1
|
Ogneva IV, Zhdankina YS, Gogichaeva KK, Malkov AA, Biryukov NS. The Motility of Mouse Spermatozoa Changes Differentially After 30-Minute Exposure Under Simulating Weightlessness and Hypergravity. Int J Mol Sci 2024; 25:13561. [PMID: 39769324 PMCID: PMC11678010 DOI: 10.3390/ijms252413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Research into the mechanisms by which gravity influences spermatozoa has implications for maintaining the species in deep space exploration and may provide new approaches to reproductive technologies on Earth. Changes in the speed of mouse spermatozoa after 30 min exposure to simulated weightlessness (by 3D-clinostat) and 2 g hypergravity (by centrifugation) were studied using inhibitory analysis. Simulated microgravity after 30 min led to an increase in the speed of spermatozoa and against the background of an increase in the relative calcium content in the cytoplasm. This effect was prevented by the introduction of 6-(dimethylamino) purine, wortmannin, and calyculin A. Hypergravity led to a decrease in the speed of spermatozoa movement, which was prevented by sodium orthovanadate and calyculin A. At the same time, under microgravity conditions, there was a redistribution of proteins forming microfilament bundles between the membrane and cytoplasmic compartments and under hypergravity conditions-proteins forming networks. The obtained results indicate that even a short exposure of spermatozoa to altered gravity leads to the launch of mechanotransduction pathways in them and a change in motility.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
- Yu.A. Gagarin Research and Test Cosmonaut Training Center, 141160 Star City, Moscow Region, Russia
| | - Yulia S. Zhdankina
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ksenia K. Gogichaeva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
| | - Artyom A. Malkov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
2
|
Javary J, Goupil E, Soulez M, Kanshin E, Bouchard A, Seternes OM, Thibault P, Labbé JC, Meloche S. Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy. J Cell Physiol 2024; 239:e30938. [PMID: 36576983 DOI: 10.1002/jcp.30938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.
Collapse
Affiliation(s)
- Joaquim Javary
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Eugénie Goupil
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- NYU Langone Health, New York City, New York, USA
| | - Antoine Bouchard
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Kameishi S, Dunn CM, Oka M, Kim K, Cho YK, Song SU, Grainger DW, Okano T. Rapid and effective preparation of clonal bone marrow-derived mesenchymal stem/stromal cell sheets to reduce renal fibrosis. Sci Rep 2023; 13:4421. [PMID: 36932137 PMCID: PMC10023793 DOI: 10.1038/s41598-023-31437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Allogeneic "off-the-shelf" mesenchymal stem/stromal cell (MSC) therapy requires scalable, quality-controlled cell manufacturing and distribution systems to provide clinical-grade products using cryogenic cell banking. However, previous studies report impaired cell function associated with administering freeze-thawed MSCs as single cell suspensions, potentially compromising reliable therapeutic efficacy. Using long-term culture-adapted clinical-grade clonal human bone marrow MSCs (cBMSCs) in this study, we engineered cBMSC sheets in 24 h to provide rapid preparation. We then sought to determine the influence of cBMSC freeze-thawing on both in vitro production of pro-regenerative factors and in vivo ability to reduce renal fibrosis in a rat model compared to freshly harvested cBMSCs. Sheets from freeze-thawed cBMSCs sheets exhibited comparable in vitro protein production and gene expression of pro-regenerative factors [e.g., hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin 10 (IL-10)] to freshly harvested cBMSC sheets. Additionally, freeze-thawed cBMSC sheets successfully suppressed renal fibrosis in vivo in an established rat ischemia-reperfusion injury model. Despite previous studies reporting that freeze-thawed MSCs exhibit impaired cell functions compared to fresh MSC single cell suspensions, cell sheets engineered from freeze-thawed cBMSCs do not exhibit impaired cell functions, supporting critical steps toward future clinical translation of cBMSC-based kidney disease treatment.
Collapse
Affiliation(s)
- Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA.
| | - Celia M Dunn
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Masatoshi Oka
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
| | | | - Sun U Song
- SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA.
