < 0.01) higher than that observed in other tested tissues of engorged adult ticks. In addition, HLMLP mRNA levels were significantly downregulated in response to thermal stress at 4 °C for 48 h. Furthermore, recombinant HLMLP was expressed in Escherichia coli, and Western blot analysis showed that rabbit antiserum against H. longicornis adults recognized HLMLP and MLPs from different ticks. Ten 3-month-old rabbits that had never been exposed to ticks were used for the immunization and challenge experiments. The rabbits were divided into two groups of five rabbits each, where rabbits in the first group were immunized with HLMLP, while those in the second group were immunized with phosphate-buffered saline (PBS) diluent as controls. The vaccination of rabbits with the recombinant HLMLP conferred partial protective immunity against ticks, resulting in 20.00% mortality and a 17.44% reduction in the engorgement weight of adult ticks. These results suggest that HLMLP is not ideal as a candidate for use in anti-tick vaccines. However, the results of this study generated novel information on the MLP gene in H. longicornis and provide a basis for further investigation of the function of this gene that could potentially lead to a better understanding of the mechanism of myofiber determination and transformation.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Shen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Bo Zhao
- Gansu Agriculture Technology College, Duanjiatan 425, Lanzhou 730030, China;
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Ronggui Chen
- Ili Center of Animal Disease Control and Diagnosis, Ili 835000, China;
| | - Hongying Zhao
- Chapchal Sibo Autonomous County Animal Husbandry and Veterinary Station, Chapchal 835400, China;
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (X.L.); (G.L.)
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
- Correspondence: (X.L.); (G.L.)
| |
Collapse
|
13
|
Brooks D, Naeem F, Stetsiv M, Goetting SC, Bawa S, Green N, Clark C, Bashirullah A, Geisbrecht ER. Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover. PLoS Genet 2020; 16:e1008700. [PMID: 32320396 PMCID: PMC7176095 DOI: 10.1371/journal.pgen.1008700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/28/2020] [Indexed: 11/18/2022] Open
Abstract
The inability to remove protein aggregates in post-mitotic cells such as muscles or neurons is a cellular hallmark of aging cells and is a key factor in the initiation and progression of protein misfolding diseases. While protein aggregate disorders share common features, the molecular level events that culminate in abnormal protein accumulation cannot be explained by a single mechanism. Here we show that loss of the serine/threonine kinase NUAK causes cellular degeneration resulting from the incomplete clearance of protein aggregates in Drosophila larval muscles. In NUAK mutant muscles, regions that lack the myofibrillar proteins F-actin and Myosin heavy chain (MHC) instead contain damaged organelles and the accumulation of select proteins, including Filamin (Fil) and CryAB. NUAK biochemically and genetically interacts with Drosophila Starvin (Stv), the ortholog of mammalian Bcl-2-associated athanogene 3 (BAG3). Consistent with a known role for the co-chaperone BAG3 and the Heat shock cognate 71 kDa (HSC70)/HSPA8 ATPase in the autophagic clearance of proteins, RNA interference (RNAi) of Drosophila Stv, Hsc70-4, or autophagy-related 8a (Atg8a) all exhibit muscle degeneration and muscle contraction defects that phenocopy NUAK mutants. We further demonstrate that Fil is a target of NUAK kinase activity and abnormally accumulates upon loss of the BAG3-Hsc70-4 complex. In addition, Ubiquitin (Ub), ref(2)p/p62, and Atg8a are increased in regions of protein aggregation, consistent with a block in autophagy upon loss of NUAK. Collectively, our results establish a novel role for NUAK with the Stv-Hsc70-4 complex in the autophagic clearance of proteins that may eventually lead to treatment options for protein aggregate diseases.
Collapse
Affiliation(s)
- David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Fawwaz Naeem
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Marta Stetsiv
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Samantha C Goetting
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Nicole Green
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
14
|
Lecompte M, Cattaert D, Vincent A, Birman S, Chérif-Zahar B. Drosophila ammonium transporter Rh50 is required for integrity of larval muscles and neuromuscular system. J Comp Neurol 2019; 528:81-94. [PMID: 31273786 DOI: 10.1002/cne.24742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Rhesus glycoproteins (Rh50) have been shown to be ammonia transporters in many species from bacteria to human. They are involved in various physiological processes including acid excretion and pH regulation. Rh50 proteins can also provide a structural link between the cytoskeleton and the plasma membranes that maintain cellular integrity. Although ammonia plays essential roles in the nervous system, in particular at glutamatergic synapses, a potential role for Rh50 proteins at synapses has not yet been investigated. To better understand the function of these proteins in vivo, we studied the unique Rh50 gene of Drosophila melanogaster, which encodes two isoforms, Rh50A and Rh50BC. We found that Drosophila Rh50A is expressed in larval muscles and enriched in the postsynaptic regions of the glutamatergic neuromuscular junctions. Rh50 inactivation by RNA interference selectively in muscle cells caused muscular atrophy in larval stages and pupal lethality. Interestingly, Rh50-deficiency in muscles specifically increased glutamate receptor subunit IIA (GluRIIA) level and the frequency of spontaneous excitatory postsynaptic potentials. Our work therefore highlights a new role for Rh50 proteins in the maintenance of Drosophila muscle architecture and synaptic physiology, which could be conserved in other species.
