1
|
Furukawa A, Yonezawa K, Negami T, Yoshimura Y, Hayashi A, Nakayama JI, Adachi N, Senda T, Shimizu K, Terada T, Shimizu N, Nishimura Y. A dynamic structural unit of phase-separated heterochromatin protein 1α as revealed by integrative structural analyses. Nucleic Acids Res 2025; 53:gkaf154. [PMID: 40138713 PMCID: PMC11930357 DOI: 10.1093/nar/gkaf154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The heterochromatin protein HP1α consists of an N-terminal disordered tail (N-tail), chromodomain (CD), hinge region (HR), and C-terminal chromo shadow domain (CSD). While CD binds to the lysine9-trimethylated histone H3 (H3K9me3) tail in nucleosomes, CSD forms a dimer bridging two nucleosomes with H3K9me3. Phosphorylation of serine residues in the N-tail enhances both H3K9me3 binding and liquid-liquid phase separation (LLPS) by HP1α. We have used integrative structural methods, including nuclear magnetic resonance, small-angle X-ray scattering (SAXS), and multi-angle-light scattering combined with size-exclusion chromatography, and coarse-grained molecular dynamics simulation with SAXS, to probe the HP1α dimer and its CSD deletion monomer. We show that dynamic intra- and intermolecular interactions between the N-tails and basic segments in CD and HR depend on N-tail phosphorylation. While the phosphorylated HP1α dimer undergoes LLPS via the formation of aggregated multimers, the N-tail phosphorylated mutant without CSD still undergoes LLPS, but its structural unit is a dynamic intermolecular dimer formed via the phosphorylated N-tail and a basic segment at the CD end. Furthermore, we reveal that mutation of this basic segment in HP1α affects the size of heterochromatin foci in cultured mammalian cells, suggesting that this interaction plays an important role in heterochromatin formation in vivo.
Collapse
Affiliation(s)
- Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kento Yonezawa
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Center for Digital Green-innovation (CDG), Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tatsuki Negami
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuriko Yoshimura
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Aki Hayashi
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Jun-ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Basic Biology Program, The Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-0015, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Zhang E, Peng L, Yuan K, Ding Z, Yi Q. HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis. FRONT BIOSCI-LANDMRK 2025; 30:26426. [PMID: 39862081 DOI: 10.31083/fbl26426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection. However, the function and localization mechanisms of ATRX at mitotic centromeres remain largely unresolved. METHODS The clustered regularly interspaced short palindromic repeats with CRISPR-associated protein 9 (CRISPR-Cas9) system and overexpression approaches were employed alongside immunofluorescence to investigate the mechanism of ATRX localization at the centromere. To study the binding mechanism between ATRX and heterochromatin protein 1 (HP1), both full-length and truncated mutants of hemagglutinin (HA)-ATRX were generated for co-immunoprecipitation and glutathione S-transferase (GST)-pull assays. Wild-type ATRX and HP1 binding-deficient mutants were created to investigate the role of ATRX binding to HP1 during mitosis, with the Z-Leu-Leu-Leu-al (MG132) maintenance assay, cohesion function assay, and kinetochore distance measurement. RESULTS AND CONCLUSIONS Our research demonstrated that HP1α, HP1β, and HP1γ facilitate the positioning of ATRX within the mitotic centromere area through their interaction with the first two [P/L]-X-V-X-[M/L/V] (PxVxL)motifs at the N-terminus of ATRX. ATRX deficiency causes aberrant mitosis and decreased centromeric cohesion. Furthermore, reducing Wapl activity can bypass the need for ATRX to protect centromeric cohesion. These results provide insights into the mechanism of ATRX's centromeric localization and its critical function in preserving centromeric cohesion by reducing Wapl activity in human cells.
Collapse
Affiliation(s)
- Erchen Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
- Central South University Institute of Reproduction and Stem Cell Engineering, 410013 Changsha, Hunan, China
| | - Lei Peng
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| | - Kejia Yuan
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| | - Zexian Ding
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| | - Qi Yi
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China
| |
Collapse
|
3
|
Sokolova V, Miratsky J, Svetlov V, Brenowitz M, Vant J, Lewis TS, Dryden K, Lee G, Sarkar S, Nudler E, Singharoy A, Tan D. Structural mechanism of HP1⍺-dependent transcriptional repression and chromatin compaction. Structure 2024; 32:2094-2106.e6. [PMID: 39383876 PMCID: PMC11560701 DOI: 10.1016/j.str.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. Here, we present the cryoelectron microscopy (cryo-EM) structure of an HP1α dimer bound to an H2A.Z-nucleosome, revealing two distinct HP1α-nucleosome interfaces. The primary HP1α binding site is located at the N terminus of histone H3, specifically at the trimethylated lysine 9 (K9me3) region, while a secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. Our study offers a model for HP1α-mediated heterochromatin maintenance and gene silencing. It also sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jacob Miratsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Vant
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Tyler S Lewis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Kelly Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Shayan Sarkar
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
4
|
Sako K, Furukawa A, Nozawa RS, Kurita JI, Nishimura Y, Hirota T. Bipartite binding interface recruiting HP1 to chromosomal passenger complex at inner centromeres. J Cell Biol 2024; 223:e202312021. [PMID: 38781028 PMCID: PMC11116813 DOI: 10.1083/jcb.202312021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Maintenance of ploidy depends on the mitotic kinase Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC) whose proficient activity is supported by HP1 enriched at inner centromeres. HP1 is known to associate with INCENP of the CPC in a manner that depends on the PVI motif conserved across HP1 interactors. Here, we found that the interaction of INCENP with HP1 requires not only the PVI motif but also its C-terminally juxtaposed domain. Remarkably, these domains conditionally fold the β-strand (PVI motif) and the α-helix from a disordered sequence upon HP1 binding and render INCENP with high affinity to HP1. This bipartite binding domain termed SSH domain (Structure composed of Strand and Helix) is necessary and sufficient to attain a predominant interaction of HP1 with INCENP. These results identify a unique HP1-binding module in INCENP that ensures enrichment of HP1 at inner centromeres, Aurora B activity, and thereby mitotic fidelity.
Collapse
Affiliation(s)
- Kosuke Sako
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun-ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
5
|
Nakao M, Sato Y, Aizawa A, Kimura H. Mode of SUV420H2 heterochromatin localization through multiple HP1 binding motifs in the heterochromatic targeting module. Genes Cells 2024; 29:361-379. [PMID: 38403935 PMCID: PMC11163940 DOI: 10.1111/gtc.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Constitutive heterochromatin is transcriptionally repressed and densely packed chromatin, typically harboring histone H3 Lys9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1). SUV420H2, a histone H4 Lys20 methyltransferase, is recruited to heterochromatin by binding to HP1 through its Heterochromatic Targeting Module (HTM). Here, we have identified three HP1 binding motifs within the HTM. Both the full-length HTM and its N-terminal region (HTM-N), which contains the first and second motifs, stabilized HP1 on heterochromatin. The intervening region between the first and second HP1 binding motifs in HTM-N was also crucial for HP1 binding. In contrast, the C-terminal region of HTM (HTM-C), containing the third motif, destabilized HP1 on chromatin. An HTM V374D mutant, featuring a Val374 to Asp substitution in the second HP1 binding motif, localizes to heterochromatin without affecting HP1 stability. These data suggest that the second HP1 binding motif in the SUV420H2 HTM is critical for locking HP1 on H3K9me3-enriched heterochromatin. HTM V374D, tagged with a fluorescent protein, can serve as a live-cell probe to visualize HP1-bound heterochromatin.
Collapse
Affiliation(s)
- Masaru Nakao
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Arisa Aizawa
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Hiroshi Kimura
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
6
|
Ding Z, Peng L, Zeng J, Yuan K, Tang Y, Yi Q. Functions of HP1 in preventing chromosomal instability. Cell Biochem Funct 2024; 42:e4017. [PMID: 38603595 DOI: 10.1002/cbf.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Chromosomal instability (CIN), caused by errors in the segregation of chromosomes during mitosis, is a hallmark of many types of cancer. The fidelity of chromosome segregation is governed by a sophisticated cellular signaling network, one crucial orchestrator of which is Heterochromatin protein 1 (HP1). HP1 dynamically localizes to distinct sites at various stages of mitosis, where it regulates key mitotic events ranging from chromosome-microtubule attachment to sister chromatid cohesion to cytokinesis. Our evolving comprehension of HP1's multifaceted role has positioned it as a central protein in the orchestration of mitotic processes.