- Institute for Advanced Biomedical Sciences, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
4
|
Smith TC, Vasilakos G, Shaffer SA, Puglise JM, Chou CH, Barton ER, Luna EJ. Novel γ-sarcoglycan interactors in murine muscle membranes. Skelet Muscle 2022; 12:2. [PMID: 35065666 PMCID: PMC8783446 DOI: 10.1186/s13395-021-00285-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sarcoglycan complex (SC) is part of a network that links the striated muscle cytoskeleton to the basal lamina across the sarcolemma. The SC coordinates changes in phosphorylation and Ca++-flux during mechanical deformation, and these processes are disrupted with loss-of-function mutations in gamma-sarcoglycan (Sgcg) that cause Limb girdle muscular dystrophy 2C/R5. METHODS To gain insight into how the SC mediates mechano-signaling in muscle, we utilized LC-MS/MS proteomics of SC-associated proteins in immunoprecipitates from enriched sarcolemmal fractions. Criteria for inclusion were co-immunoprecipitation with anti-Sgcg from C57BL/6 control muscle and under-representation in parallel experiments with Sgcg-null muscle and with non-specific IgG. Validation of interaction was performed in co-expression experiments in human RH30 rhabdomyosarcoma cells. RESULTS We identified 19 candidates as direct or indirect interactors for Sgcg, including the other 3 SC proteins. Novel potential interactors included protein-phosphatase-1-catalytic-subunit-beta (Ppp1cb, PP1b) and Na+-K+-Cl--co-transporter NKCC1 (SLC12A2). NKCC1 co-localized with Sgcg after co-expression in human RH30 rhabdomyosarcoma cells, and its cytosolic domains depleted Sgcg from cell lysates upon immunoprecipitation and co-localized with Sgcg after detergent permeabilization. NKCC1 localized in proximity to the dystrophin complex at costameres in vivo. Bumetanide inhibition of NKCC1 cotransporter activity in isolated muscles reduced SC-dependent, strain-induced increases in phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In silico analysis suggests that candidate SC interactors may cross-talk with survival signaling pathways, including p53, estrogen receptor, and TRIM25. CONCLUSIONS Results support that NKCC1 is a new SC-associated signaling protein. Moreover, the identities of other candidate SC interactors suggest ways by which the SC and NKCC1, along with other Sgcg interactors such as the membrane-cytoskeleton linker archvillin, may regulate kinase- and Ca++-mediated survival signaling in skeletal muscle.
Collapse
Affiliation(s)
- Tara C Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgios Vasilakos
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Scott A Shaffer
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Jason M Puglise
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Chih-Hsuan Chou
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA.
| | - Elizabeth J Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Halder D, Mallick D, Chatterjee A, Jana SS. Nonmuscle Myosin II in cancer cell migration and mechanotransduction. Int J Biochem Cell Biol 2021; 139:106058. [PMID: 34400319 DOI: 10.1016/j.biocel.2021.106058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Cell migration is a key step of cancer metastasis, immune-cell navigation, homing of stem cells and development. What adds complexity to it is the heterogeneity of the tissue environment that gives rise to a vast diversity of migratory mechanisms utilized by cells. A majority of cell motility mechanisms reported elsewhere largely converge in depicting the importance of the activity and complexity of actomyosin networks in the cell. In this review, we highlight the less discussed functional diversity of these actomyosin complexes and describe in detail how the major cellular actin-binding molecular motor proteins, nonmuscle myosin IIs are regulated and how they participate and mechanically reciprocate to changes in the microenvironment during cancer cell migration and tumor progression. Understanding the role of nonmuscle myosin IIs in the cancer cell is important for designing efficient therapeutic strategies to prevent cancer metastasis.
Collapse
Affiliation(s)
- Debdatta Halder
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel(2)
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Ananya Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
6
|
Molecular basis of functional exchangeability between ezrin and other actin-membrane associated proteins during cytokinesis. Exp Cell Res 2021; 403:112600. [PMID: 33862101 DOI: 10.1016/j.yexcr.2021.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023]
Abstract
The mechanism that mediates the interaction between the contractile ring and the plasma membrane during cytokinesis remains elusive. We previously found that ERM (Ezrin/Radixin/Moesin) proteins, which usually mediate cellular pole contraction, become over-accumulated at the cell equator and support furrow ingression upon the loss of other actin-membrane associated proteins, anillin and supervillin. In this study, we addressed the molecular basis of the exchangeability between ezrin and other actin-membrane associated proteins in mediating cortical contraction during cytokinesis. We found that depletion of anillin and supervillin caused over-accumulation of the membrane-associated FERM domain and actin-binding C-terminal domain (C-term) of ezrin at the cleavage furrow, respectively. This finding suggests that ezrin differentially shares its binding sites with these proteins on the actin cytoskeleton or inner membrane surface. Using chimeric mutants, we found that ezrin C-term, but not the FERM domain, can substitute for the corresponding anillin domains in cytokinesis and cell proliferation. On the other hand, either the membrane-associated or the actin/myosin-binding domains of anillin could not substitute for the corresponding ezrin domains in controlling cortical blebbing at the cell poles. Our results highlight specific designs of actin- or membrane-associated moieties of different actin-membrane associated proteins with limited exchangeability, which enables them to support diverse cortical activities on the shared actin-membrane interface during cytokinesis.
