1
|
Ramos M, Martín-García R, Curto MÁ, Gómez-Delgado L, Moreno MB, Sato M, Portales E, Osumi M, Rincón SA, Pérez P, Ribas JC, Cortés JC. Fission yeast Bgs1 glucan synthase participates in the control of growth polarity and membrane traffic. iScience 2024; 27:110477. [PMID: 39156640 PMCID: PMC11326927 DOI: 10.1016/j.isci.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Rod-shaped fission yeast grows through cell wall expansion at poles and septum, synthesized by essential glucan synthases. Bgs1 synthesizes the linear β(1,3)glucan of primary septum at cytokinesis. Linear β(1,3)glucan is also present in the wall poles, suggesting additional Bgs1 roles in growth polarity. Our study reveals an essential collaboration between Bgs1 and Tea1-Tea4, but not other polarity factors, in controlling growth polarity. Simultaneous absence of Bgs1 function and Tea1-Tea4 causes complete loss of growth polarity, spread of other glucan synthases, and spherical cell formation, indicating this defect is specifically due to linear β(1,3)glucan absence. Furthermore, linear β(1,3)glucan absence induces actin patches delocalization and sterols spread, which are ultimately responsible for the growth polarity loss without Tea1-Tea4. This suggests strong similarities in Bgs1 functions controlling actin structures during cytokinesis and polarized growth. Collectively, our findings unveil that cell wall β(1,3)glucan regulates polarized growth, like the equivalent extracellular matrix in neuronal cells.
Collapse
Affiliation(s)
- Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Ángeles Curto
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Laura Gómez-Delgado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Belén Moreno
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Masako Osumi
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
- Integrated Imaging Research Support (IIRS), Villa Royal Hirakawa 103, 1-7-5 Hirakawa-cho, Chiyoda-ku, Tokyo, Japan
| | - Sergio A. Rincón
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C.G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
3
|
Bustamante-Jaramillo LF, Ramos C, Martín-Castellanos C. The Meiosis-Specific Crs1 Cyclin Is Required for Efficient S-Phase Progression and Stable Nuclear Architecture. Int J Mol Sci 2021; 22:ijms22115483. [PMID: 34067465 PMCID: PMC8196990 DOI: 10.3390/ijms22115483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.
Collapse
|
4
|
Benjamin B, Sanchez AM, Garg A, Schwer B, Shuman S. Structure-function analysis of fission yeast cleavage and polyadenylation factor (CPF) subunit Ppn1 and its interactions with Dis2 and Swd22. PLoS Genet 2021; 17:e1009452. [PMID: 33711009 PMCID: PMC7990198 DOI: 10.1371/journal.pgen.1009452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fission yeast Cleavage and Polyadenylation Factor (CPF), a 13-subunit complex, executes the cotranscriptional 3' processing of RNA polymerase II (Pol2) transcripts that precedes transcription termination. The three-subunit DPS sub-complex of CPF, consisting of a PP1-type phosphoprotein phosphatase Dis2, a WD-repeat protein Swd22, and a putative phosphatase regulatory factor Ppn1, associates with the CPF core to form the holo-CPF assembly. Here we probed the functional, physical, and genetic interactions of DPS by focusing on the Ppn1 subunit, which mediates association of DPS with the core. Transcriptional profiling by RNA-seq defined limited but highly concordant sets of protein-coding genes that were dysregulated in ppn1Δ, swd22Δ and dis2Δ cells, which included the DPSΔ down-regulated phosphate homeostasis genes pho1 and pho84 that are controlled by lncRNA-mediated transcriptional interference. Essential and inessential modules of the 710-aa Ppn1 protein were defined by testing the effects of Ppn1 truncations in multiple genetic backgrounds in which Ppn1 is required for growth. An N-terminal 172-aa disordered region was dispensable and its deletion alleviated hypomorphic phenotypes caused by deleting C-terminal aa 640-710. A TFIIS-like domain (aa 173-330) was not required for viability but was important for Ppn1 activity in phosphate homeostasis. Distinct sites within Ppn1 for binding to Dis2 (spanning Ppn1 aa 506 to 532) and Swd22 (from Ppn1 aa 533 to 578) were demarcated by yeast two-hybrid assays. Dis2 interaction-defective missense mutants of full-length Ppn1 (that retained Swd22 interaction) were employed to show that binding to Dis2 (or its paralog Sds21) was necessary for Ppn1 biological activity. Ppn1 function was severely compromised by missense mutations that selectively affected its binding to Swd22.