Collapse
Affiliation(s)
- Mathilde Lecompte
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Daniel Cattaert
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Bordeaux University, Bordeaux, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS, Toulouse University, UPS, Toulouse, France
| | - Serge Birman
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Baya Chérif-Zahar
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
15
|
Tan D, Hu H, Tong X, Han M, Wu S, Ding X, Dai F, Lu C. Comparative Analysis of the Integument Transcriptomes between Stick Mutant and Wild-Type Silkworms. Int J Mol Sci 2018; 19:ijms19103158. [PMID: 30322193 PMCID: PMC6214029 DOI: 10.3390/ijms19103158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
In insects, the integument provides mechanical support for the whole body and protects them from infections, physical and chemical injuries, and dehydration. Diversity in integument properties is often related to body shape, behavior, and survival rate. The stick (sk) silkworm is a spontaneous mutant with a stick-like larval body that is firm to the touch and, thus, less flexible. Analysis of the mechanical properties of the cuticles at day 3 of the fifth instar (L5D3) of sk larvae revealed higher storage modulus and lower loss tangent. Transcriptome sequencing identified a total of 19,969 transcripts that were expressed between wild-type Dazao and the sk mutant at L5D2, of which 11,596 transcripts were novel and detected in the integument. Differential expression analyses identified 710 upregulated genes and 1009 downregulated genes in the sk mutant. Gene Ontology (GO) enrichment analysis indicated that four chitin-binding peritrophin A domain genes and a chitinase gene were upregulated, whereas another four chitin-binding peritrophin A domain genes, a trehalase, and nine antimicrobial peptides were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two functional pathways, namely, fructose and mannose metabolism and tyrosine metabolism, were significantly enriched with differentially-expressed transcripts. This study provides a foundation for understanding the molecular mechanisms underlying the development of the stiff exoskeleton in the sk mutant.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Liao KA, González-Morales N, Schöck F. Zasp52, a Core Z-disc Protein in Drosophila Indirect Flight Muscles, Interacts with α-Actinin via an Extended PDZ Domain. PLoS Genet 2016; 12:e1006400. [PMID: 27783625 PMCID: PMC5081203 DOI: 10.1371/journal.pgen.1006400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022] Open
Abstract
Z-discs are organizing centers that establish and maintain myofibril structure and function. Important Z-disc proteins are α-actinin, which cross-links actin thin filaments at the Z-disc and Zasp PDZ domain proteins, which directly interact with α-actinin. Here we investigate the biochemical and genetic nature of this interaction in more detail. Zasp52 is the major Drosophila Zasp PDZ domain protein, and is required for myofibril assembly and maintenance. We show by in vitro biochemistry that the PDZ domain plus a C-terminal extension is the only area of Zasp52 involved in the interaction with α-actinin. In addition, site-directed mutagenesis of 5 amino acid residues in the N-terminal part of the PDZ domain, within the PWGFRL motif, abolish binding to α-actinin, demonstrating the importance of this motif for α-actinin binding. Rescue assays of a novel Zasp52 allele demonstrate the crucial importance of the PDZ domain for Zasp52 function. Flight assays also show that a Zasp52 mutant suppresses the α-actinin mutant phenotype, indicating that both proteins are core structural Z-disc proteins required for optimal Z-disc function. Although Zasp PDZ domain proteins are known to bind α-actinin and play a role in muscle assembly and maintenance, the details and importance of this interaction have not been assessed. Here we demonstrate that a conserved motif in the N-terminal part of the Zasp52 PDZ domain is responsible for α-actinin binding and that a C-terminal extension of the PDZ domain is required for optimal α-actinin binding. We show using transgenic animals that in the absence of the PDZ domain no aspect of myofibril assembly can be rescued. Intriguingly, α-actinin/+ heterozygous animals show irregularities in wing beat frequency, which can be suppressed by removing one copy of Zasp52. This suggests that both proteins are required at fixed levels at the Z-disc to support optimal functionality.
Collapse
Affiliation(s)
- Kuo An Liao
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, CANADA
| | | | - Frieder Schöck
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, CANADA
- * E-mail:
| |
Collapse
|
17
|
Brooks DS, Vishal K, Kawakami J, Bouyain S, Geisbrecht ER. Optimization of wrMTrck to monitor Drosophila larval locomotor activity. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:11-17. [PMID: 27430166 PMCID: PMC5722213 DOI: 10.1016/j.jinsphys.2016.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 05/13/2023]
Abstract
An efficient and low-cost method of examining larval movement in Drosophila melanogaster is needed to study how mutations and/or alterations in the muscular, neural, and olfactory systems affect locomotor behavior. Here, we describe the implementation of wrMTrck, a freely available ImageJ plugin originally developed for examining multiple behavioral parameters in the nematode C. elegans. Our optimized method is rapid, reproducible and does not require automated microscope setups or the purchase of proprietary software. To demonstrate the utility of this method, we analyzed the velocity and crawling paths of two Drosophila mutants that affect muscle structure and/or function. Additionally, we show that this approach is useful for tracking the behavior of adult insects, including Tribolium castaneum and Drosophila melanogaster.
Collapse
Affiliation(s)
- David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Jessica Kawakami
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
18
|
A Common Suite of Coagulation Proteins Function in Drosophila Muscle Attachment. Genetics 2016; 204:1075-1087. [PMID: 27585844 DOI: 10.1534/genetics.116.189787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein-protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment.