Collapse
Affiliation(s)
- Zexian Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Lei Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jinghua Zeng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Kejia Yuan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yan Tang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
7
|
Sokolova V, Miratsky J, Svetlov V, Brenowitz M, Vant J, Lewis T, Dryden K, Lee G, Sarkar S, Nudler E, Singharoy A, Tan D. Structural mechanism of HP1α-dependent transcriptional repression and chromatin compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569387. [PMID: 38076844 PMCID: PMC10705452 DOI: 10.1101/2023.11.30.569387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. In this study, we employed a multidisciplinary approach to unravel the interactions between human HP1α and nucleosomes. We have elucidated the cryo-EM structure of an HP1α dimer bound to an H2A.Z nucleosome, revealing that the HP1α dimer interfaces with nucleosomes at two distinct sites. The primary binding site is located at the N-terminus of histone H3, specifically at the trimethylated K9 (K9me3) region, while a novel secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. This study offers a model that explains how HP1α functions in heterochromatin maintenance and gene silencing, particularly in the context of H3K9me-dependent mechanisms. Additionally, it sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Jacob Miratsky
- School of Molecular Sciences, Arizona State University; Tempe, AZ, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Vant
- School of Molecular Sciences, Arizona State University; Tempe, AZ, USA
| | - Tyler Lewis
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Kelly Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903 USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Shayan Sarkar
- Department of Pathology, Stony Brook University; Stony Brook, New York, 11794 USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| |
Collapse
|
8
|
Li N, Yan X, Cui X, Zhao C, Lin Z, Miao J. Inhibition of annexin A7 suppresses senescence-associated heterochromatin foci formation and senescence through the AMPK/mTOR pathway in human dermal fibroblasts. J Cell Biochem 2023; 124:1603-1614. [PMID: 37682859 DOI: 10.1002/jcb.30472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Senescence-associated heterochromatin foci (SAHF) is often used as a biological marker for senescent cells, but the regulation of its formation process is unclear. To find a new modulator of SAHF, we screened our chemical small molecules and found 7-amino-2,3,4,5-tetrahedrobenzo[b][1,4] oxazepin-3-ol (ABO) that was identified as an inhibitor of annexin A7 GTPase (ANXA7) dramatically suppressed the aggregation of heterochromatin protein (HP1γ), an indicator of SAHF. To understand its action mechanism, we first observed the changes in the karyoplasmic ratio of ANXA7 because HP1γ mainly located in the nucleus. The results showed that ABO elevated the protein level of ANXA7 in the nucleus. Therefore, we raised a hypothesis that ANXA7 interacted with HP1γ and regulated its phosphorylation, which is closely related to the formation of SAHF. The co-immunoprecipitation and Western blot experiment results showed that ANXA7 had no direct interaction with HP1γ, however, the phosphorylation of HP1γ was increased by ABO, which suggested that ANXA7 indirectly regulated HP1γ phosphorylation. Then, based on our previous discovery of ANXA7 interacting with AMP-activated protein kinase (AMPK), we investigated the effect of the AMPK/mammalian target of rapamycin (mTOR) signaling pathway on ABO-increased phosphorylation of HP1γ. We found that ABO decreased AMPK phosphorylation and increased the phosphorylation level and activity of mTOR. In the presence of an AMPK activator or mTOR inhibitor, ABO could not increase HP1γ phosphorylation. As a result, ABO inhibited the senescence of human dermal fibroblasts (HDFs). In this study, we found that ANXA7 was a new regulator of SAHF, it could regulate the formation of SAHF through the AMPK/mTOR pathway. The data suggested that ABO could be used as a powerful tool to inhibit the replicative senescence of HDFs.
Collapse
Affiliation(s)
- Nan Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Qingdao, China
| | - Xiaomeng Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Qingdao, China
| | - Xiaoling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Qingdao, China
| | - Congyao Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Qingdao, China
| | - Zhaomin Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Kleene R, Loers G, Castillo G, Schachner M. Cell adhesion molecule L1 interacts with the chromo shadow domain of heterochromatin protein 1 isoforms α, β, and ɣ via its intracellular domain. FASEB J 2021; 36:e22074. [PMID: 34859928 DOI: 10.1096/fj.202100816r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecule L1 regulates multiple cell functions and L1 deficiency is linked to several neural diseases. Proteolytic processing generates functionally decisive L1 fragments, which are imported into the nucleus. By computational analysis, we found at L1's C-terminal end the chromo shadow domain-binding motif PxVxL, which directs the binding of nuclear proteins to the heterochromatin protein 1 (HP1) isoforms α, β, and ɣ. By enzyme-linked immunosorbent assay, we show that the intracellular L1 domain binds to all HP1 isoforms. These interactions involve the HP1 chromo shadow domain and are mediated via the sequence 1158 KDET1161 in the intracellular domain of murine L1, but not by L1's C-terminal PxVxL motif. Immunoprecipitation using nuclear extracts from the brain and from cultured cerebellar and cortical neurons indicates that HP1 isoforms interact with a yet unknown nuclear L1 fragment of approximately 55 kDa (L1-55), which carries ubiquitin residues. Proximity ligation indicates a close association between L1-55 and the HP1 isoforms in neuronal nuclei. This association is reduced after the treatment of neurons with inhibitors of metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1), or ɣ-secretase, suggesting that cleavage of full-length L1 by these proteases generates L1-55. Reduction of HP1α, -β, or -ɣ expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons and decreases the L1-dependent migration of L1-transfected HEK293 cells in a scratch assay. These findings indicate that the interaction of the novel fragment L1-55 with HP1 isoforms in nuclei affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Ralf Kleene
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gaston Castillo
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
11
|
Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 2020; 48:11890-11912. [PMID: 33068409 PMCID: PMC7708061 DOI: 10.1093/nar/gkaa828] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cells compartmentalize their internal milieu in order to achieve specific reactions in time and space. This organization in distinct compartments is essential to allow subcellular processing of regulatory signals and generate specific cellular responses. In the nucleus, genetic information is packaged in the form of chromatin, an organized and repeated nucleoprotein structure that is a source of epigenetic information. In addition, cells organize the distribution of macromolecules via various membrane-less nuclear organelles, which have gathered considerable attention in the last few years. The macromolecular multiprotein complexes known as Promyelocytic Leukemia Nuclear Bodies (PML NBs) are an archetype for nuclear membrane-less organelles. Chromatin interactions with nuclear bodies are important to regulate genome function. In this review, we will focus on the dynamic interplay between PML NBs and chromatin. We report how the structure and formation of PML NBs, which may involve phase separation mechanisms, might impact their functions in the regulation of chromatin dynamics. In particular, we will discuss how PML NBs participate in the chromatinization of viral genomes, as well as in the control of specific cellular chromatin assembly pathways which govern physiological mechanisms such as senescence or telomere maintenance.
Collapse
Affiliation(s)
- Armelle Corpet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Constance Kleijwegt
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Simon Roubille
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Franceline Juillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Karine Jacquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Pascale Texier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| |
Collapse
|
12
|
Estève PO, Vishnu US, Chin HG, Pradhan S. Visualization and Sequencing of Accessible Chromatin Reveals Cell Cycle and Post-HDAC inhibitor Treatment Dynamics. J Mol Biol 2020; 432:5304-5321. [PMID: 32763232 DOI: 10.1016/j.jmb.2020.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Chromatin accessibility is a predictor of gene expression, cell division, and cell type specificity. NicE-viewSeq (Nicking Enzyme-assisted viewing and Sequencing) allows accessible chromatin visualization and sequencing with overall lower mitochondrial DNA and duplicated sequences interference relative to ATAC-see. Using NicE-viewSeq, we interrogated the accessibility of chromatin in a cell cycle (G1, S, and G2/M)-specific manner using mammalian cells. Despite DNA replication and subsequent condensation of chromatin to chromosomes, chromatin accessibility remained generally preserved with minimal subtle alterations. Genome-wide alteration of chromatin accessibility within TSS and enhancer elements gradually decreased as cells progressed from G1 to G2M, with distinct differential accessibility near consensus transcription factors sites. Inhibition of histone deacetylases promoted accessible chromatin within gene bodies, correlating with apoptotic gene expression. In addition, reduced chromatin accessibility for the MYC oncogene pathway correlated with downregulation of pertinent genes. Surprisingly, repetitive RNA loci expression remained unaltered following histone acetylation-mediated increased accessibility. Therefore, we suggest that subtle changes in chromatin accessibility are a prerequisite during the cell cycle and histone deacetylase inhibitor-mediated therapeutics.