Collapse
Affiliation(s)
- Bradley Benjamin
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (BS); (SS)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail: (BS); (SS)
| |
Collapse
|
5
|
Vallardi G, Cordeiro MH, Saurin AT. A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:457-484. [PMID: 28840249 DOI: 10.1007/978-3-319-58592-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Giulia Vallardi
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
6
|
Gerganova V, Floderer C, Archetti A, Michon L, Carlini L, Reichler T, Manley S, Martin SG. Multi-phosphorylation reaction and clustering tune Pom1 gradient mid-cell levels according to cell size. eLife 2019; 8:45983. [PMID: 31050340 PMCID: PMC6555594 DOI: 10.7554/elife.45983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Protein concentration gradients pattern developing organisms and single cells. In Schizosaccharomyces pombe rod-shaped cells, Pom1 kinase forms gradients with maxima at cell poles. Pom1 controls the timing of mitotic entry by inhibiting Cdr2, which forms stable membrane-associated nodes at mid-cell. Pom1 gradients rely on membrane association regulated by a phosphorylation-dephosphorylation cycle and lateral diffusion modulated by clustering. Using quantitative PALM imaging, we find individual Pom1 molecules bind the membrane too transiently to diffuse from pole to mid-cell. Instead, we propose they exchange within longer lived clusters forming the functional gradient unit. An allelic series blocking auto-phosphorylation shows that multi-phosphorylation shapes and buffers the gradient to control mid-cell levels, which represent the critical Cdr2-regulating pool. TIRF imaging of this cortical pool demonstrates more Pom1 overlaps with Cdr2 in short than long cells, consistent with Pom1 inhibition of Cdr2 decreasing with cell growth. Thus, the gradients modulate Pom1 mid-cell levels according to cell size. All organisms need to know how to arrange different cell types during the development of their organs and tissues. This information is provided by protein concentration patterns, or gradients, that tell cells how to behave based on where they are positioned. The same fundamental principles also work on a smaller scale. For example, although the rod-shaped yeast Schizosaccharomyces pombe is a single-celled organism, it uses protein concentration gradients to control its growth and timing of division. Before S. pombe cells divide, they need to check that they have reached the right size. Several mechanisms contribute to this information. One of them involves a concentration gradient of a protein known as Pom1, which is found on the cell membrane, with more protein at the cell extremities and less towards the middle. Pom1 serves to block the activity of Cdr2 – an enzyme that localizes to the cell middle and controls cell division. An open question has been whether Pom1 levels at the center drop as the cell grows, coordinating growth and division. One explanation for how the Pom1 gradient could be regulated is by the removal and addition of phosphate groups. At the cell’s tip, an enzyme removes phosphate groups from Pom1, causing it to bind to the membrane. As Pom1 diffuses along the membrane, it continuously ‘re-phosphorylates’ itself. This promotes Pom1 to gradually detach, restricting it from spreading along the membrane towards the cell middle. Another explanation is that clusters of Pom1, formed at the membrane, help establish a gradient by moving along the membrane at different rates: larger clusters, formed in high concentration areas, move slower than smaller clusters, causing levels of Pom1 to be higher at the tip, and lower towards the middle. Now, Gerganova et al. set out to find which of these two processes contributes more to shaping the Pom1 gradient, and determine where Pom1 acts on Cdr2. Gerganova et al. used super resolution microscopy to track individual Pom1 molecules inside yeast cells. This revealed two findings. First, that individual Pom1 molecules do not travel all the way from the cell tip to the center, but ‘hop’ between clusters as they move towards the middle. Second, in longer cells levels of Pom1 on the membrane drop at the center, where Pom1 encounters Cdr2. As a result, Cdr2 will come across higher levels of Pom1 in short cells, but low levels of Pom1 in long cells. This allows Pom1 to act as a measure of cell size, preventing short cells from dividing too soon. The role of clusters in creating gradients is not only relevant for yeast cell division. It could potentially apply to the gradients that organize cells and tissues in different organisms. Future work could examine whether similar principles apply in more complex systems.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Charlotte Floderer
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Archetti
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lina Carlini
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thais Reichler
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Suliana Manley
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Pérez P, Soto T, Gómez-Gil E, Cansado J. Functional interaction between Cdc42 and the stress MAPK signaling pathway during the regulation of fission yeast polarized growth. Int Microbiol 2019; 23:31-41. [PMID: 30989357 DOI: 10.1007/s10123-019-00072-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Cell polarization can be defined as the generation and maintenance of directional cellular organization. The spatial distribution and protein or lipid composition of the cell are not symmetric but organized in specialized domains which allow cells to grow and acquire a certain shape that is closely linked to their physiological function. The establishment and maintenance of polarized growth requires the coordination of diverse processes including cytoskeletal dynamics, membrane trafficking, and signaling cascade regulation. Some of the major players involved in the selection and maintenance of sites for polarized growth are Rho GTPases, which recognize the polarization site and transmit the signal to regulatory proteins of the cytoskeleton. Additionally, cytoskeletal organization, polarized secretion, and endocytosis are controlled by signaling pathways including those mediated by mitogen-activated protein kinases (MAPKs). Rho GTPases and the MAPK signaling pathways are strongly conserved from yeast to mammals, suggesting that the basic mechanisms of polarized growth have been maintained throughout evolution. For this reason, the study of how polarized growth is established and regulated in simple organisms such as the fission yeast Schizosaccharomyces pombe has contributed to broaden our knowledge about these processes in multicellular organisms. We review here the function of the Cdc42 GTPase and the stress activated MAPK (SAPK) signaling pathways during fission yeast polarized growth, and discuss the relevance of the crosstalk between both pathways.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007, Salamanca, Spain.
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Elisa Gómez-Gil
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Jose Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
| |
Collapse
|
8
|
Single-molecule study reveals the frenetic lives of proteins in gradients. Proc Natl Acad Sci U S A 2018; 115:9336-9338. [PMID: 30181287 DOI: 10.1073/pnas.1812248115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Tay YD, Leda M, Goryachev AB, Sawin KE. Local and global Cdc42 guanine nucleotide exchange factors for fission yeast cell polarity are coordinated by microtubules and the Tea1-Tea4-Pom1 axis. J Cell Sci 2018; 131:jcs.216580. [PMID: 29930085 PMCID: PMC6080602 DOI: 10.1242/jcs.216580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved Rho-family GTPase Cdc42 plays a central role in eukaryotic cell polarity. The rod-shaped fission yeast Schizosaccharomyces pombe has two Cdc42 guanine nucleotide exchange factors (GEFs), Scd1 and Gef1, but little is known about how they are coordinated in polarized growth. Although the microtubule cytoskeleton is normally not required for polarity maintenance in fission yeast, we show here that when scd1 function is compromised, disruption of microtubules or the polarity landmark proteins Tea1, Tea4 or Pom1 leads to disruption of polarized growth. Instead, cells adopt an isotropic-like pattern of growth, which we term PORTLI growth. Surprisingly, PORTLI growth is caused by spatially inappropriate activity of Gef1. Although most Cdc42 GEFs are membrane associated, we find that Gef1 is a broadly distributed cytosolic protein rather than a membrane-associated protein at cell tips like Scd1. Microtubules and the Tea1–Tea4–Pom1 axis counteract inappropriate Gef1 activity by regulating the localization of the Cdc42 GTPase-activating protein Rga4. Our results suggest a new model of fission yeast cell polarity regulation, involving coordination of ‘local’ (Scd1) and ‘global’ (Gef1) Cdc42 GEFs via microtubules and microtubule-dependent polarity landmarks. Highlighted Article: Cell polarity in fission yeast is regulated by two different Cdc42 guanine nucleotide exchange factors, coordinated by the microtubule-dependent landmark system.
Collapse
Affiliation(s)
- Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Andrew B Goryachev
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
10
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
11
|
Abstract
Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast.
Collapse
Affiliation(s)
- Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
12
|
Hagan IM, Grallert A, Simanis V. Analysis of the Schizosaccharomyces pombe Cell Cycle. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top082800. [PMID: 27587785 DOI: 10.1101/pdb.top082800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle.