Collapse
|
19
|
Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, K J VV, Krishnan RT, Krishnamoorthy A, Ferreira IRS, Ejsmont RK, Finkl K, Hasse S, Kämpfer P, Plewka N, Vinis E, Schloissnig S, Knust E, Hartenstein V, Mann M, Ramaswami M, VijayRaghavan K, Tomancak P, Schnorrer F. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 2016; 5:e12068. [PMID: 26896675 PMCID: PMC4805545 DOI: 10.7554/elife.12068] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI:http://dx.doi.org/10.7554/eLife.12068.001 The fruit fly Drosophila melanogaster is a popular model organism in biological research. Studies using Drosophila have led to important insights into human biology, because related proteins often fulfil similar roles in flies and humans. Thus, studying the role of a protein in Drosophila can teach us about what it might do in a human. To fulfil their biological roles, proteins often occupy particular locations inside cells, such as the cell’s nucleus or surface membrane. Many proteins are also only found in specific types of cell, such as neurons or muscle cells. A protein’s location thus provides clues about what it does, however cells contain many thousands of proteins and identifying the location of each one is a herculean task. Sarov et al. took on this challenge and developed a new resource to study the localisation of all Drosophila proteins during this animal’s development. First, genetic engineering was used to tag thousands of Drosophila proteins with a green fluorescent protein, so that they could be tracked under a microscope. Sarov et al. tagged about 10000 Drosophila proteins in bacteria, and then introduced almost 900 of them into flies to create genetically modified flies. Each fly line contains an extra copy of the tagged gene that codes for one tagged protein. About two-thirds of these tagged proteins appeared to work normally after they were introduced into flies. Sarov et al. then looked at over 200 of these fly lines in more detail and observed that many of the proteins were found in particular cell types and localized to specific parts of the cells. Video imaging of the tagged proteins in living fruit fly embryos and pupae revealed the proteins’ movements, while other techniques showed which proteins bind to the tagged proteins, and may therefore work together in protein complexes. This resource is openly available to the community, and so researchers can use it to study their favourite protein and gain new insights into how proteins work and are regulated during Drosophila development. Following on from this work, the next challenge will be to create more flies carrying tagged proteins, and to swap the green fluorescent tag with other experimentally useful tags. DOI:http://dx.doi.org/10.7554/eLife.12068.002
Collapse
Affiliation(s)
- Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Helena Jambor
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Dana Suchold
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Bettina Stender
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stephan Janosch
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Vinay Vikas K J
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - R T Krishnan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Aishwarya Krishnamoorthy
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Irene R S Ferreira
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Katja Finkl
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne Hasse
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Philipp Kämpfer
- Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
| | - Nicole Plewka
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elisabeth Vinis
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | | | - Elisabeth Knust
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mani Ramaswami
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - K VijayRaghavan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
20
|
de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 2015; 16:620. [PMID: 26285697 PMCID: PMC4545319 DOI: 10.1186/s12864-015-1812-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. RESULTS We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. CONCLUSIONS Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.
Collapse
Affiliation(s)
- Charissa de Bekker
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336, Munich, Germany.
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA.
| | - Robin A Ohm
- Microbiology, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Raquel G Loreto
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, 70040-020, DF, Brazil
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336, Munich, Germany
| | - Andreas Brachmann
- Faculty of Biology, Section Genetics, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Martinsried, Germany
| | - David P Hughes
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA.
| |
Collapse
|
21
|
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015; 566:1-7. [PMID: 25936993 PMCID: PMC6660132 DOI: 10.1016/j.gene.2015.04.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
22
|
Schulman VK, Dobi KC, Baylies MK. Morphogenesis of the somatic musculature in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:313-34. [PMID: 25758712 DOI: 10.1002/wdev.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once the mesodermal cells destined for the myogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical for muscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease.
Collapse
Affiliation(s)
- Victoria K Schulman
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Krista C Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Mary K Baylies
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
23
|
Spletter ML, Barz C, Yeroslaviz A, Schönbauer C, Ferreira IRS, Sarov M, Gerlach D, Stark A, Habermann BH, Schnorrer F. The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle. EMBO Rep 2014; 16:178-91. [PMID: 25532219 PMCID: PMC4328745 DOI: 10.15252/embr.201439791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Daniel Gerlach
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC), Vienna, Austria
| | | | | |
Collapse
|
24
|
Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci U S A 2014; 111:16353-8. [PMID: 25368171 DOI: 10.1073/pnas.1410488111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.