Collapse
Affiliation(s)
| | | | - Hang Gyeong Chin
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA 01938, USA
| | - Sriharsa Pradhan
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA 01938, USA.
| |
Collapse
|
13
|
How HP1 Post-Translational Modifications Regulate Heterochromatin Formation and Maintenance. Cells 2020; 9:cells9061460. [PMID: 32545538 PMCID: PMC7349378 DOI: 10.3390/cells9061460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Heterochromatin Protein 1 (HP1) is a highly conserved protein that has been used as a classic marker for heterochromatin. HP1 binds to di- and tri-methylated histone H3K9 and regulates heterochromatin formation, functions and structure. Besides the well-established phosphorylation of histone H3 Ser10 that has been shown to modulate HP1 binding to chromatin, several studies have recently highlighted the importance of HP1 post-translational modifications and additional epigenetic features for the modulation of HP1-chromatin binding ability and heterochromatin formation. In this review, we summarize the recent literature of HP1 post-translational modifications that have contributed to understand how heterochromatin is formed, regulated and maintained.
Collapse
|
14
|
Zimmermann MT, Williams MM, Klee EW, Lomberk GA, Urrutia R. Modeling post-translational modifications and cancer-associated mutations that impact the heterochromatin protein 1α-importin α heterodimers. Proteins 2019; 87:904-916. [PMID: 31152607 PMCID: PMC6790107 DOI: 10.1002/prot.25752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Abstract
Heterochromatin protein 1α (HP1α) is a protein that mediates cancer-associated processes in the cell nucleus. Proteomic experiments, reported here, demonstrate that HP1α complexes with importin α (IMPα), a protein necessary for its nuclear transport. This data is congruent with Simple Linear Motif (SLiM) analyses that identify an IMPα-binding motif within the linker that joins the two globular domains of this protein. Using molecular modeling and dynamics simulations, we develop a model of the IMPα-HP1α complex and investigate the impact of phosphorylation and genomic variants on their interaction. We demonstrate that phosphorylation of the HP1α linker likely regulates its association with IMPα, which has implications for HP1α access to the nucleus, where it functions. Cancer-associated genomic variants do not abolish the interaction of HP1α but instead lead to rearrangements where the variant proteins maintain interaction with IMPα, but with less specificity. Combined, this new mechanistic insight bears biochemical, cell biological, and biomedical relevance.
Collapse
Affiliation(s)
- Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomic Science and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeWisconsin
- Clinical and Translational Sciences InstituteMedical College of WisconsinMilwaukeeWisconsin
| | - Monique M. Williams
- Department of BiochemistryMayo ClinicRochesterMinnesota
- Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Eric W. Klee
- Department of BiochemistryMayo ClinicRochesterMinnesota
- Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Gwen A. Lomberk
- Division of Research, Department of SurgeryMedical College of WisconsinMilwaukeeWisconsin
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWisconsin
- Genomic Science and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeWisconsin
| | - Raul Urrutia
- Division of Research, Department of SurgeryMedical College of WisconsinMilwaukeeWisconsin
- Genomic Science and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeWisconsin
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsin
| |
Collapse
|
15
|
Wang L, Gao Y, Zheng X, Liu C, Dong S, Li R, Zhang G, Wei Y, Qu H, Li Y, Allis CD, Li G, Li H, Li P. Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. Mol Cell 2019; 76:646-659.e6. [PMID: 31543422 DOI: 10.1016/j.molcel.2019.08.019] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Eukaryotic chromosomes contain compartments of various functions, which are marked by and enriched with specific histone modifications. However, the molecular mechanisms by which these histone marks function in chromosome compartmentalization are poorly understood. Constitutive heterochromatin is a largely silent chromosome compartment characterized in part by H3K9me2 and 3. Here, we show that heterochromatin protein 1 (HP1), an H3K9me2 and 3 "reader," interacts with SUV39H1, an H3K9me2 and 3 "writer," and with TRIM28, an abundant HP1 scaffolding protein, to form complexes with increased multivalent engagement of H3K9me2 and 3-modified chromatin. H3K9me2 and 3-marked nucleosomal arrays and associated complexes undergo phase separation to form macromolecule-enriched liquid droplets. The droplets are reminiscent of heterochromatin as they are highly dense chromatin-containing structures that are resistant to DNase and exclude the general transcription factor TFIIB. Our data suggest a general mechanism by which histone marks regulate chromosome compartmentalization by promoting phase separation.
Collapse
Affiliation(s)
- Liang Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yifei Gao
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangdong Zheng
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Dong
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ru Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwei Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixuan Wei
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyuan Qu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhan Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, NY 10065, USA
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
16
|
DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88. Cells 2019; 8:cells8091097. [PMID: 31533340 PMCID: PMC6770535 DOI: 10.3390/cells8091097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
Collapse
|
17
|
Williams MM, Mathison AJ, Christensen T, Greipp PT, Knutson DL, Klee EW, Zimmermann MT, Iovanna J, Lomberk GA, Urrutia RA. Aurora kinase B-phosphorylated HP1α functions in chromosomal instability. Cell Cycle 2019; 18:1407-1421. [PMID: 31130069 PMCID: PMC6592258 DOI: 10.1080/15384101.2019.1618126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023] Open
Abstract
Heterochromatin Protein 1 α (HP1α) associates with members of the chromosome passenger complex (CPC) during mitosis, at centromeres where it is required for full Aurora Kinase B (AURKB) activity. Conversely, recent reports have identified AURKB as the major kinase responsible for phosphorylation of HP1α at Serine 92 (S92) during mitosis. Thus, the current study was designed to better understand the functional role of this posttranslationally modified form of HP1α. We find that S92-phosphorylated HP1α is generated in cells at early prophase, localizes to centromeres, and associates with regulators of chromosome stability, such as Inner Centromere Protein, INCENP. In mouse embryonic fibroblasts, HP1α knockout alone or reconstituted with a non-phosphorylatable (S92A) HP1α mutant results in mitotic chromosomal instability characterized by the formation of anaphase/telophase chromatin bridges and micronuclei. These effects are rescued by exogenous expression of wild type HP1α or a phosphomimetic (S92D) variant. Thus, the results from the current study extend our knowledge of the role of HP1α in chromosomal stability during mitosis.
Collapse
Affiliation(s)
- Monique M. Williams
- Departments of Biochemistry and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Angela J. Mathison
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Trent Christensen
- Departments of Biochemistry and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Patricia T. Greipp
- Medical Genome Facility, Cytogenetics Core Laboratory, Rochester, MN, USA
| | - Darlene L. Knutson
- Medical Genome Facility, Cytogenetics Core Laboratory, Rochester, MN, USA
| | - Eric W. Klee
- Departments of Biochemistry and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gwen A. Lomberk
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul A. Urrutia
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Heinz KS, Rapp A, Casas-Delucchi CS, Lehmkuhl A, Romero-Fernández I, Sánchez A, Krämer OH, Marchal JA, Cardoso MC. DNA replication dynamics of vole genome and its epigenetic regulation. Epigenetics Chromatin 2019; 12:18. [PMID: 30871586 PMCID: PMC6416958 DOI: 10.1186/s13072-019-0262-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
Background The genome of some vole rodents exhibit large blocks of heterochromatin coupled to their sex chromosomes. The DNA composition and transcriptional activity of these heterochromatin blocks have been studied, but little is known about their DNA replication dynamics and epigenetic composition. Results Here, we show prominent epigenetic marks of the heterochromatic blocks in the giant sex chromosomes of female Microtus cabrerae cells. While the X chromosomes are hypoacetylated and cytosine hypomethylated, they are either enriched for macroH2A and H3K27me3 typical for facultative heterochromatin or for H3K9me3 and HP1 beta typical for constitutive heterochromatin. Using pulse-chase replication labeling and time-lapse microscopy, we found that the heterochromatic block enriched for macroH2A/H3K27me3 of the X chromosome is replicated during mid-S-phase, prior to the heterochromatic block enriched for H3K9me3/HP1 beta, which is replicated during late S-phase. To test whether histone acetylation level regulates its replication dynamics, we induced either global hyperacetylation by pharmacological inhibition or by targeting a histone acetyltransferase to the heterochromatic region of the X chromosomes. Our data reveal that histone acetylation level affects DNA replication dynamics of the sex chromosomes’ heterochromatin and leads to a global reduction in replication fork rate genome wide. Conclusions In conclusion, we mapped major epigenetic modifications controlling the structure of the sex chromosome-associated heterochromatin and demonstrated the occurrence of differences in the molecular mechanisms controlling the replication timing of the heterochromatic blocks at the sex chromosomes in female Microtus cabrerae cells. Furthermore, we highlighted a conserved role of histone acetylation level on replication dynamics across mammalian species. Electronic supplementary material The online version of this article (10.1186/s13072-019-0262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin S Heinz
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.,Chromosome Replication Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | | | - Antonio Sánchez
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Oliver H Krämer
- Institute of Toxicology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.