Collapse
Affiliation(s)
- Iain M Hagan
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Agnes Grallert
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Koyano T, Barnouin K, Snijders AP, Kume K, Hirata D, Toda T. Casein kinase 1γ acts as a molecular switch for cell polarization through phosphorylation of the polarity factor Tea1 in fission yeast. Genes Cells 2015; 20:1046-58. [PMID: 26525038 PMCID: PMC4737401 DOI: 10.1111/gtc.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022]
Abstract
Fission yeast undergoes growth polarity transition from monopolar to bipolar during G2 phase, designated NETO (New End Take Off). It is known that NETO onset involves two prerequisites, the completion of DNA replication and attainment of a certain cell size. However, the molecular mechanism remains unexplored. Here, we show that casein kinase 1γ, Cki3 is a critical determinant of NETO onset. Not only did cki3∆ cells undergo NETO during G1‐ or S‐phase, but they also displayed premature NETO under unperturbed conditions with a smaller cell size, leading to cell integrity defects. Cki3 interacted with the polarity factor Tea1, of which phosphorylation was dependent on Cki3 kinase activity. GFP nanotrap of Tea1 by Cki3 led to Tea1 hyperphosphorylation with monopolar growth, whereas the same entrapment by kinase‐dead Cki3 resulted in converse bipolar growth. Intriguingly, the Tea1 interactor Tea4 was dissociated from Tea1 by Cki3 entrapment. Mass spectrometry identified four phosphoserine residues within Tea1 that were hypophosphorylated in cki3∆ cells. Phosphomimetic Tea1 mutants showed compromised binding to Tea4 and NETO defects, indicating that these serine residues are critical for protein–protein interaction and NETO onset. Our findings provide significant insight into the mechanism by which cell polarization is regulated in a spatiotemporal manner.
Collapse
Affiliation(s)
- Takayuki Koyano
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Karin Barnouin
- Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3LD, UK
| | - Ambrosius P Snijders
- Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3LD, UK
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Takashi Toda
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| |
Collapse
|
14
|
Kelkar M, Martin SG. PKA antagonizes CLASP-dependent microtubule stabilization to re-localize Pom1 and buffer cell size upon glucose limitation. Nat Commun 2015; 6:8445. [PMID: 26443240 PMCID: PMC4618306 DOI: 10.1038/ncomms9445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023] Open
Abstract
Cells couple growth with division and regulate size in response to nutrient availability. In rod-shaped fission yeast, cell-size control occurs at mitotic commitment. An important regulator is the DYRK-family kinase Pom1, which forms gradients from cell poles and inhibits the mitotic activator Cdr2, itself localized at the medial cortex. Where and when Pom1 modulates Cdr2 activity is unclear as Pom1 medial cortical levels remain constant during cell elongation. Here we show that Pom1 re-localizes to cell sides upon environmental glucose limitation, where it strongly delays mitosis. This re-localization is caused by severe microtubule destabilization upon glucose starvation, with microtubules undergoing catastrophe and depositing the Pom1 gradient nucleator Tea4 at cell sides. Microtubule destabilization requires PKA/Pka1 activity, which negatively regulates the microtubule rescue factor CLASP/Cls1/Peg1, reducing CLASP's ability to stabilize microtubules. Thus, PKA signalling tunes CLASP's activity to promote Pom1 cell side localization and buffer cell size upon glucose starvation.
Collapse
Affiliation(s)
- Manasi Kelkar
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Das M, Nuñez I, Rodriguez M, Wiley DJ, Rodriguez J, Sarkeshik A, Yates JR, Buchwald P, Verde F. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis. Mol Biol Cell 2015; 26:3520-34. [PMID: 26246599 PMCID: PMC4591695 DOI: 10.1091/mbc.e15-02-0095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022] Open
Abstract
The 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, spatially regulating Cdc42 activity during cell morphogenesis. Gef1 is sequestered in the cytoplasm upon 14-3-3 interaction, mediated by Orb6 kinase. The resulting competition for Gef1 promotes anticorrelated Cdc42 oscillations at cell tips. Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.
Collapse
Affiliation(s)
- Maitreyi Das
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Illyce Nuñez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Marbelys Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - David J Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Juan Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Ali Sarkeshik
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - Peter Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101 Marine Biological Laboratory, Woods Hole, MA 02543. )
| |
Collapse
|
16
|
Hersch M, Hachet O, Dalessi S, Ullal P, Bhatia P, Bergmann S, Martin SG. Pom1 gradient buffering through intermolecular auto-phosphorylation. Mol Syst Biol 2015; 11:818. [PMID: 26150232 PMCID: PMC4547846 DOI: 10.15252/msb.20145996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod-shaped Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4-phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto-phosphorylation. Here, we demonstrate that Pom1 auto-phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto-phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super-linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration-dependent autocatalysis may be a widely used simple feedback to buffer biological activities.
Collapse
Affiliation(s)
- Micha Hersch
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Hachet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sascha Dalessi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pranav Ullal
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Payal Bhatia
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Casein kinase 1γ ensures monopolar growth polarity under incomplete DNA replication downstream of Cds1 and calcineurin in fission yeast. Mol Cell Biol 2015; 35:1533-42. [PMID: 25691662 DOI: 10.1128/mcb.01465-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest.
Collapse
|
18
|
Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, Smith DL, Pines J, Hagan IM. A PP1-PP2A phosphatase relay controls mitotic progression. Nature 2015; 517:94-98. [PMID: 25487150 PMCID: PMC4338534 DOI: 10.1038/nature14019] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/27/2014] [Indexed: 12/28/2022]
Abstract
The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.