Collapse
|
25
|
Weitkunat M, Schnorrer F. A guide to study Drosophila muscle biology. Methods 2014; 68:2-14. [PMID: 24625467 DOI: 10.1016/j.ymeth.2014.02.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
The development and molecular composition of muscle tissue is evolutionarily conserved. Drosophila is a powerful in vivo model system to investigate muscle morphogenesis and function. Here, we provide a short and comprehensive overview of the important developmental steps to build Drosophila body muscle in embryos, larvae and pupae. We describe key methods, including muscle histology, live imaging and genetics, to study these steps at various developmental stages and include simple behavioural assays to assess muscle function in larvae and adults. We list valuable antibodies and fly strains that can be used for these different methods. This overview should guide the reader to choose the best marker or the appropriate method to obtain high quality muscle morphogenesis data in Drosophila.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
26
|
Kaushik G, Engler AJ. From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:219-42. [PMID: 25081620 DOI: 10.1016/b978-0-12-394624-9.00009-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stem cell differentiation into a variety of lineages is known to involve signaling from the extracellular niche, including from the physical properties of that environment. What regulates stem cell responses to these cues is there ability to activate different mechanotransductive pathways. Here, we will review the structures and pathways that regulate stem cell commitment to a cardiomyocyte lineage, specifically examining proteins within muscle sarcomeres, costameres, and intercalated discs. Proteins within these structures stretch, inducing a change in their phosphorylated state or in their localization to initiate different signals. We will also put these changes in the context of stem cell differentiation into cardiomyocytes, their subsequent formation of the chambered heart, and explore negative signaling that occurs during disease.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
27
|
Clark KA, Kadrmas JL. Drosophila melanogaster muscle LIM protein and alpha-actinin function together to stabilize muscle cytoarchitecture: a potential role for Mlp84B in actin-crosslinking. Cytoskeleton (Hoboken) 2013; 70:304-16. [PMID: 23606669 PMCID: PMC3716849 DOI: 10.1002/cm.21106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 02/06/2023]
Abstract
Stabilization of tissue architecture during development and growth is essential to maintain structural integrity. Because of its contractile nature, muscle is especially susceptible to physiological stresses, and has multiple mechanisms to maintain structural integrity. The Drosophila melanogaster Muscle LIM Protein (MLP), Mlp84B, participates in muscle maintenance, yet its precise mechanism of action is still controversial. Through a candidate approach, we identified α-actinin as a protein that functions with Mlp84B to ensure muscle integrity. α-actinin RNAi animals die primarily as pupae, and Mlp84B RNAi animals are adult viable. RNAi knockdown of Mlp84B and α-actinin together produces synergistic early larval lethality and destabilization of Z-line structures. We recapitulated these phenotypes using combinations of traditional loss-of-function alleles and single-gene RNAi. We observe that Mlp84B induces the formation of actin loops in muscle cell nuclei in the absence of nuclear α-actinin, suggesting Mlp84B has intrinsic actin cross-linking activity, which may complement α-actinin cross-linking activity at sites of actin filament anchorage. These results reveal a molecular mechanism for MLP stabilization of muscle and implicate reduced actin crosslinking as the primary destabilizing defect in MLP-associated cardiomyopathies. Our data support a model in which α-actinin and Mlp84B have important and overlapping functions at sites of actin filament anchorage to preserve muscle structure and function.
Collapse
Affiliation(s)
- Kathleen A. Clark
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Julie L. Kadrmas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
28
|
Domsch K, Ezzeddine N, Nguyen HT. Abba is an essential TRIM/RBCC protein to maintain the integrity of sarcomeric cytoarchitecture. J Cell Sci 2013; 126:3314-23. [PMID: 23729735 DOI: 10.1242/jcs.122366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Organized sarcomeric striations are an evolutionarily conserved hallmark of functional skeletal muscles. Here, we demonstrate that the Drosophila Abba protein, a member of the TRIM/RBCC superfamily, has a pivotal regulatory role in maintaining proper sarcomeric cytoarchitecture during development and muscle usage. abba mutant embryos initially form muscles, but F-actin and Myosin striations become progressively disrupted when the muscles undergo growth and endure increased contractile forces during larval development. Abnormal Myosin aggregates and myofiber atrophy are also notable in the abba mutants. The larval defects result in compromised muscle function, and hence important morphogenetic events do not occur properly during pupation, leading to lethality. Abba is localized at larval Z-discs, and genetic evidence indicates that abba interacts with α-actinin, kettin/D-titin and mlp84B, genes that encode important Z-disc proteins for stable myofibrillar organization and optimal muscle function. RNAi experiments and ultrastructural analysis reveal that Abba has an additional crucial role in sarcomere maintenance in adult muscles. Abba is required to ensure the integrity and function of Z-discs and M-lines. Rescue experiments further show that Abba function is dependent upon its B-box/coiled-coil domain, NHL repeats and RING finger domain. The importance of these presumed protein-protein interactions and ubiquitin ligase-associated domains supports our hypothesis that Abba is needed for specific protein complex formation and stabilization at Z-discs and M-lines.
Collapse
Affiliation(s)
- Katrin Domsch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | |
Collapse
|
29
|
Bonn BR, Rudolf A, Hornbruch-Freitag C, Daum G, Kuckwa J, Kastl L, Buttgereit D, Renkawitz-Pohl R. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7. Exp Cell Res 2012; 319:402-16. [PMID: 23246571 DOI: 10.1016/j.yexcr.2012.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell-cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles.
Collapse
Affiliation(s)
- Bettina R Bonn
- Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Thin, a Trim32 ortholog, is essential for myofibril stability and is required for the integrity of the costamere in Drosophila. Proc Natl Acad Sci U S A 2012; 109:17983-8. [PMID: 23071324 DOI: 10.1073/pnas.1208408109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myofibril stability is required for normal muscle function and maintenance. Mutations that disrupt myofibril stability result in individuals who develop progressive muscle wasting, or muscular dystrophy, and premature mortality. Here we present our investigations of the Drosophila l(2)thin [l(2)tn] mutant. The "thin" phenotype exhibits features of the human muscular disease phenotype in that tn mutant larvae show progressive muscular degeneration. Loss-of-function and rescue experiments determined that l(2)tn is allelic to the tn locus [previously annotated as both CG15105 and another b-box affiliate (abba)]. tn encodes a TRIM (tripartite motif) containing protein highly expressed in skeletal muscle and is orthologous to the human limb-girdle muscular dystrophy type 2H disease gene Trim32. Thin protein is localized at the Z-disk in muscle, but l(2)tn mutants showed no genetic interaction with mutants affecting the Z-line-associated protein muscle LIM protein 84B. l(2)tn, along with loss-of-function mutants generated for tn, showed no relative mislocalization of the Z-disk proteins α-Actinin and muscle LIM protein 84B. In contrast, tn mutants had significant disorganization of the costameric orthologs β-integrin, Spectrin, Talin, and Vinculin, and we present the initial description for the costamere, a key muscle stability complex, in Drosophila. Our studies demonstrate that myofibrils progressively unbundle in flies that lack Thin function through progressive costamere breakdown. Due to the high conservation of these structures in animals, we demonstrate a previously unknown role for TRIM32 proteins in myofibril stability.