| |
Collapse
|
19
|
Nishibuchi G, Machida S, Nakagawa R, Yoshimura Y, Hiragami-Hamada K, Abe Y, Kurumizaka H, Tagami H, Nakayama JI. Mitotic phosphorylation of HP1α regulates its cell cycle-dependent chromatin binding. J Biochem 2018; 165:433-446. [DOI: 10.1093/jb/mvy117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gohei Nishibuchi
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| | - Yuriko Yoshimura
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
| | - Kyoko Hiragami-Hamada
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki, Japan
| | - Yusuke Abe
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideaki Tagami
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Jun-ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki, Japan
| |
Collapse
|
20
|
Akram S, Yang F, Li J, Adams G, Liu Y, Zhuang X, Chu L, Liu X, Emmett N, Thompson W, Mullen M, Muthusamy S, Wang W, Mo F, Liu X. LRIF1 interacts with HP1α to coordinate accurate chromosome segregation during mitosis. J Mol Cell Biol 2018; 10:527-538. [PMID: 30016453 PMCID: PMC6304163 DOI: 10.1093/jmcb/mjy040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/05/2018] [Accepted: 07/14/2018] [Indexed: 01/26/2023] Open
Abstract
Heterochromatin protein 1α (HP1α) regulates chromatin specification and plasticity during cell fate decision. Different structural determinants account for HP1α localization and function during cell division cycle. Our earlier study showed that centromeric localization of HP1α depends on the epigenetic mark H3K9me3 in interphase, while its centromeric location in mitosis relies on uncharacterized PXVXL-containing factors. Here, we identified a PXVXL-containing protein, ligand-dependent nuclear receptor-interacting factor 1 (LRIF1), which recruits HP1α to the centromere of mitotic chromosomes and its interaction with HP1α is essential for accurate chromosome segregation during mitosis. LRIF1 interacts directly with HP1α chromoshadow domain via an evolutionarily conserved PXVXL motif within its C-terminus. Importantly, the LRIF1-HP1α interaction is critical for Aurora B activity in the inner centromere. Mutation of PXVXL motif of LRIF1 leads to defects in HP1α centromere targeting and aberrant chromosome segregation. These findings reveal a previously unrecognized direct link between LRIF1 and HP1α in centromere plasticity control and illustrate the critical role of LRIF1-HP1α interaction in orchestrating accurate cell division.
Collapse
Affiliation(s)
- Saima Akram
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
| | - Fengrui Yang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Junying Li
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
| | - Gregory Adams
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
- National Institutes of Health, Bethesda, MD, USA
| | - Yingying Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xiaoxuan Zhuang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- National Institutes of Health, Bethesda, MD, USA
| | - Lingluo Chu
- Department of Molecular Cell Biology, Harvard University, Cambridge, MA, USA
| | - Xu Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Nerimah Emmett
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Winston Thompson
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - McKay Mullen
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Saravana Muthusamy
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wenwen Wang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Fei Mo
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- National Institutes of Health, Bethesda, MD, USA
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
22
|
Larson AG, Narlikar GJ. The Role of Phase Separation in Heterochromatin Formation, Function, and Regulation. Biochemistry 2018; 57:2540-2548. [PMID: 29644850 PMCID: PMC9084486 DOI: 10.1021/acs.biochem.8b00401] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In eukaryotic cells, structures called heterochromatin play critical roles in nuclear processes ranging from gene repression to chromosome segregation. Biochemical and in vivo studies over the past several decades have implied that the diverse functions of heterochromatin rely on the ability of these structures to spread across large regions of the genome, to compact the underlying DNA, and to recruit different types of activities. Recent observations have suggested that heterochromatin may possess liquid droplet-like properties. Here, we discuss how these observations provide a new perspective on the mechanisms for the assembly, regulation, and functions of heterochromatin.
Collapse
Affiliation(s)
- Adam G. Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California 94158, United States
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
23
|
Ruppert JG, Samejima K, Platani M, Molina O, Kimura H, Jeyaprakash AA, Ohta S, Earnshaw WC. HP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J 2018; 37:e97677. [PMID: 29467217 PMCID: PMC5852645 DOI: 10.15252/embj.201797677] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
The chromosomal passenger complex (CPC) is directed to centromeres during mitosis via binding to H3T3ph and Sgo1. Whether and how heterochromatin protein 1α (HP1α) influences CPC localisation and function during mitotic entry is less clear. Here, we alter HP1α dynamics by fusing it to a CENP-B DNA-binding domain. Tethered HP1 strongly recruits the CPC, destabilising kinetochore-microtubule interactions and activating the spindle assembly checkpoint. During mitotic exit, the tethered HP1 traps active CPC at centromeres. These HP1-CPC clusters remain catalytically active throughout the subsequent cell cycle. We also detect interactions between endogenous HP1 and the CPC during G2 HP1α and HP1γ cooperate to recruit the CPC to active foci in a CDK1-independent process. Live cell tracking with Fab fragments reveals that H3S10ph appears well before H3T3 is phosphorylated by Haspin kinase. Our results suggest that HP1 may concentrate and activate the CPC at centromeric heterochromatin in G2 before Aurora B-mediated phosphorylation of H3S10 releases HP1 from chromatin and allows pathways dependent on H3T3ph and Sgo1 to redirect the CPC to mitotic centromeres.
Collapse
Affiliation(s)
- Jan G Ruppert
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Melpomeni Platani
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Oscar Molina
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Shinya Ohta
- Department of Biochemistry, Medical School, Kochi University, Nankoku, Kochi, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Yi Q, Chen Q, Liang C, Yan H, Zhang Z, Xiang X, Zhang M, Qi F, Zhou L, Wang F. HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep 2018; 19:embr.201745484. [PMID: 29491004 DOI: 10.15252/embr.201745484] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
Heterochromatin protein-1 (HP1) is a key component of heterochromatin. Reminiscent of the cohesin complex which mediates sister-chromatid cohesion, most HP1 proteins in mammalian cells are displaced from chromosome arms during mitotic entry, whereas a pool remains at the heterochromatic centromere region. The function of HP1 at mitotic centromeres remains largely elusive. Here, we show that double knockout (DKO) of HP1α and HP1γ causes defective mitosis progression and weakened centromeric cohesion. While mutating the chromoshadow domain (CSD) prevents HP1α from protecting sister-chromatid cohesion, centromeric targeting of HP1α CSD alone is sufficient to rescue the cohesion defects in HP1 DKO cells. Interestingly, HP1-dependent cohesion protection requires Haspin, an antagonist of the cohesin-releasing factor Wapl. Moreover, HP1α CSD directly binds the N-terminal region of Haspin and facilitates its centromeric localization. The need for HP1 in cohesion protection can be bypassed by centromeric targeting of Haspin or inhibiting Wapl activity. Taken together, these results reveal a redundant role for HP1α and HP1γ in the protection of centromeric cohesion through promoting Haspin localization at mitotic centromeres in mammalian cells.
Collapse
Affiliation(s)
- Qi Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Qinfu Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Cai Liang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Zhenlei Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xingfeng Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Miao Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Feifei Qi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Linli Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Hoffmeister H, Fuchs A, Erdel F, Pinz S, Gröbner-Ferreira R, Bruckmann A, Deutzmann R, Schwartz U, Maldonado R, Huber C, Dendorfer AS, Rippe K, Längst G. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res 2017; 45:10534-10554. [PMID: 28977666 PMCID: PMC5737555 DOI: 10.1093/nar/gkx711] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Andreas Fuchs
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Fabian Erdel
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sophia Pinz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Regina Gröbner-Ferreira
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Schwartz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rodrigo Maldonado
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Claudia Huber
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Anne-Sarah Dendorfer
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Karsten Rippe
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Längst
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
26
|
Isaac RS, Sanulli S, Tibble R, Hornsby M, Ravalin M, Craik CS, Gross JD, Narlikar GJ. Biochemical Basis for Distinct Roles of the Heterochromatin Proteins Swi6 and Chp2. J Mol Biol 2017; 429:3666-3677. [PMID: 28942089 DOI: 10.1016/j.jmb.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/23/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022]
Abstract
Heterochromatin protein 1 (HP1) family proteins are conserved chromatin binding proteins involved in gene silencing, chromosome packaging, and chromosome segregation. These proteins recognize histone H3 lysine 9 methylated tails via their chromodomain and recruit additional ligand proteins with diverse activities through their dimerization domain, the chromoshadow domain. Species that have HP1 proteins possess multiple paralogs that perform non-overlapping roles in vivo. How different HP1 proteins, which are highly conserved, perform different functions is not well understood. Here, we use the two Schizosaccharomyces pombe HP1 paralogs, Swi6 and Chp2, as model systems to compare and contrast their biophysical properties. We find that Swi6 and Chp2 have similar dimerization and oligomerization equilibria, and that Swi6 binds slightly (~3-fold) more strongly to nucleosomes than Chp2. Furthermore, while Swi6 binding to the H3K9me3 mark is regulated by a previously described auto-inhibition mechanism, the binding of Chp2 to the H3K9me3 mark is not analogously regulated. In the context of chromoshadow domain interactions, we show using a newly identified peptide sequence from the Clr3 histone deacetylase and a previously identified sequence from the protein Shugoshin that the Swi6 chromoshadow domain binds both ligands more strongly than the Chp2. Overall, our findings uncover quantitative differences in how Swi6 and Chp2 interact with nucleosomal and non-nucleosomal ligands and qualitative differences in how their assembly on nucleosomes is regulated. These findings provide a biochemical framework to explain the varied functions of Chp2 and Swi6 in vivo.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158 United States; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Serena Sanulli
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158 United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Ryan Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158 United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Michael Hornsby
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Matthew Ravalin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158 United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158 United States.