Collapse
Affiliation(s)
- Agnes Grallert
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Elvan Boke
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Anja Hagting
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ben Hodgson
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Yvonne Connolly
- Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - John R Griffiths
- Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Duncan L Smith
- Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Jonathon Pines
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Iain M Hagan
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
19
|
Wachowicz P, Chasapi A, Krapp A, Cano Del Rosario E, Schmitter D, Sage D, Unser M, Xenarios I, Rougemont J, Simanis V. Analysis of S. pombe SIN protein association to the SPB reveals two genetically separable states of the SIN. J Cell Sci 2014; 128:741-54. [PMID: 25501816 DOI: 10.1242/jcs.160150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Anastasia Chasapi
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Andrea Krapp
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Elena Cano Del Rosario
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Daniel Schmitter
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael Unser
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Tang NH, Toda T. Alp7/TACC recruits kinesin-8-PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement. J Cell Sci 2014; 128:354-63. [PMID: 25472718 PMCID: PMC4294777 DOI: 10.1242/jcs.160036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon establishment of proper kinetochore–microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore–microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5–Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore–microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5–Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5–Klp6–PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8–PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
21
|
Abenza JF, Chessel A, Raynaud WG, Carazo-Salas RE. Dynamics of cell shape inheritance in fission yeast. PLoS One 2014; 9:e106959. [PMID: 25210736 PMCID: PMC4161360 DOI: 10.1371/journal.pone.0106959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023] Open
Abstract
Every cell has a characteristic shape key to its fate and function. That shape is not only the product of genetic design and of the physical and biochemical environment, but it is also subject to inheritance. However, the nature and contribution of cell shape inheritance to morphogenetic control is mostly ignored. Here, we investigate morphogenetic inheritance in the cylindrically-shaped fission yeast Schizosaccharomyces pombe. Focusing on sixteen different ‘curved’ mutants - a class of mutants which often fail to grow axially straight – we quantitatively characterize their dynamics of cell shape inheritance throughout generations. We show that mutants of similar machineries display similar dynamics of cell shape inheritance, and exploit this feature to show that persistent axial cell growth in S. pombe is secured by multiple, separable molecular pathways. Finally, we find that one of those pathways corresponds to the swc2-swr1-vps71 SWR1/SRCAP chromatin remodelling complex, which acts additively to the known mal3-tip1-mto1-mto2 microtubule and tea1-tea2-tea4-pom1 polarity machineries.
Collapse
Affiliation(s)
- Juan F. Abenza
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| | - Anatole Chessel
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - William G. Raynaud
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rafael E. Carazo-Salas
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| |
Collapse
|
22
|
Abstract
Cell polarization is fundamental to many cellular processes, including cell differentiation, cell motility and cell fate determination. A key regulatory enzyme in the control of cell morphogenesis is the conserved Rho GTPase Cdc42, which breaks symmetry via self-amplifying positive-feedback mechanisms. Additional mechanisms of control, including competition between different sites of polarized cell growth and time-delayed negative feedback, define a cellular-level system that promotes Cdc42 oscillatory dynamics and modulates activated Cdc42 intracellular distribution.
Collapse
|
23
|
Rincon SA, Bhatia P, Bicho C, Guzman-Vendrell M, Fraisier V, Borek WE, Alves FDL, Dingli F, Loew D, Rappsilber J, Sawin KE, Martin SG, Paoletti A. Pom1 regulates the assembly of Cdr2-Mid1 cortical nodes for robust spatial control of cytokinesis. ACTA ACUST UNITED AC 2014; 206:61-77. [PMID: 24982431 PMCID: PMC4085711 DOI: 10.1083/jcb.201311097] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pom1 regulation of Cdr2 membrane association and interaction with Mid1 prevents Cdr2 assembly into stable nodes in the cell tip region, which ensures proper positioning of cytokinetic ring precursors and accurate division plane positioning in fission yeast. Proper division plane positioning is essential to achieve faithful DNA segregation and to control daughter cell size, positioning, or fate within tissues. In Schizosaccharomyces pombe, division plane positioning is controlled positively by export of the division plane positioning factor Mid1/anillin from the nucleus and negatively by the Pom1/DYRK (dual-specificity tyrosine-regulated kinase) gradients emanating from cell tips. Pom1 restricts to the cell middle cortical cytokinetic ring precursor nodes organized by the SAD-like kinase Cdr2 and Mid1/anillin through an unknown mechanism. In this study, we show that Pom1 modulates Cdr2 association with membranes by phosphorylation of a basic region cooperating with the lipid-binding KA-1 domain. Pom1 also inhibits Cdr2 interaction with Mid1, reducing its clustering ability, possibly by down-regulation of Cdr2 kinase activity. We propose that the dual regulation exerted by Pom1 on Cdr2 prevents Cdr2 assembly into stable nodes in the cell tip region where Pom1 concentration is high, which ensures proper positioning of cytokinetic ring precursors at the cell geometrical center and robust and accurate division plane positioning.
Collapse
Affiliation(s)
- Sergio A Rincon
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Payal Bhatia
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Claudia Bicho
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Mercè Guzman-Vendrell
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Vincent Fraisier
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Weronika E Borek
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Florent Dingli
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, FranceCentre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France
| | - Damarys Loew
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, FranceCentre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Anne Paoletti
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| |
Collapse
|
24
|
Vanoosthuyse V, Legros P, van der Sar SJA, Yvert G, Toda K, Le Bihan T, Watanabe Y, Hardwick K, Bernard P. CPF-associated phosphatase activity opposes condensin-mediated chromosome condensation. PLoS Genet 2014; 10:e1004415. [PMID: 24945319 PMCID: PMC4063703 DOI: 10.1371/journal.pgen.1004415] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/16/2014] [Indexed: 12/03/2022] Open
Abstract
