1
|
Sun W, Dong Q, Li X, Gao J, Ye X, Hu C, Li F, Chen Y. The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B. Nat Commun 2024; 15:4322. [PMID: 38773107 PMCID: PMC11109203 DOI: 10.1038/s41467-024-48418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1's functionality.
Collapse
Affiliation(s)
- Wenqi Sun
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA.
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
2
|
Som S, Paul R. Mechanistic model for nuclear migration in hyphae during mitosis. Phys Rev E 2023; 108:014401. [PMID: 37583222 DOI: 10.1103/physreve.108.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/13/2023] [Indexed: 08/17/2023]
Abstract
Saccharomyces cerevisiae and Candida albicans, the two well-known human pathogens, can be found in all three morphologies, i.e., yeast, pseudohyphae, and true hyphae. The cylindrical daughter-bud (germ tube) grows very long for true hyphae, and the cell cycle is delayed compared to the other two morphologies. The place of the nuclear division is specific for true hyphae determined by the position of the septin ring. However, the septin ring can localize anywhere inside the germ tube, unlike the mother-bud junction in budding yeast. Since the nucleus often migrates a long path in the hyphae, the underlying mechanism must be robust for executing mitosis in a timely manner. We explore the mechanism of nuclear migration through hyphae in light of mechanical interactions between astral microtubules and the cell cortex. We report that proper migration through constricted hyphae requires a large dynein pull applied on the astral microtubules from the hyphal cortex. This is achieved when the microtubules frequently slide along the hyphal cortex so that a large population of dyneins actively participate, pulling on them. Simulation shows timely migration when the dyneins from the mother cortex do not participate in pulling on the microtubules. These findings are robust for long migration and positioning of the nucleus in the germ tube at the septin ring.
Collapse
Affiliation(s)
- Subhendu Som
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Raja Paul
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Gergely ZR, Ansari S, Jones MH, Zhou B, Cash C, McIntosh R, Betterton MD. The kinesin-5 protein Cut7 moves bidirectionally on fission yeast spindles with activity that increases in anaphase. J Cell Sci 2023; 136:jcs260474. [PMID: 36655493 PMCID: PMC10112985 DOI: 10.1242/jcs.260474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Kinesin-5 motors are essential to separate mitotic spindle poles and assemble a bipolar spindle in many organisms. These motors crosslink and slide apart antiparallel microtubules via microtubule plus-end-directed motility. However, kinesin-5 localization is enhanced away from antiparallel overlaps. Increasing evidence suggests this localization occurs due to bidirectional motility or trafficking. The purified fission-yeast kinesin-5 protein Cut7 moves bidirectionally, but bidirectionality has not been shown in cells, and the function of the minus-end-directed movement is unknown. Here, we characterized the motility of Cut7 on bipolar and monopolar spindles and observed movement toward both plus- and minus-ends of microtubules. Notably, the activity of the motor increased at anaphase B onset. Perturbations to microtubule dynamics only modestly changed Cut7 movement, whereas Cut7 mutation reduced movement. These results suggest that the directed motility of Cut7 contributes to the movement of the motor. Comparison of the Cut7 mutant and human Eg5 (also known as KIF11) localization suggest a new hypothesis for the function of minus-end-directed motility and spindle-pole localization of kinesin-5s.
Collapse
Affiliation(s)
- Zachary R. Gergely
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Michele H. Jones
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Cai Cash
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
4
|
Lera-Ramirez M, Nédélec FJ, Tran PT. Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B. eLife 2022; 11:72630. [PMID: 35293864 PMCID: PMC9018073 DOI: 10.7554/elife.72630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.
Collapse
|
5
|
Zareiesfandabadi P, Elting MW. Force by minus-end motors Dhc1 and Klp2 collapses the S. pombe spindle after laser ablation. Biophys J 2022; 121:263-276. [PMID: 34951983 PMCID: PMC8790213 DOI: 10.1016/j.bpj.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
A microtubule-based machine called the mitotic spindle segregates chromosomes when eukaryotic cells divide. In the fission yeast Schizosaccharomyces pombe, which undergoes closed mitosis, the spindle forms a single bundle of microtubules inside the nucleus. During elongation, the spindle extends via antiparallel microtubule sliding by molecular motors. These extensile forces from the spindle are thought to resist compressive forces from the nucleus. We probe the mechanism and maintenance of this force balance via laser ablation of spindles at various stages of mitosis. We find that spindle pole bodies collapse toward each other after ablation, but spindle geometry is often rescued, allowing spindles to resume elongation. Although this basic behavior has been previously observed, many questions remain about the phenomenon's dynamics, mechanics, and molecular requirements. In this work, we find that previously hypothesized viscoelastic relaxation of the nucleus cannot explain spindle shortening in response to laser ablation. Instead, spindle collapse requires microtubule dynamics and is powered by the minus-end-directed motor proteins dynein Dhc1 and kinesin-14 Klp2, but it does not require the minus-end-directed kinesin Pkl1.
Collapse
Affiliation(s)
| | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, North Carolina,Cluster for Quantitative and Computational Developmental Biology, North Carolina State University, Raleigh, North Carolina,Corresponding author
| |
Collapse
|
6
|
Winters L, Ban I, Prelogović M, Kalinina I, Pavin N, Tolić IM. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol 2019; 17:42. [PMID: 31122217 PMCID: PMC6533735 DOI: 10.1186/s12915-019-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.
Collapse
Affiliation(s)
- Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Iana Kalinina
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Loiodice I, Janson ME, Tavormina P, Schaub S, Bhatt D, Cochran R, Czupryna J, Fu C, Tran PT. Quantifying Tubulin Concentration and Microtubule Number Throughout the Fission Yeast Cell Cycle. Biomolecules 2019; 9:biom9030086. [PMID: 30836700 PMCID: PMC6468777 DOI: 10.3390/biom9030086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe serves as a good genetic model organism for the molecular dissection of the microtubule (MT) cytoskeleton. However, analysis of the number and distribution of individual MTs throughout the cell cycle, particularly during mitosis, in living cells is still lacking, making quantitative modelling imprecise. We use quantitative fluorescent imaging and analysis to measure the changes in tubulin concentration and MT number and distribution throughout the cell cycle at a single MT resolution in living cells. In the wild-type cell, both mother and daughter spindle pole body (SPB) nucleate a maximum of 23 ± 6 MTs at the onset of mitosis, which decreases to a minimum of 4 ± 1 MTs at spindle break down. Interphase MT bundles, astral MT bundles, and the post anaphase array (PAA) microtubules are composed primarily of 1 ± 1 individual MT along their lengths. We measure the cellular concentration of αβ-tubulin subunits to be ~5 µM throughout the cell cycle, of which one-third is in polymer form during interphase and one-quarter is in polymer form during mitosis. This analysis provides a definitive characterization of αβ-tubulin concentration and MT number and distribution in fission yeast and establishes a foundation for future quantitative comparison of mutants defective in MTs.