| |
Collapse
|
27
|
Abstract
The role of Heterochromatin Protein-1 (HP1) during mitosis has been controversial. Two recent studies in Science and Developmental Cell, from Tanno et al. (2015) and Abe et al. (2016), suggest that the means of HP1 localization and its function at inner centromeres are altered in cancer cells with chromosomal instability.
Collapse
Affiliation(s)
- Jonathan M G Higgins
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Lisa Prendergast
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
28
|
Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome. Mol Cell Biol 2015; 35:4053-68. [PMID: 26391951 PMCID: PMC4628070 DOI: 10.1128/mcb.00432-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chromosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site selection remain poorly understood. Here we show that SMCHD1 forms an active GHKL-ATPase homodimer, contrasting with canonical SMC complexes, which exist as tripartite ring structures. Electron microscopy analysis demonstrates that SMCHD1 homodimers structurally resemble prokaryotic condensins. We further show that the principal mechanism for chromatin loading of SMCHD1 involves an LRIF1-mediated interaction with HP1γ at trimethylated histone H3 lysine 9 (H3K9me3)-modified chromatin sites on the chromosome arms. A parallel pathway accounts for chromatin loading at a minority of sites, notably the inactive X chromosome. Together, our results provide key insights into SMCHD1 function and target site selection.
Collapse
|
29
|
Putative Epimutagens in Maternal Peripheral and Cord Blood Samples Identified Using Human Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:876047. [PMID: 26339649 PMCID: PMC4538592 DOI: 10.1155/2015/876047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/26/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
Abstract
The regulation of transcription and genome stability by epigenetic systems are crucial for the proper development of mammalian embryos. Chemicals that disturb epigenetic systems are termed epimutagens. We previously performed chemical screening that focused on heterochromatin formation and DNA methylation status in mouse embryonic stem cells and identified five epimutagens: diethyl phosphate (DEP), mercury (Hg), cotinine, selenium (Se), and octachlorodipropyl ether (S-421). Here, we used human induced pluripotent stem cells (hiPSCs) to confirm the effects of 20 chemicals, including the five epimutagens, detected at low concentrations in maternal peripheral and cord blood samples. Of note, these individual chemicals did not exhibit epimutagenic activity in hiPSCs. However, because the fetal environment contains various chemicals, we evaluated the effects of combined exposure to chemicals (DEP, Hg, cotinine, Se, and S-421) on hiPSCs. The combined exposure caused a decrease in the number of heterochromatin signals and aberrant DNA methylation status at multiple gene loci in hiPSCs. The combined exposure also affected embryoid body formation and neural differentiation from hiPSCs. Therefore, DEP, Hg, cotinine, Se, and S-421 were defined as an “epimutagen combination” that is effective at low concentrations as detected in maternal peripheral and cord blood.
Collapse
|
30
|
Liu X, Song Z, Huo Y, Zhang J, Zhu T, Wang J, Zhao X, Aikhionbare F, Zhang J, Duan H, Wu J, Dou Z, Shi Y, Yao X. Chromatin protein HP1 interacts with the mitotic regulator borealin protein and specifies the centromere localization of the chromosomal passenger complex. J Biol Chem 2015; 289:20638-49. [PMID: 24917673 DOI: 10.1074/jbc.m114.572842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1 (HP1) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1. This borealin-HP1 interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1 interaction, demonstrating the spatial requirement of HP1 in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1 and CPC localization in the centromere and illustrate the critical role of borealin-HP1 interaction in orchestrating an accurate cell division.
Collapse
|
31
|
Di Paolo A, Racca C, Calsou P, Larminat F. Loss of BRCA1 impairs centromeric cohesion and triggers chromosomal instability. FASEB J 2014; 28:5250-61. [PMID: 25205741 DOI: 10.1096/fj.14-250266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In contrast to its well-known role in the DNA damage response during interphase, the function of BRCA1 in the maintenance of chromosomal stability during mitosis remains to be defined. In this study, we uncover a novel role of BRCA1 in preserving centromere integrity in mitotic human cells. Using immunofluorescence and chromatin immunoprecipitation approaches, we report BRCA1 association with centromeric chromatin during mitosis. BRCA1 depletion impairs centromeric cohesion, leading to an increase in interkinetochore distance and in unpaired sister-chromatids frequency during prometaphase. Moreover, BRCA1 loss partially decreased accumulation of the Aurora B kinase at the centromere. We found that proper recruitment of the DNMT3b DNA methyltransferase to satellite sequences is BRCA1-dependent during mitosis, suggesting that DNA hypomethylation contributes to Aurora B mislocalization. BRCA1-deficient cells exhibited decreased ability to correct improper Aurora B-dependent chromosome-spindle attachments and to align chromosomes at metaphase. Finally, we show that BRCA1 disruption promotes merotelic kinetochore attachments that represent a major mechanism of aneuploidy in human cells. In summary, we report here a novel function of BRCA1 in maintaining chromosomal stability through its contribution to the mitotic centromere integrity necessary for faithful segregation of sister-chromatids during cell division.
Collapse
Affiliation(s)
- Aurélie Di Paolo
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and
| | - Carine Racca
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and
| | - Patrick Calsou
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and Equipe Labellisée Ligue Nationale contre le Cancer, Toulouse, France
| | - Florence Larminat
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and
| |
Collapse
|
32
|
Qin XY, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, Yoshinaga J, Sone H. Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther 2014; 13:296-306. [DOI: 10.4161/cbt.18942] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
33
|
Müller-Ott K, Erdel F, Matveeva A, Mallm JP, Rademacher A, Hahn M, Bauer C, Zhang Q, Kaltofen S, Schotta G, Höfer T, Rippe K. Specificity, propagation, and memory of pericentric heterochromatin. Mol Syst Biol 2014; 10:746. [PMID: 25134515 PMCID: PMC4299515 DOI: 10.15252/msb.20145377] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cell establishes heritable patterns of active and silenced chromatin via interacting factors
that set, remove, and read epigenetic marks. To understand how the underlying networks operate, we
have dissected transcriptional silencing in pericentric heterochromatin (PCH) of mouse fibroblasts.
We assembled a quantitative map for the abundance and interactions of 16 factors related to PCH in
living cells and found that stably bound complexes of the histone methyltransferase SUV39H1/2
demarcate the PCH state. From the experimental data, we developed a predictive mathematical model
that explains how chromatin-bound SUV39H1/2 complexes act as nucleation sites and propagate a
spatially confined PCH domain with elevated histone H3 lysine 9 trimethylation levels via chromatin
dynamics. This “nucleation and looping” mechanism is particularly robust toward
transient perturbations and stably maintains the PCH state. These features make it an attractive
model for establishing functional epigenetic domains throughout the genome based on the localized
immobilization of chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Katharina Müller-Ott
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Fabian Erdel
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Anna Matveeva
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Anne Rademacher
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Matthias Hahn
- Munich Center for Integrated Protein Science and Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Caroline Bauer
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Qin Zhang
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Sabine Kaltofen
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Gunnar Schotta
- Munich Center for Integrated Protein Science and Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Thomas Höfer
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Karsten Rippe
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| |
Collapse
|
34
|
Chu L, Huo Y, Liu X, Yao P, Thomas K, Jiang H, Zhu T, Zhang G, Chaudhry M, Adams G, Thompson W, Dou Z, Jin C, He P, Yao X. The spatiotemporal dynamics of chromatin protein HP1α is essential for accurate chromosome segregation during cell division. J Biol Chem 2014; 289:26249-26262. [PMID: 25104354 DOI: 10.1074/jbc.m114.581504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) is involved in regulation of chromatin plasticity, DNA damage repair, and centromere dynamics. HP1α detects histone dimethylation and trimethylation of Lys-9 via its chromodomain. HP1α localizes to heterochromatin in interphase cells but is liberated from chromosomal arms at the onset of mitosis. However, the structural determinants required for HP1α localization in interphase and the regulation of HP1α dynamics have remained elusive. Here we show that centromeric localization of HP1α depends on histone H3 Lys-9 trimethyltransferase SUV39H1 activity in interphase but not in mitotic cells. Surprisingly, HP1α liberates from chromosome arms in early mitosis. To test the role of this dissociation, we engineered an HP1α construct that persistently localizes to chromosome arms. Interestingly, persistent localization of HP1α to chromosome arms perturbs accurate kinetochore-microtubule attachment due to an aberrant distribution of chromosome passenger complex and Sgo1 from centromeres to chromosome arms that prevents resolution of sister chromatids. Further analyses showed that Mis14 and perhaps other PXVXL-containing proteins are involved in directing localization of HP1α to the centromere in mitosis. Taken together, our data suggest a model in which spatiotemporal dynamics of HP1α localization to centromere is governed by two distinct structural determinants. These findings reveal a previously unrecognized but essential link between HP1α-interacting molecular dynamics and chromosome plasticity in promoting accurate cell division.