Collapse
|
31
|
Nir R, Grossman R, Paroush Z, Volk T. Phosphorylation of the Drosophila melanogaster RNA-binding protein HOW by MAPK/ERK enhances its dimerization and activity. PLoS Genet 2012; 8:e1002632. [PMID: 22479211 PMCID: PMC3315481 DOI: 10.1371/journal.pgen.1002632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster Held Out Wings (HOW) is a conserved RNA-binding protein (RBP) belonging to the STAR family, whose closest mammalian ortholog Quaking (QKI) has been implicated in embryonic development and nervous system myelination. The HOW RBP modulates a variety of developmental processes by controlling mRNA levels and the splicing profile of multiple key regulatory genes; however, mechanisms regulating its activity in tissues have yet to be elucidated. Here, we link receptor tyrosine kinase (RTK) signaling to the regulation of QKI subfamily of STAR proteins, by showing that HOW undergoes phosphorylation by MAPK/ERK. Importantly, we show that this modification facilitates HOW dimerization and potentiates its ability to bind RNA and regulate its levels. Employing an antibody that specifically recognizes phosphorylated HOW, we show that HOW is phosphorylated in embryonic muscles and heart cardioblasts in vivo, thus documenting for the first time Serine/Threonine (Ser/Thr) phosphorylation of a STAR protein in the context of an intact organism. We also identify the sallimus/D-titin (sls) gene as a novel muscle target of HOW-mediated negative regulation and further show that this regulation is phosphorylation-dependent, underscoring the physiological relevance of this modification. Importantly, we demonstrate that HOW Thr phosphorylation is reduced following muscle-specific knock down of Drosophila MAPK rolled and that, correspondingly, Sls is elevated in these muscles, similarly to the HOW RNAi effect. Taken together, our results provide a coherent mechanism of differential HOW activation; MAPK/ERK-dependent phosphorylation of HOW promotes the formation of HOW dimers and thus enhances its activity in controlling mRNA levels of key muscle-specific genes. Hence, our findings bridge between MAPK/ERK signaling and RNA regulation in developing muscles.
Collapse
Affiliation(s)
- Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Grossman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
32
|
Abstract
Planar cell polarity (PCP) is a common feature of many epithelia and epithelial organs. Although progress has been made in the dissection of molecular mechanisms regulating PCP, many questions remain. Here we describe a screen to identify novel PCP regulators in Drosophila. We employed mild gain-of-function (GOF) phenotypes of two cytoplasmic Frizzled (Fz)/PCP core components, Diego (Dgo) and Prickle (Pk), and screened these against the DrosDel genome-wide deficiency collection for dominant modifiers. Positive genomic regions were rescreened and narrowed down with smaller overlapping deficiencies from the Exelixis collection and RNAi-mediated knockdown applied to individual genes. This approach isolated new regulators of PCP, which were confirmed with loss-of-function analyses displaying PCP defects in the eye and/or wing. Furthermore, knockdown of a subset was also sensitive to dgo dosage or dominantly modified a dishevelled (dsh) GOF phenotype, supporting a role in Fz/PCP-mediated polarity establishment. Among the new "PCP" genes we identified several kinases, enzymes required for lipid modification, scaffolding proteins, and genes involved in substrate modification and/or degradation. Interestingly, one of them is a member of the Meckel-Gruber syndrome factors, associated with human ciliopathies, suggesting an important role for cell polarity in nonciliated cells.
Collapse
|
33
|
Zervas CG, Psarra E, Williams V, Solomon E, Vakaloglou KM, Brown NH. A central multifunctional role of integrin-linked kinase at muscle attachment sites. J Cell Sci 2011; 124:1316-27. [PMID: 21444757 DOI: 10.1242/jcs.081422] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Integrin-linked kinase (ILK) is an essential component of a multiprotein complex that links actin to the plasma membrane. Here, we have used a genetic approach to examine the molecular interactions that are essential for the assembly of this ILK-containing complex at Drosophila muscle attachment sites (MASs). We show that, downstream of integrins, talin plays a decisive role in the recruitment of three proteins: ILK, PINCH and paxillin. The accumulation of ILK at MASs appears to follow an amplification mechanism, suggesting that numerous binding sites are generated by minimal levels of the upstream integrin and talin effectors. This property suggests that ILK functions as an essential hub in the assembly of its partner proteins at sites of integrin adhesion. We found that PINCH stability, and its subcellular localization at MASs, depends upon ILK function, but that ILK stability and localization is not dependent upon PINCH. An in vivo structure-function analysis of ILK demonstrated that each ILK domain has sufficient information for its independent recruitment at embryonic MASs, whereas at later developmental stages only the kinase domain was effectively recruited. Our data strengthen the view that the ILK complex is assembled sequentially at sites of integrin adhesion by employing multiple molecular interactions, which collectively stabilize the integrin-actin link.