Functional links connecting gene transcription and condensin-mediated chromosome condensation have been established in species ranging from prokaryotes to vertebrates. However, the exact nature of these links remains misunderstood. Here we show in fission yeast that the 3′ end RNA processing factor Swd2.2, a component of the Cleavage and Polyadenylation Factor (CPF), is a negative regulator of condensin-mediated chromosome condensation. Lack of Swd2.2 does not affect the assembly of the CPF but reduces its association with chromatin. This causes only limited, context-dependent effects on gene expression and transcription termination. However, CPF-associated Swd2.2 is required for the association of Protein Phosphatase 1 PP1Dis2 with chromatin, through an interaction with Ppn1, a protein that we identify as the fission yeast homologue of vertebrate PNUTS. We demonstrate that Swd2.2, Ppn1 and PP1Dis2 form an independent module within the CPF, which provides an essential function in the absence of the CPF-associated Ssu72 phosphatase. We show that Ppn1 and Ssu72, like Swd2.2, are also negative regulators of condensin-mediated chromosome condensation. We conclude that Swd2.2 opposes condensin-mediated chromosome condensation by facilitating the function of the two CPF-associated phosphatases PP1 and Ssu72. Failure to properly condense chromosomes prior to their segregation in mitosis can lead to genome instability. The evolutionary-conserved condensin complex is key to the condensation process but the molecular mechanisms underlying its localization pattern on chromosomes remain unclear. Previous observations showed that the localization of condensin is intimately linked to regions of high transcription, although, somewhat paradoxically, its association with chromatin is disrupted by a processive polymerase activity. Here we identify several RNA processing factors as negative regulators of condensin in fission yeast. Two of these factors associate with PP1 phosphatase as an independent entity within the Cleavage and Polyadenylation Factor (CPF), a complex key for 3′ end RNA processing. Lack of this module induces only minor and context-dependent effects on gene expression. Our data suggest that this module helps maintaining the proper level of phosphatase activity within the CPF and thereby opposes the function of condensin in mitotic chromosome condensation.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Pénélope Legros
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| | | | - Gaël Yvert
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| | - Kenji Toda
- Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Thierry Le Bihan
- SynthSys Edinburgh, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yoshinori Watanabe
- Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kevin Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Bernard
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| |
Collapse
|
25
|
Davé A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 2014; 7:53-61. [PMID: 24656819 PMCID: PMC3989773 DOI: 10.1016/j.celrep.2014.02.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/20/2014] [Accepted: 02/14/2014] [Indexed: 01/23/2023] Open
Abstract
The firing of eukaryotic origins of DNA replication requires CDK and DDK kinase activities. DDK, in particular, is involved in setting the temporal program of origin activation, a conserved feature of eukaryotes. Rif1, originally identified as a telomeric protein, was recently implicated in specifying replication timing in yeast and mammals. We show that this function of Rif1 depends on its interaction with PP1 phosphatases. Mutations of two PP1 docking motifs in Rif1 lead to early replication of telomeres in budding yeast and misregulation of origin firing in fission yeast. Several lines of evidence indicate that Rif1/PP1 counteract DDK activity on the replicative MCM helicase. Our data suggest that the PP1/Rif1 interaction is downregulated by the phosphorylation of Rif1, most likely by CDK/DDK. These findings elucidate the mechanism of action of Rif1 in the control of DNA replication and demonstrate a role of PP1 phosphatases in the regulation of origin firing. Rif1 recruits protein phosphatase 1 to telomeres and DNA replication origins PP1 docking motifs mediate the effect of Rif1 on DNA replication timing The PP1 recruitment activity of Rif1 counteracts DDK action on Mcm4 Mutations in putative CDK/DDK sites near the PP1 motifs in Rif1 affect PP1 recruitment
Collapse
Affiliation(s)
- Anoushka Davé
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Carol Cooley
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Mansi Garg
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
26
|
Valinluck M, Woraratanadharm T, Lu CY, Quintanilla RH, Banuett F. The cell end marker Tea4 regulates morphogenesis and pathogenicity in the basidiomycete fungus Ustilago maydis. Fungal Genet Biol 2014; 66:54-68. [PMID: 24613993 DOI: 10.1016/j.fgb.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 02/08/2023]
Abstract
Positional cues localized to distinct cell domains are critical for the generation of cell polarity and cell morphogenesis. These cues lead to assembly of protein complexes that organize the cytoskeleton resulting in delivery of vesicles to sites of polarized growth. Tea4, an SH3 domain protein, was first identified in fission yeast, and is a critical determinant of the axis of polarized growth, a role conserved among ascomycete fungi. Ustilago maydis is a badiomycete fungus that exhibits a yeast-like form that is nonpathogenic and a filamentous form that is pathogenic on maize and teozintle. We are interested in understanding how positional cues contribute to generation and maintenance of these two forms, and their role in pathogenicity. We identified a homologue of fission yeast tea4 in a genetic screen for mutants with altered colony and cell morphology and present here analysis of Tea4 for the first time in a basidiomycete fungus. We demonstrate that Tea4 is an important positional marker for polarized growth and septum location in both forms. We uncover roles for Tea4 in maintenance of cell and neck width, cell separation, and cell wall deposition in the yeast-like form, and in growth rate, formation of retraction septa, growth reversal, and inhibition of budding in the filamentous form. We show that Tea4::GFP localizes to sites of polarized or potential polarized growth in both forms, as observed in ascomycete fungi. We demonstrate an essential role of Tea4 in pathogencity in the absence of cell fusion. Basidiomycete and ascomycete Tea4 homologues share SH3 and Glc7 domains. Tea4 in basidiomycetes has additional domains, which has led us to hypothesize that Tea4 has novel functions in this group of fungi.
Collapse
Affiliation(s)
- Michael Valinluck
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Tad Woraratanadharm
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Ching-yu Lu
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Rene H Quintanilla
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Flora Banuett
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States.
| |
Collapse
|
27
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
28
|
Kokkoris K, Gallo Castro D, Martin SG. The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion. J Cell Sci 2014; 127:2005-16. [PMID: 24554432 DOI: 10.1242/jcs.142174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.
Collapse
Affiliation(s)
- Kyriakos Kokkoris
- University of Lausanne, Department of Fundamental Microbiology, Biophore Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
29
|
Kiekebusch D, Thanbichler M. Spatiotemporal organization of microbial cells by protein concentration gradients. Trends Microbiol 2014; 22:65-73. [DOI: 10.1016/j.tim.2013.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 11/29/2022]
|
30
|
Abstract
The activation of the Cdk1 (cyclin-dependent kinase 1)-cyclin B complex to promote commitment to mitosis is controlled by the phosphorylation status of the Cdk1 catalytic subunit. Cdk1 phosphorylation by Wee1 kinases blocks activation until Cdc25 (cell division cycle 25) phosphatases remove this phosphate to drive division. Feedback inhibition of Wee1 and promotion of Cdc25 activities by the newly activated Cdk1-cyclin B complexes ensure that the transition from interphase to mitosis is a rapid and complete bi-stable switch. Although this level of molecular understanding of the mitotic commitment switch has been clear for over two decades, it is still unclear how the switch is engaged to promote division at the right time for a particular context. We discuss recent work in fission yeast that shows how the spatial organization of signalling networks, in particular events on the centrosome equivalent, the spindle pole body, plays a key role in ensuring that the timing of cell division is coupled to environmental cues.