Collapse
|
7
|
Hedberg-Oldfors C, Meyer R, Nolte K, Abdul Rahim Y, Lindberg C, Karason K, Thuestad IJ, Visuttijai K, Geijer M, Begemann M, Kraft F, Lausberg E, Hitpass L, Götzl R, Luna EJ, Lochmüller H, Koschmieder S, Gramlich M, Gess B, Elbracht M, Weis J, Kurth I, Oldfors A, Knopp C. Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles. Brain 2020; 143:2406-2420. [PMID: 32779703 PMCID: PMC7447519 DOI: 10.1093/brain/awaa206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
The muscle specific isoform of the supervillin protein (SV2), encoded by the SVIL gene, is a large sarcolemmal myosin II- and F-actin-binding protein. Supervillin (SV2) binds and co-localizes with costameric dystrophin and binds nebulin, potentially attaching the sarcolemma to myofibrillar Z-lines. Despite its important role in muscle cell physiology suggested by various in vitro studies, there are so far no reports of any human disease caused by SVIL mutations. We here report four patients from two unrelated, consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. All patients showed increased levels of serum creatine kinase but no or minor muscle weakness. Mild cardiac manifestations were observed. Muscle biopsies showed complete loss of large supervillin isoforms in muscle fibres by western blot and immunohistochemical analyses. Light and electron microscopic investigations revealed a structural myopathy with numerous lobulated muscle fibres and considerable myofibrillar alterations with a coarse and irregular intermyofibrillar network. Autophagic vacuoles, as well as frequent and extensive deposits of lipoproteins, including immature lipofuscin, were observed. Several sarcolemma-associated proteins, including dystrophin and sarcoglycans, were partially mis-localized. The results demonstrate the importance of the supervillin (SV2) protein for the structural integrity of muscle fibres in humans and show that recessive loss-of-function mutations in SVIL cause a distinctive and novel myopathy.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kay Nolte
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yassir Abdul Rahim
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Centre, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristjan Karason
- Department of Cardiology and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Kittichate Visuttijai
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Geijer
- Department of Radiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lausberg
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lea Hitpass
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rebekka Götzl
- Department of Plastic Surgery, Hand and Burn Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Elizabeth J Luna
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, USA
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Gramlich
- Department of Invasive Electrophysiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Burkhard Gess
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anders Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cordula Knopp
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Zhao C, Zhao Z, Wang Z, Hu L, Wang H, Fang Z. Supervillin promotes tumor angiogenesis in liver cancer. Oncol Rep 2020; 44:674-684. [PMID: 32468064 PMCID: PMC7336518 DOI: 10.3892/or.2020.7621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor angiogenesis is a hallmark of liver cancer and is necessary for tumor growth and progression. Supervillin (SVIL) is highly expressed and implicated in several malignant processes of liver cancer. However, the functional relationships between SVIL and tumor angiogenesis in liver cancer have not yet been fully elucidated. The present study was based on bioinformatics analysis, patient tissue sample detection, three-dimensional simulated blood vessel formation, a series of cytological experiments and mouse models. The results demonstrated the important role of SVIL in the progression of malignant liver cancer and tumor angiogenesis, both in terms of vasculogenic mimicry (VM) and endothelium-dependent vessel (EDV) development. SVIL knockdown inhibited VM formation and induced tumor cell apoptosis via the VEGF-p38 signaling axis and through various VM-associated transcriptional factors, including vascular endothelial-cadherin, matrix metalloproteinase 9/12 and migration-inducing protein 7. SVIL may therefore be considered a potential tumor vascular biomarker and a promising therapeutic target for patients with liver cancer.