Collapse
Affiliation(s)
- Christos G Zervas
- Biomedical Research Foundation, Academy of Athens, Division of Genetics, Soranou Efessiou 4, 11527 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
34
|
Clark KA, Lesage-Horton H, Zhao C, Beckerle MC, Swank DM. Deletion of Drosophila muscle LIM protein decreases flight muscle stiffness and power generation. Am J Physiol Cell Physiol 2011; 301:C373-82. [PMID: 21562304 DOI: 10.1152/ajpcell.00206.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle LIM protein (MLP) can be found at the Z-disk of sarcomeres where it is hypothesized to be involved in sensing muscle stretch. Loss of murine MLP results in dilated cardiomyopathy, and mutations in human MLP lead to cardiac hypertrophy, indicating a critical role for MLP in maintaining normal cardiac function. Loss of MLP in Drosophila (mlp84B) also leads to muscle dysfunction, providing a model system to examine MLP's mechanism of action. Mlp84B-null flies that survive to adulthood are not able to fly or beat their wings. Transgenic expression of the mlp84B gene in the Mlp84B-null background rescues flight ability and restores wing beating ability. Mechanical analysis of skinned flight muscle fibers showed a 30% decrease in oscillatory power production and a slight increase in the frequency at which maximum power is generated for fibers lacking Mlp84B compared with rescued fibers. Mlp84B-null muscle fibers displayed a 25% decrease in passive, active, and rigor stiffness compared with rescued fibers, but no significant decrease in isometric tension generation was observed. Muscle ultrastructure of Mlp84B-null muscle fibers is grossly normal; however, the null fibers have a slight decrease, 11%, in thick filament number per unit cross-sectional area. Our data indicate that MLP contributes to muscle stiffness and is necessary for maximum work and power generation.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute,, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
35
|
Rui Y, Bai J, Perrimon N. Sarcomere formation occurs by the assembly of multiple latent protein complexes. PLoS Genet 2010; 6:e1001208. [PMID: 21124995 PMCID: PMC2987826 DOI: 10.1371/journal.pgen.1001208] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 10/15/2010] [Indexed: 12/04/2022] Open
Abstract
The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/α-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly. Muscle functionality relies on the correct assembly of myofibrils, which are composed of tandem arrays of basic functional contractile units called the sarcomeres. Many mutations in genes encoding sarcomeric proteins cause muscle diseases such as congenital myopathy and dilated cardiac hypertrophy. Understanding the process of sarcomere assembly is not only relevant to the understanding of how protein complexes interact to form complex supra-molecular structures, but also of great significance to medicine for muscle diseases. Here, by taking advantage of our newly developed primary muscle cell culture method, we reevaluate sarcomere assembly by systematically analyzing the functional relationship of sarcomeric proteins using RNA interference or genetic ablation techniques. Our analysis leads us to propose a “two-state” model whereby sarcomeric proteins exist either in the “chaotic” state with independently assembled differential functional complexes or the “highly ordered suprastructure” state made from these complexes. Because we fail to detect any previously hypothesized sarcomere assembly intermediates in our system, our data support the model that sarcomere assembly is a highly coordinated process mediated by multiple latent protein complexes and does not occur in a step-wise fashion.
Collapse
Affiliation(s)
- Yanning Rui
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (YR); (NP)
| | - Jianwu Bai
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (YR); (NP)
| |
Collapse
|
36
|
Dialynas G, Speese S, Budnik V, Geyer PK, Wallrath LL. The role of Drosophila Lamin C in muscle function and gene expression. Development 2010; 137:3067-77. [PMID: 20702563 DOI: 10.1242/dev.048231] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inner side of the nuclear envelope (NE) is lined with lamins, a meshwork of intermediate filaments that provides structural support for the nucleus and plays roles in many nuclear processes. Lamins, classified as A- or B-types on the basis of biochemical properties, have a conserved globular head, central rod and C-terminal domain that includes an Ig-fold structural motif. In humans, mutations in A-type lamins give rise to diseases that exhibit tissue-specific defects, such as Emery-Dreifuss muscular dystrophy. Drosophila is being used as a model to determine tissue-specific functions of A-type lamins in development, with implications for understanding human disease mechanisms. The GAL4-UAS system was used to express wild-type and mutant forms of Lamin C (the presumed Drosophila A-type lamin), in an otherwise wild-type background. Larval muscle-specific expression of wild type Drosophila Lamin C caused no overt phenotype. By contrast, larval muscle-specific expression of a truncated form of Lamin C lacking the N-terminal head (Lamin C DeltaN) caused muscle defects and semi-lethality, with adult 'escapers' possessing malformed legs. The leg defects were due to a lack of larval muscle function and alterations in hormone-regulated gene expression. The consequences of Lamin C association at a gene were tested directly by targeting a Lamin C DNA-binding domain fusion protein upstream of a reporter gene. Association of Lamin C correlated with localization of the reporter gene at the nuclear periphery and gene repression. These data demonstrate connections among the Drosophila A-type lamin, hormone-induced gene expression and muscle function.