Collapse
Affiliation(s)
- Lingluo Chu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Yuda Huo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China,; Departments of Physiology and Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Phil Yao
- Departments of Physiology and Morehouse School of Medicine, Atlanta, Georgia 30310; Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Kelwyn Thomas
- Departments of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Hao Jiang
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Tongge Zhu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China,; Departments of Physiology and Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Guanglan Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and
| | - Maryam Chaudhry
- Departments of Physiology and Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Gregory Adams
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China,; Departments of Physiology and Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Winston Thompson
- Departments of Physiology and Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Zhen Dou
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Changjiang Jin
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| | - Ping He
- Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and.
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China,; Departments of Physiology and Morehouse School of Medicine, Atlanta, Georgia 30310.
| |
Collapse
|
35
|
Dutta B, Ren Y, Hao P, Sim KH, Cheow E, Adav S, Tam JP, Sze SK. Profiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progression. Mol Cell Proteomics 2014; 13:2183-97. [PMID: 24830416 DOI: 10.1074/mcp.m113.034975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
The chromatin-associated proteome (chromatome) regulates cellular gene expression by restricting access of transcriptional machinery to template DNA, and dynamic re-modeling of chromatin structure is required to regulate critical cell functions including growth and replication, DNA repair and recombination, and oncogenic transformation in progression to cancer. Central to the control of these processes is efficient regulation of the host cell cycle, which is maintained by rapid changes in chromatin conformation during normal cycle progression. A global overview of chromatin protein organization is therefore essential to fully understand cell cycle regulation, but the influence of the chromatome and chromatin binding topology on host cell cycle progression remains poorly defined. Here we used partial MNase digestion together with iTRAQ-based high-throughput quantitative proteomics to quantify chromatin-associated proteins during interphase progression. We identified a total of 481 proteins with high confidence that were involved in chromatin-dependent events including transcriptional regulation, chromatin re-organization, and DNA replication and repair, whereas the quantitative data revealed the temporal interactions of these proteins with chromatin during interphase progression. When combined with biochemical and functional assays, these data revealed a strikingly dynamic association of protein HP1BP3 with the chromatin complex during different stages of interphase, and uncovered a novel regulatory role for this molecule in transcriptional regulation. We report that HP1BP3 protein maintains heterochromatin integrity during G1-S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yan Ren
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Piliang Hao
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Kae Hwan Sim
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Esther Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Sunil Adav
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - James P Tam
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
36
|
Nishibuchi G, Nakayama JI. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem 2014; 156:11-20. [DOI: 10.1093/jb/mvu032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Chakraborty A, Prasanth SG. Phosphorylation-dephosphorylation cycle of HP1α governs accurate mitotic progression. Cell Cycle 2014; 13:1663-70. [PMID: 24786771 DOI: 10.4161/cc.29065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin protein 1α (HP1α), a bona fide factor of silent chromatin, is required for establishing as well as maintaining the higher-order chromatin structure in eukaryotes. HP1α is decorated with several post-translational modifications, and many of these are critical for its cellular functions. HP1α is heavily phosphorylated; however, its physiological relevance had remained to be completely understood. We have recently demonstrated that human HP1α is a mitotic target for NDR kinase, and the phosphorylation at the hinge region of HP1α at the G 2/M phase of the cell cycle is crucial for mitotic progression and Sgo1 loading at mitotic centromeres (Chakraborty et al., 2014). We now demonstrate that the dephosphorylation of HP1α within its hinge domain occurs during mitosis, specifically soon after prometaphase. In the absence of the hinge-specific HP1α phosphorylation, either as a consequence of depleting NDR1 or in cells expressing a non-phosphorylatable HP1α mutant, the cells arrest in prometaphase with several mitotic defects. In this study we show that NDR1-depleted cells expressing hinge-specific phosphomimetic HP1α mutant rescues the prometaphase arrest but displays defects in mitotic exit, suggesting that the dephosphorylation of HP1α is required for the completion of cytokinesis. Taken together, our results reveal that the phosphorylation-dephosphorylation cycle of HP1α orchestrates accurate progression of cells through mitosis.
Collapse
Affiliation(s)
- Arindam Chakraborty
- Department of Cell and Developmental Biology; University of Illinois at Urbana-Champaign; Urbana, IL USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology; University of Illinois at Urbana-Champaign; Urbana, IL USA
| |
Collapse
|
38
|
Sawicka A, Seiser C. Sensing core histone phosphorylation - a matter of perfect timing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:711-8. [PMID: 24747175 PMCID: PMC4103482 DOI: 10.1016/j.bbagrm.2014.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/23/2014] [Accepted: 04/11/2014] [Indexed: 11/24/2022]
Abstract
Systematic analysis of histone modifications has revealed a plethora of posttranslational modifications that mediate changes in chromatin structure and gene expression. Histone phosphorylation is a transient histone modification that becomes induced by extracellular signals, DNA damage or entry into mitosis. Importantly, phosphorylation of histone proteins does lead not only to the binding of specific reader proteins but also to changes in the affinity for readers or writers of other histone modifications. This induces a cross-talk between different chromatin modifications that allows the spatio-temporal control of chromatin-associated events. In this review we will summarize the progress in our current knowledge of factors sensing reversible histone phosphorylation in different biological scenarios. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Signal induced histone phosphorylation is associated with local chromatin opening and transcriptional activation. Histone phosphorylation is also linked with chromatin condensation during mitosis. Histone phosphorylation marks are important for regulation of the DNA damage response. Specific reader proteins recognize histone phosphorylation marks alone or in combination with other histone modifications. Histone phosphorylation affects the affinity of readers or writers of other histone modifications.
Collapse
Affiliation(s)
- Anna Sawicka
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
39
|
Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. J Proteomics 2014; 102:137-47. [PMID: 24681131 DOI: 10.1016/j.jprot.2014.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/20/2014] [Accepted: 03/15/2014] [Indexed: 01/21/2023]
Abstract
UNLABELLED Heterochromatin protein 1 (HP1) was first described in Drosophila melanogaster as a heterochromatin associated protein required for epigenetic gene silencing. Most eukaryotes have at least three HP1 homologs that play differential roles in heterochromatin and euchromatin. However, despite the fact that the three HP1 proteins bind to different regions of the genome, several studies show that most of the interactions occur in a manner specific to HP1a. In addition, little is known about the overall interaction network of the three Drosophila HP1 homologs, HP1a, HP1b, and HP1c. Here, we performed the first comprehensive proteomic analysis of Drosophila HP1 homologs by coupling a double-affinity purification approach with MudPIT analysis to identify interacting proteins of Drosophila HP1. We discovered 160-310 proteins co-eluted with HP1, including a number of novel HP1-binding partners along with the previously identified HP1 binding proteins. Finally, we showed that slight and unique binding preferences might exist between the three HP1 proteins in Drosophila. These studies are the first to systematically analyze the interactome of HP1 paralogs and provide the basic clues as to the molecular mechanism by which HP1 might control cellular processes. BIOLOGICAL SIGNIFICANCE Most eukaryotes have at least three HP1 homologs with similar domain structures but with differential roles in heterochromatin and euchromatin. However, little is known about the overall interactome of the three Drosophila HP1 homologs, HP1a, HP1b, and HP1c. The present study compared interacting proteins of three HP1 homologs in Drosophila. To better understand the underlying mechanisms for gene regulation of HP1, a double-affinity purification and MudPIT mass spectrometry were employed to identify differential proteins as well as common binding proteins of HP1. Therefore, this study provides not only the comparative proteomic analysis but also molecular mechanism underlying the HP1 homolog-specific function.