Collapse
Affiliation(s)
- Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhen Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
9
|
MLCK and ROCK mutualism in endothelial barrier dysfunction. Biochimie 2020; 168:83-91. [DOI: 10.1016/j.biochi.2019.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023]
|
10
|
Smith TC, Saul RG, Barton ER, Luna EJ. Generation and characterization of monoclonal antibodies that recognize human and murine supervillin protein isoforms. PLoS One 2018; 13:e0205910. [PMID: 30332471 PMCID: PMC6192639 DOI: 10.1371/journal.pone.0205910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Supervillin isoforms have been implicated in cell proliferation, actin filament-based motile processes, vesicle trafficking, and signal transduction. However, an understanding of the roles of these proteins in cancer metastasis and physiological processes has been limited by the difficulty of obtaining specific antibodies against these highly conserved membrane-associated proteins. To facilitate research into the biological functions of supervillin, monoclonal antibodies were generated against the bacterially expressed human supervillin N-terminus. Two chimeric monoclonal antibodies with rabbit Fc domains (clones 1E2/CPTC-SVIL-1; 4A8/CPTC-SVIL-2) and two mouse monoclonal antibodies (clones 5A8/CPTC-SVIL-3; 5G3/CPTC-SVIL-4) were characterized with respect to their binding sites, affinities, and for efficacy in immunoblotting, immunoprecipitation, immunofluorescence microscopy and immunohistochemical staining. Two antibodies (1E2, 5G3) recognize a sequence found only in primate supervillins, whereas the other two antibodies (4A8, 5A8) are specific for a more broadly conserved conformational epitope(s). All antibodies function in immunoblotting, immunoprecipitation and in immunofluorescence microscopy under the fixation conditions identified here. We also show that the 5A8 antibody works on immunohistological sections. These antibodies should provide useful tools for the study of mammalian supervillins.
Collapse
Affiliation(s)
- Tara C. Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Richard G. Saul
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD, United States of America
| | - Elisabeth R. Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, United States of America
| | - Elizabeth J. Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chen X, Zhang S, Wang Z, Wang F, Cao X, Wu Q, Zhao C, Ma H, Ye F, Wang H, Fang Z. Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:128. [PMID: 29954442 PMCID: PMC6025706 DOI: 10.1186/s13046-018-0787-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/07/2018] [Indexed: 01/27/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with HCC. Hypoxia triggers the epithelial-mesenchymal transition (EMT) of cancer cells, which enhances their malignant character and elevates metastatic risk. Supervillin associates tightly with the membrane and cytoskeleton, promoting cell motility, invasiveness, and cell survival. However, the roles of supervillin in HCC metastasis remain unclear. Methods Tissue microarray technology was used to immunohistochemically stain for supervillin antibody in 173 HCC tissue specimens and expression levels correlated with the clinicopathological variables. Tumor cell motility and invasiveness, as well as changes in the mRNA expression levels of genes associated with cancer cell EMT, were investigated. The relationship between supervillin and Rho GTPases was examined using Co-IP and GST pull-down. Results Hypoxia-induced upregulation of supervillin promoted cancer cell migration and invasion via the activation of the ERK/p38 pathway downstream of RhoA/ROCK signaling. Furthermore, supervillin regulated the expression of EMT genes during hypoxia and accelerated the metastasis of HCC in vivo. Conclusions Hypoxia-induced increase in supervillin expression is a significant and independent predictor of cancer metastasis, which leads to poor survival in HCC patients. Our results suggest that supervillin may be a candidate prognostic factor for HCC and a valuable target for therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0787-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Shangrong Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhen Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Xinwang Cao
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Quan Wu
- Central Laboratory of Medical Research Center, Anhui Provincial Hospital, No. 17, Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Huihui Ma
- University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.,Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Fang Ye
- Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
12
|
Kelley CA, Wirshing ACE, Zaidel-Bar R, Cram EJ. The myosin light-chain kinase MLCK-1 relocalizes during Caenorhabditis elegans ovulation to promote actomyosin bundle assembly and drive contraction. Mol Biol Cell 2018; 29:1975-1991. [PMID: 30088798 PMCID: PMC6232974 DOI: 10.1091/mbc.e18-01-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We identify the Caenorhabditis elegans myosin light-chain kinase, MLCK-1, required for contraction of spermathecae. During contraction, MLCK-1 moves from the apical cell boundaries to the basal actomyosin bundles, where it stabilizes myosin downstream of calcium signaling. MLCK and ROCK act in distinct subsets of cells to coordinate the timing of contraction.