Collapse
Affiliation(s)
- Isabelle Loiodice
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcel E Janson
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sebastien Schaub
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Divya Bhatt
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Cochran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Czupryna
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuanhai Fu
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phong T Tran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.
| |
Collapse
|
8
|
Shen J, Li T, Niu X, Liu W, Zheng S, Wang J, Wang F, Cao X, Yao X, Zheng F, Fu C. The J-domain cochaperone Rsp1 interacts with Mto1 to organize noncentrosomal microtubule assembly. Mol Biol Cell 2019; 30:256-267. [PMID: 30427751 PMCID: PMC6589567 DOI: 10.1091/mbc.e18-05-0279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule biogenesis initiates at various intracellular sites, including the centrosome, the Golgi apparatus, the nuclear envelope, and preexisting microtubules. Similarly, in the fission yeast Schizosaccharomyces pombe, interphase microtubules are nucleated at the spindle pole body (SPB), the nuclear envelope, and preexisting microtubules, depending on Mto1 activity. Despite the essential role of Mto1 in promoting microtubule nucleation, how distribution of Mto1 in different sites is regulated has remained elusive. Here, we show that the J-domain cochaperone Rsp1 interacts with Mto1 and specifies the localization of Mto1 to non-SPB nucleation sites. The absence of Rsp1 abolishes the localization of Mto1 to non-SPB nucleation sites, with concomitant enrichment of Mto1 to the SPB and the nuclear envelope. In contrast, Rsp1 overexpression impairs the localization of Mto1 to all microtubule organization sites. These findings delineate a previously uncharacterized mechanism in which Rsp1-Mto1 interaction orchestrates non-SPB microtubule formation.
Collapse
Affiliation(s)
- Juan Shen
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Tianpeng Li
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaojia Niu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Wenyue Liu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Shengnan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wang
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xuebiao Yao
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
9
|
Klemm AH, Bosilj A, Gluncˇic M, Pavin N, Tolic IM. Metaphase kinetochore movements are regulated by kinesin-8 motors and microtubule dynamic instability. Mol Biol Cell 2018; 29:1332-1345. [PMID: 29851559 PMCID: PMC5994901 DOI: 10.1091/mbc.e17-11-0667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.
Collapse
Affiliation(s)
- Anna H Klemm
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Matko Gluncˇic
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva M Tolic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Division of Molecular Biology, Rud¯er Boškovic´ Institute, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Tolić IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:191-203. [PMID: 28725997 PMCID: PMC5845649 DOI: 10.1007/s00249-017-1244-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022]
Abstract
When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.
Collapse
Affiliation(s)
- Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
11
|
von Loeffelholz O, Venables NA, Drummond DR, Katsuki M, Cross R, Moores CA. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics. Nat Commun 2017; 8:2110. [PMID: 29235477 PMCID: PMC5727398 DOI: 10.1038/s41467-017-02241-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 11/18/2022] Open
Abstract
Using cryo-electron microscopy, we characterize the architecture of microtubules assembled from Schizosaccharomyces pombe tubulin, in the presence and absence of their regulatory partner Mal3. Cryo-electron tomography reveals that microtubules assembled from S. pombe tubulin have predominantly B-lattice interprotofilament contacts, with protofilaments skewed around the microtubule axis. Copolymerization with Mal3 favors 13 protofilament microtubules with reduced protofilament skew, indicating that Mal3 adjusts interprotofilament interfaces. A 4.6-Å resolution structure of microtubule-bound Mal3 shows that Mal3 makes a distinctive footprint on the S. pombe microtubule lattice and that unlike mammalian microtubules, S. pombe microtubules do not show the longitudinal lattice compaction associated with EB protein binding and GTP hydrolysis. Our results firmly support a structural plasticity view of microtubule dynamics in which microtubule lattice conformation is sensitive to a variety of effectors and differently so for different tubulins. Microtubules are vital and highly conserved components of the cytoskeleton. Here the authors carry out a structural analysis of fission yeast microtubules in the presence and absence of the microtubule end-binding protein Mal3 that demonstrates structural plasticity amongst microtubule polymers.
Collapse
Affiliation(s)
- Ottilie von Loeffelholz
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK.,Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, 1 rue Laurent Fries, Illkirch, France
| | - Neil A Venables
- Division of Biomedical Cell Biology, Warwick Medical School, CV4 7AL, Coventry, UK.,CRUK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Douglas Robert Drummond
- Division of Biomedical Cell Biology, Warwick Medical School, CV4 7AL, Coventry, UK.,Centre for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Miho Katsuki
- Division of Biomedical Cell Biology, Warwick Medical School, CV4 7AL, Coventry, UK.,Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Robert Cross
- Division of Biomedical Cell Biology, Warwick Medical School, CV4 7AL, Coventry, UK
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK.
| |
Collapse
|
12
|
Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast. Nat Commun 2017; 8:15286. [PMID: 28513584 PMCID: PMC5442317 DOI: 10.1038/ncomms15286] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/13/2017] [Indexed: 12/04/2022] Open
Abstract
Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors. Bipolar spindle assembly requires a balance of kinesin 14 pulling and kinesin 5 pushing forces. Here, the authors show that in fission yeast, spindle formation can occur in the absence of kinesin 5 (Cut7) and 14 (Pkl1) but requires the microtubule-associated protein Ase1 for spindle bipolarity.
Collapse
|
13
|
Asbury CL. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles. BIOLOGY 2017; 6:E15. [PMID: 28218660 PMCID: PMC5372008 DOI: 10.3390/biology6010015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through 'flux', where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed.