Collapse
|
40
|
Chakraborty A, Prasanth KV, Prasanth SG. Dynamic phosphorylation of HP1α regulates mitotic progression in human cells. Nat Commun 2014; 5:3445. [PMID: 24619172 PMCID: PMC3982596 DOI: 10.1038/ncomms4445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/12/2014] [Indexed: 01/09/2023] Open
Abstract
Heterochromatin protein 1α (HP1α), a key player in the establishment and maintenance of higher-order chromatin regulates key cellular processes, including metaphase chromatid cohesion and centromere organization. However, how HP1α controls these processes is not well understood. Here we demonstrate that post-translational modifications of HP1α dictate its mitotic functions. HP1α is constitutively phosphorylated within its amino terminus, whereas phosphorylation within the hinge domain occurs preferentially at G2/M phase of the cell cycle. The hinge-phosphorylated form of HP1α specifically localizes to kinetochores during early mitosis and this phosphorylation mediated by NDR1 kinase is required for mitotic progression and for Sgo1 binding to mitotic centromeres. Cells lacking NDR kinase show loss of mitosis-specific phosphorylation of HP1α leading to prometaphase arrest. Our results reveal that NDR kinase catalyses the hinge-specific phosphorylation of human HP1α during G2/M in vivo and this orchestrates accurate chromosome alignment and mitotic progression.
Collapse
Affiliation(s)
- Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
41
|
Canzio D, Larson A, Narlikar GJ. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 2014; 24:377-86. [PMID: 24618358 DOI: 10.1016/j.tcb.2014.01.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Heterochromatin protein 1 (HP1) proteins were originally identified as critical components in heterochromatin-mediated gene silencing and are now recognized to play essential roles in several other processes including gene activation. Several eukaryotes possess more than one HP1 paralog. Despite high sequence conservation, the HP1 paralogs achieve diverse functions. Further, in many cases, the same HP1 paralog is implicated in multiple functions. Recent biochemical studies have revealed interesting paralog-specific biophysical differences and unanticipated conformational versatility in HP1 proteins that may account for this functional promiscuity. Here we review these findings and describe a molecular framework that aims to link the conformational flexibility of HP1 proteins observed in vitro with their functional promiscuity observed in vivo.
Collapse
Affiliation(s)
- Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
42
|
Marchion D, Münster P. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther 2014; 7:583-98. [PMID: 17428177 DOI: 10.1586/14737140.7.4.583] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are an exciting new addition to the arsenal of cancer therapeutics. The inhibition of HDAC enzymes by HDAC inhibitors shifts the balance between the deacetylation activity of HDAC enzymes and the acetylation activity of histone acetyltransferases, resulting in hyperacetylation of core histones. Exposure of cancer cells to HDAC inhibitors has been associated with a multitude of molecular and biological effects, ranging from transcriptional control, chromatin plasticity, protein-DNA interaction to cellular differentiation, growth arrest and apoptosis. In addition to the antitumor effects seen with HDAC inhibitors alone, these compounds may also potentiate cytotoxic agents or synergize with other targeted anticancer agents. The exact mechanism by which HDAC inhibitors cause cell death is still unclear and the specific roles of individual HDAC enzymes as therapeutic targets has not been established. However, emerging evidence suggests that the effects of HDAC inhibitors on tumor cells may not only depend on the specificity and selectivity of the HDAC inhibitor, but also on the expression patterns of HDAC enzymes in the tumor tissue. In this review, the recent advances in the understanding and clinical development of HDAC inhibitors, as well as their current role in cancer therapy, will be discussed.
Collapse
Affiliation(s)
- Douglas Marchion
- H Lee Moffitt Cancer Center, Experimental Therapeutics Program, Department of Interdisciplinary Oncology, Tampa, FL 33612, USA
| | | |
Collapse
|
43
|
HP1 knockdown is associated with abnormal condensation of almost all chromatin types in a grasshopper (Eyprepocnemis plorans). Chromosome Res 2014; 22:253-66. [PMID: 24398928 DOI: 10.1007/s10577-013-9399-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Heterochromatin protein 1 (HP1) is a highly conserved family of eukaryotic proteins required for heterochromatic gene silencing and euchromatic gene transcription regulation. In addition, HP1 is involved in chromatin organization and protection of chromosome integrity during cell division. Here, we present a cytological and molecular analysis of the effects of HP1 knockdown in Eyprepocnemis plorans, a grasshopper species polymorphic for supernumerary heterochromatic chromosomes. Our results revealed contrasting effects of HP1 knockdown on gene activity. While the Bub1 gene decreased in expression level in HP1 knockdown animals, NOR activity, rRNA and, contrarily to previous reports in Drosophila, Hsp70 gene expression remained unchanged. Furthermore, HP1 knockdown resulted in abnormal chromatin condensation, chromosomal bridges, higher frequency of macrospermatids, loss of muscle mass and hemolymph amount as well as a low number of dividing cells and survival reduction. All these phenotypes are very likely due to the chromatin condensation disruption observed for almost all kinds of chromatin.
Collapse
|
44
|
González-Barrios R, Soto-Reyes E, Quiroz-Baez R, Fabián-Morales E, Díaz-Chávez J, Del Castillo V, Mendoza J, López-Saavedra A, Castro C, Herrera LA. Differential distribution of HP1 proteins after trichostatin a treatment influences chromosomal stability in HCT116 and WI-38 cells. Cell Div 2014; 9:6. [PMID: 25729403 PMCID: PMC4343280 DOI: 10.1186/s13008-014-0006-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Background Heterochromatin protein 1 (HP1) is important in the establishment, propagation, and maintenance of constitutive heterochromatin, especially at the pericentromeric region. HP1 might participate in recruiting and directing Mis12 to the centromere during interphase, and HP1 disruption or abrogation might lead to the loss of Mis12 incorporation into the kinetochore. Therefore, the centromere structure and kinetochore relaxation that are promoted in the absence of Mis12 could further induce chromosome instability (CIN) by reducing the capacity of the kinetochore to anchor microtubules. The aim of this study was to determine whether alterations in the localization of HP1 proteins induced by trichostatin A (TSA) modify Mis12 and Centromere Protein A (CENP-A) recruitment to the centromere and whether changes in the expression of HP1 proteins and H3K9 methylation at centromeric chromatin increase CIN in HCT116 and WI-38 cells. Methods HCT116 and WI-38 cells were cultured and treated with TSA to evaluate CIN after 24 and 48 h of exposure. Immunofluorescence, Western blot, ChIP, and RT-PCR assays were performed in both cell lines to evaluate the localization and abundance of HP1α/β, Mis12, and CENP-A and to evaluate chromatin modifications during interphase and mitosis, as well as after 24 and 48 h of TSA treatment. Results Our results show that the TSA-induced reduction in heterochromatic histone marks on centromeric chromatin reduced HP1 at the centromere in the non-tumoral WI-38 cells and that this reduction was associated with cell cycle arrest and CIN. However, in HCT116 cells, HP1 proteins, together with MIS12 and CENP-A, relocated to centromeric chromatin in response to TSA treatment, even after H3K9me3 depletion in the centromeric nucleosomes. The enrichment of HP1 and the loss of H3K9me3 were associated with an increase in CIN, suggesting a response mechanism at centromeric and pericentromeric chromatin that augments the presence of HP1 proteins in those regions, possibly ensuring chromosome segregation despite serious CIN. Our results provide new insight into the epigenetic landscape of centromeric chromatin and the role of HP1 proteins in CIN. Electronic supplementary material The online version of this article (doi:10.1186/s13008-014-0006-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ricardo Quiroz-Baez
- Departamento de Investigación Básica, Dirección de Investigación, Instituto Nacional de Geriatría, Secretaría de Salud, México, DF 10200 México
| | - Eunice Fabián-Morales
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Victor Del Castillo
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Julia Mendoza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Alejandro López-Saavedra
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Clementina Castro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México ; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, México, DF 04510 México
| |
Collapse
|
45
|
Krasikova A, Fukagawa T, Zlotina A. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes. Chromosome Res 2013; 20:995-1008. [PMID: 23143648 DOI: 10.1007/s10577-012-9321-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploration into morphofunctional organisation of centromere DNA sequences is important for understanding the mechanisms of kinetochore specification and assembly. In-depth epigenetic analysis of DNA fragments associated with centromeric nucleosome proteins has demonstrated unique features of centromere organisation in chicken karyotype: there are both mature centromeres, which comprise chromosome-specific homogeneous arrays of tandem repeats, and recently evolved primitive centromeres, which consist of non-tandemly organised DNA sequences. In this work, we describe the arrangement and transcriptional activity of chicken centromere repeats for Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 and non-repetitive centromere sequences of chromosomes 5, 27, and Z using highly elongated lampbrush chromosomes, which are characteristic of the diplotene stage of oogenesis. The degree of chromatin packaging and fine spatial organisations of tandemly repetitive and non-tandemly repetitive centromeric sequences significantly differ at the lampbrush stage. Using DNA/RNA FISH, we have demonstrated that during the lampbrush stage, DNA sequences are transcribed within the centromere regions of chromosomes that lack centromere-specific tandem repeats. In contrast, chromosome-specific centromeric repeats Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 do not demonstrate any transcriptional activity during the lampbrush stage. In addition, we found that CNM repeat cluster localises adjacent to non-repetitive centromeric sequences in chicken microchromosome 27 indicating that centromere region in this chromosome is repeat-rich. Cross-species FISH allowed localisation of the sequences homologous to centromeric DNA of chicken chromosomes 5 and 27 in centromere regions of quail orthologous chromosomes.