Collapse
Affiliation(s)
- Iain M Hagan
- *Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, U.K
| | | |
Collapse
|
31
|
Kawashima SA, Takemoto A, Nurse P, Kapoor TM. A chemical biology strategy to analyze rheostat-like protein kinase-dependent regulation. CHEMISTRY & BIOLOGY 2013; 20:262-71. [PMID: 23438755 PMCID: PMC3626098 DOI: 10.1016/j.chembiol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/04/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023]
Abstract
Protein kinases may function more like variable rheostats rather than two-state switches. However, we lack approaches to properly analyze this aspect of kinase-dependent regulation. To address this, we develop a strategy in which a kinase inhibitor is identified using genetics-based screens, kinase mutations that confer resistance are characterized, and dose-dependent responses of isogenic drug-sensitive and resistant cells to inhibitor treatments are compared. This approach has the advantage that function of wild-type kinase, rather than mutants, is examined. To develop this approach, we focus on Ark1, the fission yeast member of the conserved Aurora kinase family. Applying this approach reveals that proper chromosome compaction in fission yeast needs high Ark1 activity, while other processes depend on significantly lower activity levels. Our strategy is general and can be used to examine the functions of other molecular rheostats.
Collapse
Affiliation(s)
| | - Ai Takemoto
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY10065
| |
Collapse
|
32
|
Grallert A, Chan KY, Alonso-Nuñez ML, Madrid M, Biswas A, Alvarez-Tabarés I, Connolly Y, Tanaka K, Robertson A, Ortiz JM, Smith DL, Hagan IM. Removal of centrosomal PP1 by NIMA kinase unlocks the MPF feedback loop to promote mitotic commitment in S. pombe. Curr Biol 2013; 23:213-22. [PMID: 23333317 DOI: 10.1016/j.cub.2012.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/13/2012] [Accepted: 12/21/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Activation of the Cdk1/cyclin B complex, also known as mitosis-promoting factor (MPF), drives commitment to mitosis. Interphase MPF is inhibited through phosphorylation of Cdk1 by Wee1-related kinases. Because Cdc25 phosphatases remove this phosphate, Cdc25 activity is an essential part of the switch that drives cells into mitosis. The generation of a critical "trigger" of active MPF promotes a positive feedback loop that employs Polo kinase to boost Cdc25 activity and inhibit Wee1, thereby ensuring that mitotic commitment is a bistable switch. Mutations in the spindle pole body (SPB) component Cut12 suppress otherwise lethal deficiencies in Cdc25. RESULTS Cut12 harbors a bipartite protein phosphatase 1 (PP1) docking domain. Mutation of either element alone suppressed the temperature-dependent lethality of cdc25.22, whereas simultaneous ablation of both allowed cells to divide in the complete absence of Cdc25. Late G2 phase phosphorylation between the two elements by MPF and the NIMA kinase Fin1 blocked PP1(Dis2) recruitment, thereby promoting recruitment of Polo to Cut12 and the SPB and elevating global Polo kinase activity throughout the cell. CONCLUSIONS PP1 recruitment to Cut12 sets a threshold for Polo's feedback-loop activity that locks the cell in interphase until Cdc25 pushes MPF activity through this barrier to initiate mitosis. We propose that events on the SPB (and, by inference, the centrosome) integrate inputs from diverse signaling networks to generate a coherent decision to divide that is appropriate for the particular environmental context of each cell. PP1 recruitment sets one or more critical thresholds for single or multiple local events within this switch.
Collapse
Affiliation(s)
- Agnes Grallert
- CRUK Cell Division Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rincon SA, Paoletti A. Mid1/anillin and the spatial regulation of cytokinesis in fission yeast. Cytoskeleton (Hoboken) 2012; 69:764-77. [DOI: 10.1002/cm.21056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
|
34
|
Howard M. How to build a robust intracellular concentration gradient. Trends Cell Biol 2012; 22:311-7. [PMID: 22503534 DOI: 10.1016/j.tcb.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022]
Abstract
Concentration gradients of morphogens are critical regulators of patterning in developmental biology. Increasingly, intracellular concentration gradients have also been found to orchestrate spatial organization, but inside single cells, where they regulate processes such as cell division, polarity and mitotic spindle dynamics. Here, we discuss recent progress in understanding how such intracellular gradients can be built robustly. We focus particularly on the Pom1p gradient in fission yeast, elucidating how various buffering mechanisms operate to ensure precise gradient formation. In this case, a systems-level understanding of the entire mechanism of precise gradient construction is now within reach, with important implications for gradients in both intracellular and developmental contexts.
Collapse
Affiliation(s)
- Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
35
|
Buttrick GJ, Lancaster TC, Meadows JC, Millar JBA. Plo1 phosphorylates Dam1 to promote chromosome bi-orientation in fission yeast. J Cell Sci 2012; 125:1645-51. [PMID: 22375062 DOI: 10.1242/jcs.096826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The fungal-specific heterodecameric outer kinetochore DASH complex facilitates the interaction of kinetochores with spindle microtubules. In budding yeast, where kinetochores bind a single microtubule, the DASH complex is essential, and phosphorylation of Dam1 by the Aurora kinase homologue, Ipl1, causes detachment of kinetochores from spindle microtubules. We demonstrate that in the distantly related fission yeast, where the DASH complex is not essential for viability and kinetochores bind multiple microtubules, Dam1 is instead phosphorylated on serine 143 by the Polo kinase homologue, Plo1, during prometaphase and metaphase. This phosphorylation site is conserved in most fungal Dam1 proteins, including budding yeast Dam1. We show that Dam1 phosphorylation by Plo1 is dispensable for DASH assembly and chromosome retrieval but instead aids tension-dependent chromosome bi-orientation.
Collapse
Affiliation(s)
- Graham J Buttrick
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | | | |
Collapse
|
36
|
Kunda P, Rodrigues N, Moeendarbary E, Liu T, Ivetic A, Charras G, Baum B. PP1-Mediated Moesin Dephosphorylation Couples Polar Relaxation to Mitotic Exit. Curr Biol 2012; 22:231-6. [DOI: 10.1016/j.cub.2011.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/23/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022]
|
37
|
Panbianco C, Gotta M. Coordinating cell polarity with cell division in space and time. Trends Cell Biol 2011; 21:672-80. [PMID: 21930382 DOI: 10.1016/j.tcb.2011.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 01/08/2023]
Abstract
Decisions of when and where to divide are crucial for cell survival and fate, and for tissue organization and homeostasis. The temporal coordination of mitotic events during cell division is essential to ensure that each daughter cell receives one copy of the genome. The spatial coordination of these events is also crucial because the cytokinetic furrow must be aligned with the axis of chromosome segregation and, in asymmetrically dividing cells, the polarity axis. Several recent papers describe how cell shape and polarity are coordinated with cell division in single cells and tissues and begin to unravel the underlying molecular mechanisms, revealing common principles and molecular players. Here, we discuss how cells regulate the spatial and temporal coordination of cell polarity with cell division.