Collapse
Affiliation(s)
- George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, IA 52241, USA
| | | | | | | | | |
Collapse
|
37
|
Postel U, Thompson F, Barker G, Viney M, Morris S. Migration-related changes in gene expression in leg muscle of the Christmas Island red crab Gecarcoidea natalis: seasonal preparation for long-distance walking. ACTA ACUST UNITED AC 2010; 213:1740-50. [PMID: 20435825 DOI: 10.1242/jeb.033829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During their annual breeding migration the Christmas Island land crab Gecarcoidea natalis sustains locomotion aerobically for up to 12 h per day compared with just 10 min during the dry season when their muscles quickly become anaerobic. A seasonal transition to an endurance-muscle phenotype would thus seem essential for migrating crabs. The current study employed a gene discovery approach comparing two expressed sequence tag (EST) libraries, one each for leg muscle from dry (non-migrating) and wet season (migrating) crabs. The 14 most abundant transcripts differed in their representation between the two libraries. The abundances of transcripts of genes predicted to code for different proteins forming contractile muscle components, including actin, troponin and tropomyosin, were significantly different between seasons and thus between physiological states. The shift in the isoform composition of the contractile elements provided evidence for a switch from slow phasic (S1) to slow tonic (S2) fatigue-resistant muscle fibres. A tropomyosin (tm) transcript aligned with a tm isoform of lobster (tmS2), and semi-quantitative RT-PCR confirmed this isoform to be more abundant in the migrating crab muscle. Two LIM protein coding genes, a paxillin-like transcript (pax) and a muscle LIM protein (mlp), were relatively up-regulated in muscle of wet season crabs. These proteins have a fundamental role in muscle development and reconstruction, and their comparative up-regulation is consistent with a remodelling of leg muscle for migration in the wet season. Such a transition would result in an increased representation of aerobic endurance-type fibres concomitant with the greater aerobic exercise capacity of the migrating red crabs.
Collapse
Affiliation(s)
- Ute Postel
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | | | | | | | | |
Collapse
|
38
|
Jani K, Schöck F. Molecular mechanisms of mechanosensing in muscle development. Dev Dyn 2009; 238:1526-34. [DOI: 10.1002/dvdy.21972] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
Aragon AD, Imani RA, Blackburn VR, Cupit PM, Melman SD, Goronga T, Webb T, Loker ES, Cunningham C. Towards an understanding of the mechanism of action of praziquantel. Mol Biochem Parasitol 2009; 164:57-65. [PMID: 19100294 PMCID: PMC2886009 DOI: 10.1016/j.molbiopara.2008.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 11/27/2022]
Abstract
Although praziquantel (PZQ) has been used to treat schistosomiasis for over 20 years its mechanism of action remains unknown. We have developed an assay based on the transcriptional response of Schistosoma mansoni PR-1 to heat shock to confirm that while 6-week post-infection (p.i.) schistosomes are sensitive to PZQ, 4-week p.i. schistosomes are not. Further, we have used this assay to demonstrate that in mice this sensitivity develops between days 37 and 40 p.i. When PZQ is linked to the fluorophore BODIPY to aid microscopic visualization, it appears to enter the cells of intact 4 and 6-week p.i. schistosomes as well as mammalian NIH 3T3 cells with ease suggesting that the differential effects of PZQ is not based on cell exclusion. A transcriptomal analysis of gene expression between 4 and 6 weeks p.i. revealed 607 up-regulated candidate genes whose products are potential PZQ targets. A comparison of this gene list with that of genes expressed by PZQ sensitive miracidia reduced this target list to 247 genes, including a number involved in aerobic metabolism and cytosolic calcium regulation. Finally, we also report the effect of an in vitro sub-lethal exposure of PZQ on the transcriptome of S. mansoni PR-1. Annotation of genes differentially regulated by PZQ exposure suggests that schistosomes may undergo a transcriptomic response similar to that observed during oxidative stress.
Collapse
Affiliation(s)
- Anthony D. Aragon
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Reza A. Imani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vint R. Blackburn
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pauline M. Cupit
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandra D. Melman
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tinopiwa Goronga
- Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thomas Webb
- Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Charles Cunningham
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
40
|
Cauchi RJ, Davies KE, Liu JL. A motor function for the DEAD-box RNA helicase, Gemin3, in Drosophila. PLoS Genet 2008; 4:e1000265. [PMID: 19023405 PMCID: PMC2577925 DOI: 10.1371/journal.pgen.1000265] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/16/2008] [Indexed: 02/07/2023] Open
Abstract
The survival motor neuron (SMN) protein, the determining factor for spinal muscular atrophy (SMA), is complexed with a group of proteins in human cells. Gemin3 is the only RNA helicase in the SMN complex. Here, we report the identification of Drosophila melanogaster Gemin3 and investigate its function in vivo. Like in vertebrates, Gemin3 physically interacts with SMN in Drosophila. Loss of function of gemin3 results in lethality at larval and/or prepupal stages. Before they die, gemin3 mutant larvae exhibit declined mobility and expanded neuromuscular junctions. Expression of a dominant-negative transgene and knockdown of Gemin3 in mesoderm cause lethality. A less severe Gemin3 disruption in developing muscles leads to flightless adults and flight muscle degeneration. Our findings suggest that Drosophila Gemin3 is required for larval development and motor function.