Collapse
Affiliation(s)
- Alla Krasikova
- Saint-Petersburg State University, Oranienbaumskoie sch. 2, Stary Peterhof, Saint-Petersburg, 198504, Russia.
| | | | | |
Collapse
|
46
|
A role for MeCP2 in switching gene activity via chromatin unfolding and HP1γ displacement. PLoS One 2013; 8:e69347. [PMID: 23935992 PMCID: PMC3720725 DOI: 10.1371/journal.pone.0069347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is generally considered to act as a transcriptional repressor, whereas recent studies suggest that MeCP2 is also involved in transcription activation. To gain insight into this dual function of MeCP2, we assessed the impact of MeCP2 on higher-order chromatin structure in living cells using mammalian cell systems harbouring a lactose operator and reporter gene-containing chromosomal domain to assess the effect of lactose repressor-tagged MeCP2 (and separate MeCP2 domains) binding in living cells. Our data reveal that targeted binding of MeCP2 elicits extensive chromatin unfolding. MeCP2-induced chromatin unfolding is triggered independently of the methyl-cytosine-binding domain. Interestingly, MeCP2 binding triggers the loss of HP1γ at the chromosomal domain and an increased HP1γ mobility, which is not observed for HP1α and HP1β. Surprisingly, MeCP2-induced chromatin unfolding is not associated with transcriptional activation. Our study suggests a novel role for MeCP2 in reorganizing chromatin to facilitate a switch in gene activity.
Collapse
|
47
|
Kadauke S, Blobel GA. Mitotic bookmarking by transcription factors. Epigenetics Chromatin 2013; 6:6. [PMID: 23547918 PMCID: PMC3621617 DOI: 10.1186/1756-8935-6-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/11/2013] [Indexed: 11/30/2022] Open
Abstract
Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed “mitotic bookmarking.” Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.
Collapse
Affiliation(s)
- Stephan Kadauke
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
48
|
Yang CX, Liu Z, Fleurot R, Adenot P, Duranthon V, Vignon X, Zhou Q, Renard JP, Beaujean N. Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development. Reproduction 2013; 145:149-59. [PMID: 23221012 DOI: 10.1530/rep-11-0421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To investigate the embryonic genome organization upon fertilization and somatic cell nuclear transfer (SCNT), we tracked HP1β and CENP, two well-characterized protein markers of pericentric and centromeric compartments respectively, in four types of embryos produced by rabbit in vivo fertilization, rabbit parthenogenesis, rabbit-to-rabbit, and bovine-to-rabbit SCNT. In the interphase nuclei of rabbit cultured fibroblasts, centromeres and associated pericentric heterochromatin are usually isolated. Clustering into higher-order chromatin structures, such as the chromocenters seen in mouse and bovine somatic cells, could not be observed in rabbit fibroblasts. After fertilization, centromeres and associated pericentric heterochromatin are quite dispersed in rabbit embryos. The somatic-like organization is progressively established and completed only by the 8/16-cell stage, a stage that corresponds to major embryonic genome activation in this species. In SCNT embryos, pericentric heterochromatin distribution typical for rabbit and bovine somatic cells was incompletely reverted into the 1-cell embryonic form with remnants of heterochromatin clusters in 100% of bovine-to-rabbit embryos. Subsequently, the donor cell nuclear organization was rapidly re-established by the 4-cell stage. Remarkably, the incomplete remodeling of bovine-to-rabbit 1-cell embryos was associated with delayed transcriptional activation compared with rabbit-to-rabbit embryos. Together, the results confirm that pericentric heterochromatin spatio-temporal reorganization is an important step of embryonic genome reprogramming. It also appears that genome reorganization in SCNT embryos is mainly dependent on the nuclear characteristics of the donor cells, not on the recipient cytoplasm.
Collapse
Affiliation(s)
- Cai-Xia Yang
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Brants J, Semenchenko K, Wasylyk C, Robert A, Carles A, Zambrano A, Pradeau-Aubreton K, Birck C, Schalken JA, Poch O, de Mey J, Wasylyk B. Tubulin tyrosine ligase like 12, a TTLL family member with SET- and TTL-like domains and roles in histone and tubulin modifications and mitosis. PLoS One 2012; 7:e51258. [PMID: 23251473 PMCID: PMC3520985 DOI: 10.1371/journal.pone.0051258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 01/15/2023] Open
Abstract
hTTLL12 is a member of the tubulin tyrosine ligase (TTL) family that is highly conserved in phylogeny. It has both SET-like and TTL-like domains, suggesting that it could have histone methylation and tubulin tyrosine ligase activities. Altered expression of hTTLL12 in human cells leads to specific changes in H4K20 trimethylation, and tubulin detyrosination, hTTLL12 does not catalyse histone methylation or tubulin tyrosination in vitro, as might be expected from the lack of critical amino acids in its SET-like and TTLL-like domains. hTTLL12 misexpression increases mitotic duration and chromosome numbers. These results suggest that hTTLL12 has non-catalytic functions related to tubulin and histone modification, which could be linked to its effects on mitosis and chromosome number stability.
Collapse
Affiliation(s)
- Jan Brants
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Kostyantyn Semenchenko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Aude Robert
- Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg C.N.R.S. - U.M.R.7100, Equipe “Microtubules et Morphogenèse”, Parc d'Innovation, Illkirch, France
| | - Annaick Carles
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Alberto Zambrano
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Karine Pradeau-Aubreton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Jack A. Schalken
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Olivier Poch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Jan de Mey
- Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg C.N.R.S. - U.M.R.7100, Equipe “Microtubules et Morphogenèse”, Parc d'Innovation, Illkirch, France
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
- * E-mail:
| |
Collapse
|
50
|
Ribeiro-Mason K, Boulesteix C, Brochard V, Aguirre-Lavin T, Salvaing J, Fleurot R, Adenot P, Maalouf WE, Beaujean N. Nuclear dynamics of histone H3 trimethylated on lysine 9 and/or phosphorylated on serine 10 in mouse cloned embryos as new markers of reprogramming? Cell Reprogram 2012; 14:283-94. [PMID: 22775512 DOI: 10.1089/cell.2011.0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is the injection of a donor nucleus into an enucleated egg. Despite the use of this technology for many years in research, it is still quite inefficient. One of the causes for this is thought to be incorrect or incomplete genome reprogramming. Embryos produced by nuclear transfer (cloned embryos) very often present abnormal epigenetic signatures and irregular chromatin reorganization. Of these two issues, the issue of chromatin rearrangements within the nuclei after transfer is the least studied. It is known that cloned embryos often present pericentromeric heterochromatin clumps very similar to the chromocenters structures present in the donor nuclei. Therefore, it is believed that the somatic nuclear configuration of donor nuclei, especially that of the chromocenters, is not completely lost after nuclear transfer, in other words, not well reprogrammed. To further investigate pericentromeric heterochromatin reorganization after nuclear transfer, we decided to study its rearrangements in cumulus-derived clones using several related epigenetic markers such as H3S10P, H3K9me3, and the double marker H3K9me3S10P. We observed that two of these markers, H3S10P and H3K9me3S10P, are the ones found on the part of the pericentromeric heterochromatin that is remodeled correctly, resembling exactly the embryonic heterochromatin configuration of naturally fertilized embryos. Conversely, H3K9me3 and heterochromatin protein 1 beta (HP1β)-associated protein were also detected in the perinuclear clumps of heterochromatin, making obvious the maintenance of the somatic epigenetic signature within these nuclear regions. Our results demonstrate that H3S10P and H3K9me3S10P could be good candidates for evaluating heterochromatin reorganization following nuclear reprogramming.
Collapse
|