Collapse
Affiliation(s)
- Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Stankovic A, Jansen LET. Quantitative Microscopy Reveals Centromeric Chromatin Stability, Size, and Cell Cycle Mechanisms to Maintain Centromere Homeostasis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:139-162. [PMID: 28840236 DOI: 10.1007/978-3-319-58592-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.
Collapse
Affiliation(s)
- Ana Stankovic
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Lars E T Jansen
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| |
Collapse
|
15
|
Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. SCIENCE ADVANCES 2017; 3:e1601603. [PMID: 28116355 PMCID: PMC5249259 DOI: 10.1126/sciadv.1601603] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 05/10/2023]
Abstract
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- PULS Group, Department of Physics and Cluster of Excellence: Engineering of Advanced Materials, Friedrich-Alexander University Erlangen-Nurnberg, Nagelsbachstr. 49b, Erlangen, Germany
| | | | | | - Adam Lamson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zachary R. Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Eileen O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Loren E. Hough
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
16
|
Blackwell R, Sweezy-Schindler O, Edelmaier C, Gergely ZR, Flynn PJ, Montes S, Crapo A, Doostan A, McIntosh JR, Glaser MA, Betterton MD. Contributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture. Biophys J 2016; 112:552-563. [PMID: 27692365 DOI: 10.1016/j.bpj.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/08/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022] Open
Abstract
Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture time by 25%. Our results suggest that while microtubule rotational diffusion can speed up kinetochore capture, it is unlikely to be the dominant physical mechanism for typical conditions in fission yeast. In addition, we found that when microtubules undergo dynamic instability, lateral captures predominate even in the absence of rotational diffusion. Counterintuitively, adding rotational diffusion to a dynamic microtubule increases the probability of end-on capture.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | | | - Zachary R Gergely
- Department of Physics, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Patrick J Flynn
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Salvador Montes
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Alireza Doostan
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Meredith D Betterton
- Department of Physics, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
17
|
Nakazawa N, Mehrotra R, Arakawa O, Yanagida M. ICRF
‐193, an anticancer topoisomerase
II
inhibitor, induces arched telophase spindles that snap, leading to a ploidy increase in fission yeast. Genes Cells 2016; 21:978-93. [DOI: 10.1111/gtc.12397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Norihiko Nakazawa
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| | - Rajesh Mehrotra
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
- Department of Biological Sciences BITS Pilani Rajasthan 333031 India
| | - Orie Arakawa
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| |
Collapse
|
18
|
Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell 2016; 27:3490-3514. [PMID: 27146110 PMCID: PMC5221583 DOI: 10.1091/mbc.e15-07-0505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results. Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309.,Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Ammon Crapo
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | | |
Collapse
|
19
|
Lucena R, Dephoure N, Gygi SP, Kellogg DR, Tallada VA, Daga RR, Jimenez J. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly. ACTA ACUST UNITED AC 2015; 209:387-402. [PMID: 25963819 PMCID: PMC4427787 DOI: 10.1083/jcb.201412144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the membrane domain surrounding the mitotic spindle midzone promotes spindle midzone dissolution in fission yeast. During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast.
Collapse
Affiliation(s)
- Rafael Lucena
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| |
Collapse
|
20
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
21
|
Pivoting of microtubules around the spindle pole accelerates kinetochore capture. Nat Cell Biol 2012; 15:82-7. [PMID: 23222841 DOI: 10.1038/ncb2640] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022]
Abstract
During cell division, spindle microtubules attach to chromosomes through kinetochores, protein complexes on the chromosome. The central question is how microtubules find kinetochores. According to the pioneering idea termed search-and-capture, numerous microtubules grow from a centrosome in all directions and by chance capture kinetochores. The efficiency of search-and-capture can be improved by a bias in microtubule growth towards the kinetochores, by nucleation of microtubules at the kinetochores and at spindle microtubules, by kinetochore movement, or by a combination of these processes. Here we show in fission yeast that kinetochores are captured by microtubules pivoting around the spindle pole, instead of growing towards the kinetochores. This pivoting motion of microtubules is random and independent of ATP-driven motor activity. By introducing a theoretical model, we show that the measured random movement of microtubules and kinetochores is sufficient to explain the process of kinetochore capture. Our theory predicts that the speed of capture depends mainly on how fast microtubules pivot, which was confirmed experimentally by speeding up and slowing down microtubule pivoting. Thus, pivoting motion allows microtubules to explore space laterally, as they search for targets such as kinetochores.
Collapse
|
22
|
Erent M, Drummond DR, Cross RA. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 2012; 7:e30738. [PMID: 22363481 PMCID: PMC3282699 DOI: 10.1371/journal.pone.0030738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1) are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs). Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.
Collapse
Affiliation(s)
- Muriel Erent
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Douglas R. Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Robert A. Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
23
|
Bieling P, Telley IA, Surrey T. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 2010; 142:420-32. [PMID: 20691901 DOI: 10.1016/j.cell.2010.06.033] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/19/2010] [Accepted: 06/07/2010] [Indexed: 01/21/2023]
Abstract
During cell division, microtubules are arranged in a large bipolar structure, the mitotic spindle, to segregate the duplicated chromosomes. Antiparallel microtubule overlaps in the spindle center are essential for establishing bipolarity and maintaining spindle stability throughout mitosis. In anaphase, this antiparallel microtubule array is tightly bundled forming the midzone, which serves as a hub for the recruitment of proteins essential for late mitotic events. The molecular mechanism of midzone formation and the control of its size are not understood. Using an in vitro reconstitution approach, we show here that PRC1 autonomously bundles antiparallel microtubules and recruits Xklp1, a kinesin-4, selectively to overlapping antiparallel microtubules. The processive motor Xklp1 controls overlap size by overlap length-dependent microtubule growth inhibition. Our results mechanistically explain how the two conserved, essential midzone proteins PRC1 and Xklp1 cooperate to constitute a minimal protein module capable of dynamically organizing the core structure of the central anaphase spindle.