Collapse
Affiliation(s)
- Costanza Panbianco
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
38
|
Meadows JC, Shepperd LA, Vanoosthuyse V, Lancaster TC, Sochaj AM, Buttrick GJ, Hardwick KG, Millar JB. Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev Cell 2011; 20:739-50. [PMID: 21664573 PMCID: PMC3792844 DOI: 10.1016/j.devcel.2011.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
The spindle checkpoint is the prime cell-cycle control mechanism that ensures sister chromatids are bioriented before anaphase takes place. Aurora B kinase, the catalytic subunit of the chromosome passenger complex, both destabilizes kinetochore attachments that do not generate tension and simultaneously maintains the spindle checkpoint signal. However, it is unclear how the checkpoint is silenced following chromosome biorientation. We demonstrate that association of type 1 phosphatase (PP1(Dis2)) with both the N terminus of Spc7 and the nonmotor domains of the Klp5-Klp6 (kinesin-8) complex is necessary to counteract Aurora B kinase to efficiently silence the spindle checkpoint. The role of Klp5 and Klp6 in checkpoint silencing is specific to this class of kinesin and independent of their motor activities. These data demonstrate that at least two distinct pools of PP1, one kinetochore associated and the other motor associated, are needed to silence the spindle checkpoint.
Collapse
Affiliation(s)
- John C. Meadows
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Lindsey A. Shepperd
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Site Jacques Monod, Lyon, France
| | - Theresa C. Lancaster
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Alicja M. Sochaj
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Graham J. Buttrick
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jonathan B.A. Millar
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
39
|
A Phosphorylation Cycle Shapes Gradients of the DYRK Family Kinase Pom1 at the Plasma Membrane. Cell 2011; 145:1116-28. [DOI: 10.1016/j.cell.2011.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/23/2011] [Accepted: 05/04/2011] [Indexed: 12/25/2022]
|
40
|
Mocciaro A, Schiebel E. Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 2011; 123:2867-76. [PMID: 20720150 DOI: 10.1242/jcs.074815] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CDC14 was originally identified by L. Hartwell in his famous screen for genes that regulate the budding yeast cell cycle. Subsequent work showed that Cdc14 belongs to a family of highly conserved dual-specificity phosphatases that are present in a wide range of organisms from yeast to human. Human CDC14B is even able to fulfill the essential functions of budding yeast Cdc14. In budding yeast, Cdc14 counteracts the activity of cyclin dependent kinase (Cdk1) at the end of mitosis and thus has important roles in the regulation of anaphase, mitotic exit and cytokinesis. On the basis of the functional conservation of other cell-cycle genes it seemed obvious to assume that Cdc14 phosphatases also have roles in late mitosis in mammalian cells and regulate similar targets to those found in yeast. However, analysis of the human Cdc14 proteins (CDC14A, CDC14B and CDC14C) by overexpression or by depletion using small interfering RNA (siRNA) has suggested functions that are quite different from those of ScCdc14. Recent studies in avian and human somatic cell lines in which the gene encoding either Cdc14A or Cdc14B had been deleted, have shown - surprisingly - that neither of the two phosphatases on its own is essential for viability, cell-cycle progression and checkpoint control. In this Commentary, we critically review the available data on the functions of yeast and vertebrate Cdc14 phosphatases, and discuss whether they indeed share common functions as generally assumed.
Collapse
Affiliation(s)
- Annamaria Mocciaro
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69117 Heidelberg, Germany
| | | |
Collapse
|
41
|
Abstract
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.
Collapse
Affiliation(s)
- Fred Chang
- Columbia University, College of Physicians and Surgeons, Department of Microbiology, 701 W 168th Street, New York 10032, USA.
| | | |
Collapse
|
42
|
Krapp A, Del Rosario EC, Simanis V. The role of Schizosaccharomyces pombe dma1 in spore formation during meiosis. J Cell Sci 2010; 123:3284-93. [PMID: 20826461 DOI: 10.1242/jcs.069112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis is a specialised form of the cell cycle that gives rise to haploid gametes. In Schizosaccharomyces pombe, the products of meiosis are four spores, which are formed by encapsulation of the four meiosis II nuclei within the cytoplasm of the zygote produced by fusion of the mating cells. The S. pombe spindle pole body is remodelled during meiosis II and membrane vesicles are then recruited there to form the forespore membrane, which encapsulates the haploid nucleus to form a prespore. Spore wall material is then deposited, giving rise to the mature spore. The septation initiation network is required to coordinate cytokinesis and mitosis in the vegetative cycle and for spore formation in the meiotic cycle. We have investigated the role of the SIN regulator dma1p in meiosis; we find that although both meiotic divisions occur in the absence of dma1p, asci frequently contain fewer than four spores, which are larger than in wild-type meiosis. Our data indicate that dma1p acts in parallel to the leading-edge proteins and septins to assure proper formation for the forespore membrane. Dma1p also contributes to the temporal regulation of the abundance of the meiosis-specific SIN component mug27p.
Collapse
Affiliation(s)
- Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
43
|
Snaith HA, Anders A, Samejima I, Sawin KE. New and old reagents for fluorescent protein tagging of microtubules in fission yeast; experimental and critical evaluation. Methods Cell Biol 2010; 97:147-72. [PMID: 20719270 DOI: 10.1016/s0091-679x(10)97009-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The green fluorescent protein (GFP) has become a mainstay of in vivo imaging in many experimental systems. In this chapter, we first discuss and evaluate reagents currently available to image GFP-labeled microtubules in the fission yeast Schizosaccharomyces pombe, with particular reference to time-lapse applications. We then describe recent progress in the development of robust monomeric and tandem dimer red fluorescent proteins (RFPs), including mCherry, TagRFP-T, mOrange2, mKate, and tdTomato, and we present data assessing their suitability as tags in S. pombe. As part of this analysis, we introduce new PCR tagging cassettes for several RFPs, new pDUAL-based plasmids for RFP-tagging, and new RFP-tubulin strains. These reagents should improve and extend the study of microtubules and microtubule-associated proteins in S. pombe.