Collapse
Affiliation(s)
| | | | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
13
|
Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018; 9:515. [PMID: 29410425 PMCID: PMC5802837 DOI: 10.1038/s41467-018-02904-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2018] [Indexed: 01/06/2023] Open
Abstract
Subcellular fine-tuning of the actomyosin cytoskeleton is a prerequisite for polarized cell migration. We identify LSP (lymphocyte-specific protein) 1 as a critical regulator of actomyosin contractility in primary macrophages. LSP1 regulates adhesion and migration, including the parameters cell area and speed, and also podosome turnover, oscillation and protrusive force. LSP1 recruits myosin IIA and its regulators, including myosin light chain kinase and calmodulin, and competes with supervillin, a myosin hyperactivator, for myosin regulators, and for actin isoforms, notably β-actin. Actin isoforms are anisotropically distributed in myosin IIA-expressing macrophages, and contribute to the differential recruitment of LSP1 and supervillin, thus enabling an actomyosin symmetry break, analogous to the situation in cells expressing two myosin II isoforms. Collectively, these results show that the cellular pattern of actin isoforms builds the basis for the differential distribution of two actomyosin machineries with distinct properties, leading to the establishment of discrete zones of actomyosin contractility. The actomyosin cytoskeleton plays an important role in polarised cell migration. Here the authors identify lymphocyte-specific protein (LSP)-1 as a regulator of actomyosin contractility in macrophages, by competing with supervillin for myosin IIA activators acting specifically on the β-actin isoform.
Collapse
|
14
|
Xu J, Jiao J, Xu W, Ji L, Jiang D, Xie S, Kubra S, Li X, Fu J, Xiao J, Zhang B. Mutant p53 promotes cell spreading and migration via ARHGAP44. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1019-1029. [DOI: 10.1007/s11427-016-9040-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/09/2017] [Indexed: 01/15/2023]
|
15
|
Khapchaev AY, Shirinsky VP. Myosin Light Chain Kinase MYLK1: Anatomy, Interactions, Functions, and Regulation. BIOCHEMISTRY (MOSCOW) 2017; 81:1676-1697. [PMID: 28260490 DOI: 10.1134/s000629791613006x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review discusses and summarizes the results of molecular and cellular investigations of myosin light chain kinase (MLCK, MYLK1), the key regulator of cell motility. The structure and regulation of a complex mylk1 gene and the domain organization of its products is presented. The interactions of the mylk1 gene protein products with other proteins and posttranslational modifications of the mylk1 gene protein products are reviewed, which altogether might determine the role and place of MLCK in physiological and pathological reactions of cells and entire organisms. Translational potential of MLCK as a drug target is evaluated.
Collapse
Affiliation(s)
- A Y Khapchaev
- Russian Cardiology Research and Production Center, Moscow, 121552, Russia.
| | | |
Collapse
|
16
|
Chen X, Yang H, Zhang S, Wang Z, Ye F, Liang C, Wang H, Fang Z. A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration. Biochem Biophys Res Commun 2016; 482:43-49. [PMID: 27825967 DOI: 10.1016/j.bbrc.2016.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Supervillin is an actin-associated protein that regulates actin dynamics by interacting with Myosin II, F-actin, and Cortactin to promote cell contractility and cell motility. Two splicing variants of human Supervillin (SV1 and SV4) have been reported in non-muscle cells; SV1 lacks 3 exons present in the larger isoform SV4. SV2, also called archvillin, is present in striated muscle; SV3, also called smooth muscle archvillin or SmAV, was cloned from smooth muscle. In the present study, we identify a novel splicing variant of Supervillin (SV5). SV5 contains a new splicing pattern. In the mouse tissues and cell lines examined, SV5 was predominantly expressed in skeletal and cardiac muscles and in proliferating cells, but was virtually undetectable in most normal tissues. Using RNAi and rescue experiments, we show here that SV5 displays altered functional properties in cancer cells, and regulates cell proliferation and cell migration.