Collapse
Affiliation(s)
- Peter Bieling
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Tolić-Nørrelykke IM. Force and length regulation in the microtubule cytoskeleton: lessons from fission yeast. Curr Opin Cell Biol 2010; 22:21-8. [DOI: 10.1016/j.ceb.2009.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/01/2009] [Accepted: 12/15/2009] [Indexed: 01/12/2023]
|
25
|
Snaith HA, Anders A, Samejima I, Sawin KE. New and old reagents for fluorescent protein tagging of microtubules in fission yeast; experimental and critical evaluation. Methods Cell Biol 2010; 97:147-72. [PMID: 20719270 DOI: 10.1016/s0091-679x(10)97009-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The green fluorescent protein (GFP) has become a mainstay of in vivo imaging in many experimental systems. In this chapter, we first discuss and evaluate reagents currently available to image GFP-labeled microtubules in the fission yeast Schizosaccharomyces pombe, with particular reference to time-lapse applications. We then describe recent progress in the development of robust monomeric and tandem dimer red fluorescent proteins (RFPs), including mCherry, TagRFP-T, mOrange2, mKate, and tdTomato, and we present data assessing their suitability as tags in S. pombe. As part of this analysis, we introduce new PCR tagging cassettes for several RFPs, new pDUAL-based plasmids for RFP-tagging, and new RFP-tubulin strains. These reagents should improve and extend the study of microtubules and microtubule-associated proteins in S. pombe.
Collapse
Affiliation(s)
- Hilary A Snaith
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH93JR, United Kingdom
| | | | | | | |
Collapse
|
26
|
Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev Cell 2009; 17:257-67. [PMID: 19686686 DOI: 10.1016/j.devcel.2009.06.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 05/08/2009] [Accepted: 06/19/2009] [Indexed: 12/30/2022]
Abstract
The spindle midzone-composed of antiparallel microtubules, microtubule-associated proteins (MAPs), and motors-is the structure responsible for microtubule organization and sliding during anaphase B. In general, MAPs and motors stabilize the midzone and motors produce sliding. We show that fission yeast kinesin-6 motor klp9p binds to the microtubule antiparallel bundler ase1p at the midzone at anaphase B onset. This interaction depends upon the phosphorylation states of klp9p and ase1p. The cyclin-dependent kinase cdc2p phosphorylates and its antagonist phosphatase clp1p dephosphorylates klp9p and ase1p to control the position and timing of klp9p-ase1p interaction. Failure of klp9p-ase1p binding leads to decreased spindle elongation velocity. The ase1p-mediated recruitment of klp9p to the midzone accelerates pole separation, as suggested by computer simulation. Our findings indicate that a phosphorylation switch controls the spatial-temporal interactions of motors and MAPs for proper anaphase B, and suggest a mechanism whereby a specific motor-MAP conformation enables efficient microtubule sliding.
Collapse
|
27
|
Vogel SK, Pavin N, Maghelli N, Jülicher F, Tolić-Nørrelykke IM. Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol 2009; 7:e1000087. [PMID: 19385717 PMCID: PMC2671556 DOI: 10.1371/journal.pbio.1000087] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 03/04/2009] [Indexed: 11/19/2022] Open
Abstract
Meiotic nuclear oscillations in the fission yeast Schizosaccharomyces pombe are crucial for proper chromosome pairing and recombination. We report a mechanism of these oscillations on the basis of collective behavior of dynein motors linking the cell cortex and dynamic microtubules that extend from the spindle pole body in opposite directions. By combining quantitative live cell imaging and laser ablation with a theoretical description, we show that dynein dynamically redistributes in the cell in response to load forces, resulting in more dynein attached to the leading than to the trailing microtubules. The redistribution of motors introduces an asymmetry of motor forces pulling in opposite directions, leading to the generation of oscillations. Our work provides the first direct in vivo observation of self-organized dynamic dynein distributions, which, owing to the intrinsic motor properties, generate regular large-scale movements in the cell.
Collapse
Affiliation(s)
- Sven K Vogel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nenad Pavin
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | |
Collapse
|
28
|
Bratman SV, Chang F. Mechanisms for maintaining microtubule bundles. Trends Cell Biol 2008; 18:580-6. [PMID: 18951798 DOI: 10.1016/j.tcb.2008.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
The dynamics of microtubules (MTs) are crucial to many of their functions. Certain MT structures, such as the mitotic spindle apparatus, exhibit high MT turnover yet maintain their mass stably through long periods of time. Here, we highlight what are emerging as two important mechanisms for maintaining MT bundles: the first, MT nucleation from pre-existing MTs by means of gamma-tubulin-containing complexes; and the second, MT 'rescue' by the stabilizing protein CLASP. As examples, we describe recent advances in understanding the assembly and maintenance of simple MT bundles in fission yeast and plant cells, which have implications for the bundles of the animal mitotic spindle.
Collapse
Affiliation(s)
- Scott V Bratman
- Microbiology Department, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
29
|
Unsworth A, Masuda H, Dhut S, Toda T. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics. Mol Biol Cell 2008; 19:5104-15. [PMID: 18799626 DOI: 10.1091/mbc.e08-02-0224] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fission yeast has two kinesin-8s, Klp5 and Klp6, which associate to form a heterocomplex. Here, we show that Klp5 and Klp6 are mutually dependent on each other for nuclear mitotic localization. During interphase, they are exported to the cytoplasm. In sharp contrast, during mitosis, Klp5 and Klp6 remain in the nucleus, which requires the existence of each counterpart. Canonical nuclear localization signal (NLS) is identified in the nonkinesin C-terminal regions. Intriguingly individual NLS mutants (NLSmut) exhibit loss-of-function phenotypes, suggesting that Klp5 and Klp6 enter the nucleus separately. Indeed, although neither Klp5-NLSmut nor Klp6-NLSmut enters the nucleus, wild-type Klp6 or Klp5, respectively, does so with different kinetics. In the absence of Klp5/6, microtubule catastrophe/rescue frequency and dynamicity are suppressed, whereas growth and shrinkage rates are least affected. Remarkably, chimera strains containing only the N-terminal Klp5 kinesin domains cannot disassemble interphase microtubules during mitosis, leading to the coexistence of cytoplasmic microtubules and nuclear spindles with massive chromosome missegregation. In this strain, a marked reduction of microtubule dynamism, even higher than in klp5/6 deletions, is evident. We propose that Klp5 and Klp6 play a vital role in promoting microtubule dynamics, which is essential for the spatiotemporal control of microtubule morphogenesis.