Collapse
Affiliation(s)
- Ruben J. Cauchi
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Thomas C, Dieterle M, Gatti S, Hoffmann C, Moreau F, Papuga J, Steinmetz A. Actin bundling via LIM domains. PLANT SIGNALING & BEHAVIOR 2008; 3:320-1. [PMID: 19841658 PMCID: PMC2634270 DOI: 10.4161/psb.3.5.5310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 11/19/2007] [Indexed: 05/21/2023]
Abstract
The LIM domain is defined as a protein-protein interaction module involved in the regulation of diverse cellular processes including gene expression and cytoskeleton organization. We have recently shown that the tobacco WLIM1, a two LIM domain-containing protein, is able to bind to, stabilize and bundle actin filaments, suggesting that it participates to the regulation of actin cytoskeleton structure and dynamics. In the December issue of the Journal of Biological Chemistry we report a domain analysis that specifically ascribes the actin-related activities of WLIM1 to its two LIM domains. Results suggest that LIM domains function synergistically in the full-length protein to achieve optimal activities. Here we briefly summarize relevant data regarding the actin-related properties/functions of two LIM domain-containing proteins in plants and animals. In addition, we provide further evidence of cooperative effects between LIM domains by transiently expressing a chimeric multicopy WLIM1 protein in BY2 cells.
Collapse
Affiliation(s)
- Clément Thomas
- Centre de Recherche Public-Santé; Val Fleuri 84; L-1526; Luxembourg
| | | | | | | | | | | | | |
Collapse
|
42
|
Lin DW, Chang IC, Tseng A, Wu ML, Chen CH, Patenaude CA, Layne MD, Yet SF. Transforming growth factor beta up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2. J Biol Chem 2008; 283:15003-14. [PMID: 18387947 DOI: 10.1074/jbc.m801621200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CRP2 (cysteine-rich protein) is a vascular smooth muscle cell (VSMC)-expressed LIM-only protein. CRP2 associates with the actin cytoskeleton and interacts with transcription factors in the nucleus to mediate smooth muscle cell gene expression. Using Csrp2 (gene symbol of the mouse CRP2 gene)-deficient mice, we previously demonstrated that an absence of CRP2 enhances VSMC migration and increases neointima formation following arterial injury. Despite its importance in vascular injury, the molecular mechanisms controlling CRP2 expression in VSMC are largely unknown. Transforming growth factor beta (TGFbeta), a key factor present in the vessel wall in the early phases of arterial response to injury, plays an important role in modulating lesion formation. Because both CRP2 and TGFbeta are mediators of VSMC responses, we examined the possibility that TGFbeta might regulate CRP2 expression. TGFbeta significantly induced CRP2 mRNA and protein expression in VSMCs. Promoter analysis identified a conserved cAMP-responsive element (CRE)-like site (TAACGTCA) in the Csrp2 promoter that was critical for basal promoter activity and response to TGFbeta. Gel mobility shift assays revealed that mainly ATF2 bound to this CRE-like element, and mutation of the CRE sequences abolished binding. TGFbeta enhanced the activation of ATF2, leading to increased phospho-ATF2 levels within the DNA-protein complexes. Furthermore, ATF2-transactivated Csrp2 promoter activity and TGFbeta enhanced this activation. In addition, a phosphorylation-negative ATF2 mutant construct decreased basal and TGFbeta-mediated Csrp2 promoter activity. Our results show for the first time in VSMC that TGFbeta activates ATF2 phosphorylation and Csrp2 gene expression via a CRE promoter element.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mery A, Taghli-Lamallem O, Clark KA, Beckerle MC, Wu X, Ocorr K, Bodmer R. The Drosophila muscle LIM protein, Mlp84B, is essential for cardiac function. J Exp Biol 2008; 211:15-23. [DOI: 10.1242/jeb.012435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Muscle LIM protein (MLP) is a cytoskeletal protein located at the Z-disc of sarcomeres. Mutations in the human MLP gene are associated with hypertrophic and dilated cardiomyopathy. MLP has been proposed to be a key player in the stretch-sensing response, but the molecular mechanisms underlying its function in normal and diseased cardiac muscle have not been established. A Drosophila homolog, Mlp84B, displays a similar subcellular localization at the Z-disc of sarcomeres throughout development and in the adult, suggesting Drosophila as a model to study MLP function. Here we employed genetic ablation and cardiac-specific RNA interference (RNAi) knockdown of mlp84B to investigate its role in heart function. We found that Mlp84B-deficient or heart-specific RNAi knockdown flies exhibit diastolic interval prolongation, heart rhythm abnormalities and a reduced lifespan, while showing no obvious structural phenotype. Our data demonstrate that Mlp84B is essential for normal cardiac function and establish the Drosophila model for the investigation of the mechanisms connecting defective cardiac Z-disc components to the development of cardiomyopathy.
Collapse
Affiliation(s)
- Annabelle Mery
- Development and Aging Program, Neuroscience, Aging and Stem Cell Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road,La Jolla, CA 92037, USA
| | - Ouarda Taghli-Lamallem
- Development and Aging Program, Neuroscience, Aging and Stem Cell Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road,La Jolla, CA 92037, USA
| | - Kathleen A. Clark
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112,USA
| | - Mary C. Beckerle
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112,USA
| | - Xiushan Wu
- Center for Heart Development, College of Life Science, Hunan Normal University, Changsha 410081, Hunan Province, People's Republic of China
| | - Karen Ocorr
- Development and Aging Program, Neuroscience, Aging and Stem Cell Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road,La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development and Aging Program, Neuroscience, Aging and Stem Cell Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road,La Jolla, CA 92037, USA
| |
Collapse
|