Collapse
Affiliation(s)
- Hilary A Snaith
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH93JR, United Kingdom
| | | | | | | |
Collapse
|
44
|
Attanapola SL, Alexander CJ, Mulvihill DP. Ste20-kinase-dependent TEDS-site phosphorylation modulates the dynamic localisation and endocytic function of the fission yeast class I myosin, Myo1. J Cell Sci 2009; 122:3856-61. [PMID: 19808887 DOI: 10.1242/jcs.053959] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type I myosins are monomeric motors involved in a range of motile and sensory activities in different cell types. In simple unicellular eukaryotes, motor activity of class I myosins is regulated by phosphorylation of a conserved 'TEDS site' residue within the motor domain. The mechanism by which this phosphorylation event affects the cellular function of each myosin I remains unclear. The fission yeast myosin I, Myo1, activates Arp2/3-dependent polymerisation of cortical actin patches and also regulates endocytosis. Using mutants and Myo1-specific antibodies, we show that the phosphorylation of the Myo1 TEDS site (serine 361) plays a crucial role in regulating this protein's dynamic localisation and cellular function. We conclude that although phosphorylation of serine 361 does not affect the ability of this motor protein to promote actin polymerisation, it is required for Myo1 to recruit to sites of endocytosis and function during this process.
Collapse
Affiliation(s)
- Sheran L Attanapola
- Cell and Developmental Biology Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
45
|
Martin SG. Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 2009; 19:447-54. [PMID: 19713114 DOI: 10.1016/j.tcb.2009.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Sophie G Martin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Vanoosthuyse V, Hardwick KG. A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol 2009; 19:1176-81. [PMID: 19592249 PMCID: PMC2791888 DOI: 10.1016/j.cub.2009.05.060] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 12/23/2022]
Abstract
The spindle checkpoint is a surveillance system acting in mitosis to delay anaphase onset until all chromosomes are properly attached to the mitotic spindle [1, 2]. When the checkpoint is activated, the Mad2 and Mad3 proteins directly bind and inhibit Cdc20, which is an essential activator of an E3 ubiquitin ligase known as the anaphase-promoting complex (APC) [3]. When the checkpoint is satisfied, Cdc20-APC is activated and polyubiquitinates securin and cyclin, leading to the dissolution of sister chromatid cohesion and mitotic progression. Several protein kinases play critical roles in spindle checkpoint signaling, but the mechanism (or mechanisms) by which they inhibit mitotic progression remains unclear [4]. Furthermore, it is not known whether their activity needs to be reversed by protein phosphatases before anaphase onset can occur. Here we employ fission yeast to show that Aurora (Ark1) kinase activity is directly required to maintain spindle checkpoint arrest, even in the presence of many unattached kinetochores. Upon Ark1 inhibition, checkpoint complexes are disassembled and cyclin B is rapidly degraded. Importantly, checkpoint silencing and cyclin B degradation require the kinetochore-localized isoform of protein phosphatase 1 (PP1Dis2). We propose that PP1Dis2-mediated dephosphorylation of checkpoint components forms a novel spindle checkpoint silencing mechanism.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
47
|
The cell end marker protein TeaC is involved in growth directionality and septation in Aspergillus nidulans. EUKARYOTIC CELL 2009; 8:957-67. [PMID: 19429780 DOI: 10.1128/ec.00251-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polarized growth in filamentous fungi depends on the correct spatial organization of the microtubule (MT) and actin cytoskeleton. In Schizosaccharomyces pombe it was shown that the MT cytoskeleton is required for the delivery of so-called cell end marker proteins, e.g., Tea1 and Tea4, to the cell poles. Subsequently, these markers recruit several proteins required for polarized growth, e.g., a formin, which catalyzes actin cable formation. The latest results suggest that this machinery is conserved from fission yeast to Aspergillus nidulans. Here, we have characterized TeaC, a putative homologue of Tea4. Sequence identity between TeaC and Tea4 is only 12.5%, but they both share an SH3 domain in the N-terminal region. Deletion of teaC affected polarized growth and hyphal directionality. Whereas wild-type hyphae grow straight, hyphae of the mutant grow in a zig-zag way, similar to the hyphae of teaA deletion (tea1) strains. Some small, anucleate compartments were observed. Overexpression of teaC repressed septation and caused abnormal swelling of germinating conidia. In agreement with the two roles in polarized growth and in septation, TeaC localized to hyphal tips and to septa. TeaC interacted with the cell end marker protein TeaA at hyphal tips and with the formin SepA at hyphal tips and at septa.
Collapse
|
48
|
Robertson AM, Hagan IM. Stress-regulated kinase pathways in the recovery of tip growth and microtubule dynamics following osmotic stress in S. pombe. J Cell Sci 2008; 121:4055-68. [PMID: 19033386 DOI: 10.1242/jcs.034488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-integrity and stress-response MAP kinase pathways (CIP and SRP, respectively) are stimulated by various environmental stresses. Ssp1 kinase modulates actin dynamics and is rapidly recruited to the plasma membrane following osmotic stress. Here, we show that osmotic stress arrested tip growth, induced the deposition of abnormal cell-wall deposits at tips and led to disassociation of F-actin foci from cell tips together with a reduction in the amount of F-actin in these foci. Osmotic stress also ;froze' the dynamics of interphase microtubule bundles, with microtubules remaining static for approximately 38 minutes (at 30 degrees C) before fragmenting upon return to dynamic behaviour. The timing with which microtubules resumed dynamic behaviour relied upon SRP activation of Atf1-mediated transcription, but not on either CIP or Ssp1 signalling. Analysis of the recovery of tip growth showed that: (1) the timing of recovery was controlled by SRP-stimulated Atf1 transcription; (2) re-establishment of polarized tip growth was absolutely dependent upon SRP and partially dependent upon Ssp1 signalling; and (3) selection of the site for polarized tip extension required Ssp1 and the SRP-associated polarity factor Wsh3 (also known as Tea4). CIP signalling did not impact upon any aspect of recovery. The normal kinetics of tip growth following osmotic stress of plo1.S402A/E mutants established that SRP control over the resumption of tip growth after osmotic stress is distinct from its control of tip growth following heat or gravitational stresses.
Collapse
Affiliation(s)
- Alasdair M Robertson
- CRUK Cell Division Laboratory, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | |
Collapse
|
49
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|