Collapse
Affiliation(s)
- Amy Unsworth
- Laboratory of Cell Regulation Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
30
|
Dikaryotic cell division of the fission yeast Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2008; 72:1531-8. [PMID: 18540083 DOI: 10.1271/bbb.80035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dikaryons, cells with two haploid nuclei contributed by the members of a mating pair, are part of the life cycle of many filamentous fungi, but the molecular mechanisms underlying the division of dikaryons are largely unknown. We found that the fission yeast Schizosaccharomyces pombe has a latent ability to divide as a dikaryon. Cells capable of restarting the mitotic cycle with two nuclei were prepared by transient inactivation of the septation initiation network. Close pairing of the two nuclei before mitosis was dependent on minus-end-directed kinesin Klp2p and was essential for propagation as a dikaryon. The two spindles extended in opposite directions, keeping their old spindle pole bodies at the prospective site of cell division until the mid-anaphase. The spindles then overlapped, exchanging the inner nuclei. Finally, twin mitosis was followed by a single cytokinesis, producing two daughter dikaryons carrying copies of the original pair of nuclei.
Collapse
|
31
|
Daga RR, Nurse P. Interphase microtubule bundles use global cell shape to guide spindle alignment in fission yeast. J Cell Sci 2008; 121:1973-80. [PMID: 18495844 DOI: 10.1242/jcs.011825] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Correct spindle alignment requires a cell to detect and interpret its global geometry and to communicate this information to the mitotic spindle. In the fission yeast, Schizosaccharomyces pombe, the mitotic spindle is aligned with the longitudinal axis of the rod-shaped cell. Here, using wild-type and cell-shape mutants we investigate the mechanism of initial spindle alignment and show that attachment of interphase microtubules to the spindle pole bodies (SPB), the yeast equivalent of the centrosome, is required to align duplicated SPBs, and thus the mitotic spindle, with the long axis of the cell. In the absence of interphase microtubules or attachment between the microtubules and the SPB, newly formed spindles are randomly oriented. We show that the axis of the mitotic spindle correlates with the axis along which the SPB, as a consequence of interphase microtubule dynamics, oscillates just before mitosis. We propose that cell geometry guides cytoplasmic microtubule alignment, which in turn, determines initial spindle alignment, and demonstrate that a failure of the spindle pre-alignment mechanism results in unequal chromosome segregation when spindle length is reduced.
Collapse
|
32
|
Bratman SV, Chang F. Stabilization of overlapping microtubules by fission yeast CLASP. Dev Cell 2008; 13:812-27. [PMID: 18061564 DOI: 10.1016/j.devcel.2007.10.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 08/10/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.
Collapse
Affiliation(s)
- Scott V Bratman
- Microbiology Department, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
33
|
Liu Y, Vikis HG, Yi Y, Futamura M, Wang Y, You M. Degradation of lung adenoma susceptibility 1, a major candidate mouse lung tumor modifier, is required for cell cycle progression. Cancer Res 2007; 67:10207-13. [PMID: 17974961 DOI: 10.1158/0008-5472.can-07-2574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously identified murine lung adenoma susceptibility 1 (Las1) as the pulmonary adenoma susceptibility 1 candidate gene. Las1 has two natural alleles, Las1-A/J and Las1-B6. Las1 encodes an 85-kDa protein with uncharacterized biological function. In the present study, we report that Las1 is an unstable protein and the rapid destruction of Las1 depends on the ubiquitin-proteasome pathway. Las1 is a new microtubule-binding protein and Las1 associated with tubulin is not ubiquitinated. We further show that Las1-A/J is a more stable protein than Las1-B6. Las1 is expressed in the G(2) phase of the cell cycle and that ubiquitin-proteasome-mediated Las1 destruction occurs in mitosis. Overexpression of Las1-A/J inhibits normal E10 cell proliferation and induces a defective cytokinesis. The differential degradation of Las1-A/J and Las-B6 has important implications for its intracellular function and may eventually explain Las1-A/J in lung tumorigenesis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
34
|
Höög JL, Schwartz C, Noon AT, O'Toole ET, Mastronarde DN, McIntosh JR, Antony C. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev Cell 2007; 12:349-61. [PMID: 17336902 DOI: 10.1016/j.devcel.2007.01.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 12/08/2006] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
Polarized cells, such as neuronal, epithelial, and fungal cells, all display a specialized organization of their microtubules (MTs). The interphase MT cytoskeleton of the rod-shaped fission yeast, Schizosaccharomyces pombe, has been extensively described by fluorescence microscopy. Here, we describe a large-scale, electron tomography investigation of S. pombe, including a 3D reconstruction of a complete eukaryotic cell volume at sufficient resolution to show both how many MTs there are in a bundle and their detailed architecture. Most cytoplasmic MTs are open at one end and capped at the other, providing evidence about their polarity. Electron-dense bridges between the MTs themselves and between MTs and the nuclear envelope were frequently observed. Finally, we have investigated structure/function relationships between MTs and both mitochondria and vesicles. Our analysis shows that electron tomography of well-preserved cells is ideally suited for describing fine ultrastructural details that were not visible with previous techniques.
Collapse
Affiliation(s)
- Johanna L Höög
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Kerres A, Jakopec V, Fleig U. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol Biol Cell 2007; 18:2441-54. [PMID: 17442892 PMCID: PMC1924829 DOI: 10.1091/mbc.e06-08-0738] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spc7, a member of the conserved Spc105/KNL-1 family of kinetochore proteins, was identified as an interaction partner of the EB1 homologue Mal3. Spc7 associates with the central centromere region of the chromosome but does not affect transcriptional silencing. Here, we show that Spc7 is required for the integrity of the spindle as well as for targeting of MIND but not of Ndc80 complex components to the kinetochore. Spindle defects in spc7 mutants were severe ranging from the inability to form a bipolar spindle in early mitosis to broken spindles in midanaphase B. spc7 mutant phenotypes were partially rescued by extra alpha-tubulin or extra Mal2. Thus, Spc7 interacts genetically with the Mal2-containing Sim4 complex.
Collapse
Affiliation(s)
- Anne Kerres
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Visnja Jakopec
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Abstract
A simple self-assembly pathway generates cytoplasmic microtubule bundles that can locate the cell center and guide spindle assembly in fission yeast. The cylindrical cell shape automatically corrects spindle orientation errors, rendering a checkpoint unnecessary.
Collapse
Affiliation(s)
- Steven B Haase
- Biology Department, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
37
|
Janson ME, Loughlin R, Loïodice I, Fu C, Brunner D, Nédélec FJ, Tran PT. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 2007; 128:357-68. [PMID: 17254972 DOI: 10.1016/j.cell.2006.12.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/04/2006] [Accepted: 12/26/2006] [Indexed: 01/30/2023]
Abstract
Microtubule (MT) nucleation not only occurs from centrosomes, but also in large part from dispersed nucleation sites. The subsequent sorting of short MTs into networks like the mitotic spindle requires molecular motors that laterally slide overlapping MTs and bundling proteins that statically connect MTs. How bundling proteins interfere with MT sliding is unclear. In bipolar MT bundles in fission yeast, we found that the bundler ase1p localized all along the length of antiparallel MTs, whereas the motor klp2p (kinesin-14) accumulated only at MT plus ends. Consequently, sliding forces could only overcome resistant bundling forces for short, newly nucleated MTs, which were transported to their correct position within bundles. Ase1p thus regulated sliding forces based on polarity and overlap length, and computer simulations showed these mechanisms to be sufficient to generate stable bipolar bundles. By combining motor and bundling proteins, cells can thus dynamically organize stable regions of overlap between cytoskeletal filaments.
Collapse
Affiliation(s)
- Marcel E Janson
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
During the cell cycle of the fission yeast Schizosaccharomyces pombe, striking changes in the organization of the cytoplasmic microtubule cytoskeleton take place. These may serve as a model for understanding the different modes of microtubule organization that are often characteristic of differentiated higher eukaryotic cells. In the last few years, considerable progress has been made in our understanding of the organization and behaviour of fission yeast cytoplasmic microtubules, not only in the identification of the genes and proteins involved but also in the physiological analysis of function using fluorescently-tagged proteins in vivo. In this review we discuss the state of our knowledge in three areas: microtubule nucleation, regulation of microtubule dynamics and the organization and polarity of microtubule bundles. Advances in these areas provide a solid framework for a more detailed understanding of cytoplasmic microtubule organization.
Collapse
Affiliation(s)
- Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
39
|
La Carbona S, Le Goff C, Le Goff X. Fission yeast cytoskeletons and cell polarity factors: connecting at the cortex. Biol Cell 2007; 98:619-31. [PMID: 17042740 DOI: 10.1042/bc20060048] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell polarity is a fundamental property of cells from unicellular to multicellular organisms. Most of the time, it is essential so that the cells can achieve their function. The fission yeast Schizosaccharomyces pombe is a powerful genetic model organism for studying the molecular mechanisms of the cell polarity process. Indeed, S. pombe cells are rod-shaped and cell growth is restricted at the poles. The accurate localization of the cell growth machinery at the cell cortex, which involves the actin cytoskeleton, depends on cell polarity pathways that are temporally and spatially regulated. The importance of interphase microtubules and cell polarity factors acting at the cortex of cell ends in this process has been shown. Here, we review recent advances in knowledge of molecular pathways leading to the establishment of a cellular axis in fission yeast. We also describe the role of cortical proteins and mitotic cytoskeletal rearrangements that control the symmetry of cell division.
Collapse
Affiliation(s)
- Stéphanie La Carbona
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140 Génétique Fonctionnelle, Agronomie et Santé, Faculté de Médecine, 2 Av. du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | | | | |
Collapse
|
40
|
Grishchuk EL, McIntosh JR. Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J 2006; 25:4888-96. [PMID: 17036054 PMCID: PMC1618090 DOI: 10.1038/sj.emboj.7601353] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 08/23/2006] [Indexed: 11/08/2022] Open
Abstract
Prometaphase kinetochores interact with spindle microtubules (MTs) to establish chromosome bi-orientation. Before becoming bi-oriented, chromosomes frequently exhibit poleward movements (P-movements), which are commonly attributed to minus end-directed, MT-dependent motors. In fission yeast there are three such motors: dynein and two kinesin-14s, Pkl1p and Klp2p. None of these enzymes is essential for viability, and even the triple deletion grows well. This might be due to the fact that yeasts kinetochores are normally juxtapolar at mitosis onset, removing the need for poleward chromosome movement during prometaphase. Anaphase P-movement might also be dispensable in a spindle that elongates significantly. To test this supposition, we have analyzed kinetochore dynamics in cells whose kinetochore-pole connections have been dispersed. In cells recovering from this condition, the maximum rate of poleward kinetochore movement was unaffected by the deletion of any or all of these motors, strongly suggesting that other factors, like MT depolymerization, can cause such movements in vivo. However, Klp2p, which localizes to kinetochores, contributed to the effectiveness of P-movement by promoting the shortening of kinetochore fibers.
Collapse
|
41
|
Masuda H, Toda T, Miyamoto R, Haraguchi T, Hiraoka Y. Modulation of Alp4 function in Schizosaccharomyces pombe induces novel phenotypes that imply distinct functions for nuclear and cytoplasmic gamma-tubulin complexes. Genes Cells 2006; 11:319-36. [PMID: 16611237 DOI: 10.1111/j.1365-2443.2006.00946.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gamma-tubulin complex acts as a nucleation unit for microtubule assembly. It remains unknown, however, how spatial and temporal regulation of the complex activity affects microtubule-mediated cellular processes. Alp4 is one of the essential components of the S. pombe gamma-tubulin complex. We show here that overproduction of a carboxy-terminal form of Alp4 (Alp4C) and its derivatives tagged to a nuclear localization signal or to a nuclear export signal affect localization of gamma-tubulin complexes and induces novel phenotypes that reflect distinct functions of nuclear and cytoplasmic gamma-tubulin complexes. Nuclear Alp4C induces a Wee1-dependent G2 delay, reduces the levels of the gamma-tubulin complex at the spindle pole body, and results in defects in mitotic progression including spindle assembly, cytoplasmic microtubule disassembly, and chromosome segregation. In contrast, cytoplasmic Alp4C induces oscillatory nuclear movement and affects levels of cell polarity markers, Bud6 and Tip1, at the cell ends. These results demonstrate that regulation of nuclear gamma-tubulin complex activity is essential for cell cycle progression through the G2/M boundary and M phase, whereas regulation of cytoplasmic gamma-tubulin complex activity is important for nuclear positioning and cell polarity control during interphase.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Cell Biology Group and CREST/JST, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| | | | | | | | | |
Collapse
|
42
|
Masuda H, Miyamoto R, Haraguchi T, Hiraoka Y. The carboxy-terminus of Alp4 alters microtubule dynamics to induce oscillatory nuclear movement led by the spindle pole body in Schizosaccharomyces pombe. Genes Cells 2006; 11:337-52. [PMID: 16611238 DOI: 10.1111/j.1365-2443.2006.00947.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alp4 is an essential component of the S. pombe gamma-tubulin complex. Overproduction of the carboxy-terminus of Alp4 induces oscillatory nuclear movement led by the spindle pole body (SPB). The movement is not dependent on cytoplasmic dynein dhc1, or kinesin-related proteins pkl1 and klp2. Rates of SPB movement correlate with elongation rates of microtubules (MTs) extending backwards from the moving SPB (backward-extending MTs), showing that pushing forces exerted by backward-extending MTs move the nucleus via the SPB. These backward-extending MTs are more stable than those of control cells and, thus, are able to push the SPB further towards the cell end, inducing nuclear oscillation with larger amplitudes than in control cells. SPB movement is biased towards the new end of the cell where levels of the CLIP170 homolog Tip1 increase, suggesting that the movement is related to MT-mediated cell polarity control. These results demonstrate that the carboxy-terminus of Alp4 alters MT dynamics and induces nuclear oscillation by modulating a nuclear positioning mechanism based on the balance of MT pushing forces, and suggest that regulation of gamma-tubulin complex activity is important for controlling MT dynamics and nuclear positioning.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Cell Biology Group and CREST/JST, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| | | | | | | |
Collapse
|
43
|
Daga RR, Yonetani A, Chang F. Asymmetric Microtubule Pushing Forces in Nuclear Centering. Curr Biol 2006; 16:1544-50. [PMID: 16890530 DOI: 10.1016/j.cub.2006.06.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 11/28/2022]
Abstract
Dynamic properties of microtubules contribute to the establishment of spatial order within cells. In the fission yeast Schizosaccharomyces pombe, interphase cytoplasmic microtubules are organized into antiparallel bundles that attach to the nuclear envelope and are needed to position the nucleus at the geometric center of the cell. Here, we show that after the nucleus is displaced by cell centrifugation, these microtubule bundles efficiently push the nucleus back to the center. Asymmetry in microtubule number, length, and dynamics contributes to the generation of force responsible for this unidirectional movement. Notably, microtubules facing the distal cell tip are destabilized when the microtubules in the same bundle are pushing from the proximal cell tip. The CLIP-170-like protein tip1p and the microtubule-bundling protein ase1p are required for this asymmetric regulation of microtubule dynamics, indicating contributions of factors both at microtubule plus ends and within the microtubule bundle. Mutants in these factors are defective in nuclear movement. Thus, cells possess an efficient microtubule-based engine that produces and senses forces for centering the nucleus. These studies may provide insights into mechanisms of asymmetric microtubule behaviors and force sensing in other processes such as chromosome segregation and cell polarization.
Collapse
Affiliation(s)
- Rafael R Daga
- Department of Microbiology, Columbia University College of Physicians and Surgeon, New York, New York 10032, USA
| | | | | |
Collapse
|
44
|
Gachet Y, Reyes C, Goldstone S, Tournier S. The fission yeast spindle orientation checkpoint: a model that generates tension? Yeast 2006; 23:1015-29. [PMID: 17072894 DOI: 10.1002/yea.1410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression.
Collapse
Affiliation(s)
- Yannick Gachet
- LBCMCP-CNRS UMR5088, Institut d'Exploration Fonctionelle des Génomes (IFR109), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
45
|
Carazo-Salas RE, Antony C, Nurse P. The Kinesin Klp2 Mediates Polarization of Interphase Microtubules in Fission Yeast. Science 2005; 309:297-300. [PMID: 16002618 DOI: 10.1126/science.1113465] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fission yeast (Schizosaccharomyces pombe) cells grow longitudinally in a manner dependent on a polarized distribution of their interphase microtubules. We found that this distribution required sliding of microtubules toward the cell center along preexisting microtubules. This sliding was mediated by the minus end-directed kinesin motor Klp2, which helped microtubules to become properly organized with plus ends predominantly oriented toward the cell ends and minus ends toward the cell center. Thus, interphase microtubules in the fission yeast require motor activities for their proper organization.
Collapse
Affiliation(s)
- Rafael E Carazo-Salas
- Cell Cycle Laboratory, 44 Lincoln's Inn Fields, Cancer Research UK, London Research Institute, WC2A 1PX, UK.
| | | | | |
Collapse
|
46
|
Tatebe H, Shimada K, Uzawa S, Morigasaki S, Shiozaki K. Wsh3/Tea4 Is a Novel Cell-End Factor Essential for Bipolar Distribution of Tea1 and Protects Cell Polarity under Environmental Stress in S. pombe. Curr Biol 2005; 15:1006-15. [PMID: 15936270 DOI: 10.1016/j.cub.2005.04.061] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 11/24/2022]
Abstract
BACKGROUND The fission yeast Schizosaccharomyces pombe has a cylindrical cell shape, for which growth is strictly limited to both ends, and serves as an excellent model system for genetic analysis of cell-polarity determination. Previous studies identified a cell-end marker protein, Tea1, that is transported by cytoplasmic microtubules to cell tips and recruits other cell-end factors, including the Dyrk-family Pom1 kinase. The deltatea1 mutant cells cannot grow in a bipolar fashion and show T-shaped morphology after heat shock. RESULTS We identified Wsh3/Tea4 as a novel protein that interacts with Win1 MAP kinase kinase kinase (MAPKKK) of the stress-activated MAP kinase cascade. Wsh3 forms a complex with Tea1 and is transported to cell tips by growing microtubules. The deltawsh3 mutant shows monopolar growth with abnormal Tea1 aggregate at the non-growing cell end; this abnormal aggregate fails to recruit Pom1 kinase. Consistent with the observed interaction between Win1 and Wsh3, cells lacking Wsh3 or Tea1 show more severe cell-polarity defects under osmolarity and heat-stress stimuli that are known to activate the stress MAPK cascade. Furthermore, mutants of the stress MAPK also exhibit cell-polarity defects when exposed to the same stress. CONCLUSIONS Wsh3/Tea4 is an essential component of the Tea1 cell-end complex. In addition to its role in bipolar growth during the normal cell cycle, the Wsh3-Tea1 complex, together with the stress-signaling MAPK cascade, contributes to cell-polarity maintenance under stress conditions.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
47
|
Bimbó A, Liu J, Balasubramanian MK. Roles of Pdk1p, a fission yeast protein related to phosphoinositide-dependent protein kinase, in the regulation of mitosis and cytokinesis. Mol Biol Cell 2005; 16:3162-75. [PMID: 15857958 PMCID: PMC1165401 DOI: 10.1091/mbc.e04-09-0769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proteins related to the phosphoinositide-dependent protein kinase family have been identified in the majority of eukaryotes. Although much is known about upstream mechanisms that regulate the PDK1-family of kinases in metazoans, how these kinases regulate cell growth and division remains unclear. Here, we characterize a fission yeast protein related to members of this family, which we have termed Pdk1p. Pdk1p localizes to the spindle pole body and the actomyosin ring in early mitotic cells. Cells deleted for pdk1 display multiple defects in mitosis and cytokinesis, all of which are exacerbated when the function of fission yeast polo kinase, Plo1p, is partially compromised. We conclude that Pdk1p functions in concert with Plo1p to regulate multiple processes such as the establishment of a bipolar mitotic spindle, transition to anaphase, placement of the actomyosin ring and proper execution of cytokinesis. We also present evidence that the effects of Pdk1p on cytokinesis are likely mediated via the fission yeast anillin-related protein, Mid1p, and the septation initiation network.
Collapse
Affiliation(s)
- Andrea Bimbó
- Cell Division Laboratory, Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
48
|
Janson ME, Setty TG, Paoletti A, Tran PT. Efficient formation of bipolar microtubule bundles requires microtubule-bound gamma-tubulin complexes. ACTA ACUST UNITED AC 2005; 169:297-308. [PMID: 15837798 PMCID: PMC2171869 DOI: 10.1083/jcb.200410119] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism for forming linear microtubule (MT) arrays in cells such as neurons, polarized epithelial cells, and myotubes is not well understood. A simpler bipolar linear array is the fission yeast interphase MT bundle, which in its basic form contains two MTs that are bundled at their minus ends. Here, we characterize mto2p as a novel fission yeast protein required for MT nucleation from noncentrosomal γ-tubulin complexes (γ-TuCs). In interphase mto2Δ cells, MT nucleation was strongly inhibited, and MT bundling occurred infrequently and only when two MTs met by chance in the cytoplasm. In wild-type 2, we observed MT nucleation from γ-TuCs bound along the length of existing MTs. We propose a model on how these nucleation events can more efficiently drive the formation of bipolar MT bundles in interphase. Key to the model is our observation of selective antiparallel binding of MTs, which can both explain the generation and spatial separation of multiple bipolar bundles.
Collapse
Affiliation(s)
- Marcel E Janson
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | |
Collapse
|
49
|
Venkatram S, Jennings JL, Link A, Gould KL. Mto2p, a novel fission yeast protein required for cytoplasmic microtubule organization and anchoring of the cytokinetic actin ring. Mol Biol Cell 2005; 16:3052-63. [PMID: 15800064 PMCID: PMC1142447 DOI: 10.1091/mbc.e04-12-1043] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubules regulate diverse cellular processes, including chromosome segregation, nuclear positioning, and cytokinesis. In many organisms, microtubule nucleation requires gamma-tubulin and associated proteins present at specific microtubule organizing centers (MTOCs). In fission yeast, interphase cytoplasmic microtubules originate from poorly characterized interphase MTOCs and spindle pole body (SPB), and during late anaphase from the equatorial MTOC (EMTOC). It has been previously shown that Mto1p (Mbo1p/Mod20p) function is important for the organization/nucleation of all cytoplasmic microtubules. Here, we show that Mto2p, a novel protein, interacts with Mto1p and is important for establishing a normal interphase cytoplasmic microtubule array. In addition, mto2Delta cells fail to establish a stable EMTOC and localize gamma-tubulin complex members to this medial structure. As predicted from these functions, Mto2p localizes to microtubules, the SPB, and the EMTOC in an Mto1p-dependent manner. mto2Delta cells fail to anchor the cytokinetic actin ring in the medial region of the cell and under conditions that mildly perturb actin structures, these rings unravel in mto2Delta cells. Our results suggest that the Mto2p and the EMTOC are critical for anchoring the cytokinetic actin ring to the medial region of the cell and for proper coordination of mitosis with cytokinesis.
Collapse
Affiliation(s)
- Srinivas Venkatram
- Department of Cell and Developmental Biology and Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
50
|
Pardo M, Nurse P. The nuclear rim protein Amo1 is required for proper microtubule cytoskeleton organisation in fission yeast. J Cell Sci 2005; 118:1705-14. [PMID: 15797925 DOI: 10.1242/jcs.02305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubules have a central role in cell division and cell polarity in eukaryotic cells. The fission yeast is a useful organism for studying microtubule regulation owing to the highly organised nature of its microtubular arrays. To better understand microtubule dynamics and organisation we carried out a screen that identified over 30 genes whose overexpression resulted in microtubule cytoskeleton abnormalities. Here we describe a novel nucleoporin-like protein, Amo1, identified in this screen. Amo1 localises to the nuclear rim in a punctate pattern that does not overlap with nuclear pore complex components. Amo1Delta cells are bent, and they have fewer microtubule bundles that curl around the cell ends. The microtubules in amo1Delta cells have longer dwelling times at the cell tips, and grow in an uncoordinated fashion. Lack of Amo1 also causes a polarity defect. Amo1 is not required for the microtubule loading of several factors affecting microtubule dynamics, and does not seem to be required for nuclear pore function.
Collapse
Affiliation(s)
- Mercedes Pardo
- Cell Cycle Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | |
Collapse
|