Collapse
Affiliation(s)
- Xueran Chen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Haoran Yang
- Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Shangrong Zhang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Zhen Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Fang Ye
- Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Chaozhao Liang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
17
|
Quantitative profiling of spreading-coupled protein tyrosine phosphorylation in migratory cells. Sci Rep 2016; 6:31811. [PMID: 27554326 PMCID: PMC4995472 DOI: 10.1038/srep31811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
Protein tyrosine phosphorylation is an important mechanism that regulates cytoskeleton reorganization and cell spreading of migratory cells. A number of cytoskeletal proteins are known to be tyrosine phosphorylated (pY) in different cellular processes. However, the profile of pY proteins during different stages of cell spreading has not been available. Using immunoafffinity enrichment of pY proteins coupled with label free quantitative proteomics, we quantitatively identified 447 pY proteins in the migratory ECV-304 cells at the early spreading (adhesion) and the active spreading stages. We found that pY levels of the majority of the quantified proteins were significantly increased in the active spreading stage compared with the early spreading stage, suggesting that active cell spreading is concomitant with extra tyrosine phosphorylation. The major categories of proteins impacted by tyrosine phosphorylation are involved in cytoskeleton and focal adhesion regulation, protein translation and degradation. Our findings, for the first time, dissect the cell spreading-specific pY signals from the adhesion induced pY signals, and provide a valuable resource for the future mechanistic research regarding the regulation of cell spreading.
Collapse
|
18
|
Vilitkevich EL, Khapchaev AY, Kudryashov DS, Nikashin AV, Schavocky JP, Lukas TJ, Watterson DM, Shirinsky VP. Phosphorylation Regulates Interaction of 210-kDa Myosin Light Chain Kinase N-terminal Domain with Actin Cytoskeleton. BIOCHEMISTRY (MOSCOW) 2016; 80:1288-97. [PMID: 26567572 DOI: 10.1134/s0006297915100090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High molecular weight myosin light chain kinase (MLCK210) is a multifunctional protein involved in myosin II activation and integration of cytoskeletal components in cells. MLCK210 possesses actin-binding regions both in the central part of the molecule and in its N-terminal tail domain. In HeLa cells, mitotic protein kinase Aurora B was suggested to phosphorylate MLCK210 N-terminal tail at serine residues (Dulyaninova, N. G., and Bresnick, A. R. (2004) Exp. Cell Res., 299, 303-314), but the functional significance of the phosphorylation was not established. We report here that in vitro, the N-terminal actin-binding domain of MLCK210 is located within residues 27-157 (N27-157, avian MLCK210 sequence) and is phosphorylated by cAMP-dependent protein kinase (PKA) and Aurora B at serine residues 140/149 leading to a decrease in N27-157 binding to actin. The same residues are phosphorylated in a PKA-dependent manner in transfected HeLa cells. Further, in transfected cells, phosphomimetic mutants of N27-157 showed reduced association with the detergent-stable cytoskeleton, whereas in vitro, the single S149D mutation reduced N27-157 association with F-actin to a similar extent as that achieved by N27-157 phosphorylation. Altogether, our results indicate that phosphorylation of MLCK210 at distinct serine residues, mainly at S149, attenuates the interaction of MLCK210 N-terminus with the actin cytoskeleton and might serve to regulate MLCK210 microfilament cross-linking activity in cells.
Collapse
Affiliation(s)
- E L Vilitkevich
- Russian Cardiology Research and Production Center, Moscow, 121552, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pollock LM, Gupta N, Chen X, Luna EJ, McDermott BM. Supervillin Is a Component of the Hair Cell's Cuticular Plate and the Head Plates of Organ of Corti Supporting Cells. PLoS One 2016; 11:e0158349. [PMID: 27415442 PMCID: PMC4944918 DOI: 10.1371/journal.pone.0158349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/14/2016] [Indexed: 11/23/2022] Open
Abstract
The organ of Corti has evolved a panoply of cells with extraordinary morphological specializations to harness, direct, and transduce mechanical energy into electrical signals. Among the cells with prominent apical specializations are hair cells and nearby supporting cells. At the apical surface of each hair cell is a mechanosensitive hair bundle of filamentous actin (F-actin)-based stereocilia, which insert rootlets into the F-actin meshwork of the underlying cuticular plate, a rigid organelle considered to hold the stereocilia in place. Little is known about the protein composition and development of the cuticular plate or the apicolateral specializations of organ of Corti supporting cells. We show that supervillin, an F-actin cross-linking protein, localizes to cuticular plates in hair cells of the mouse cochlea and vestibule and zebrafish sensory epithelia. Moreover, supervillin localizes near the apicolateral margins within the head plates of Deiters’ cells and outer pillar cells, and proximal to the apicolateral margins of inner phalangeal cells, adjacent to the junctions with neighboring hair cells. Overall, supervillin localization suggests this protein may shape the surface structure of the organ of Corti.
Collapse
Affiliation(s)
- Lana M Pollock
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Nilay Gupta
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Xi Chen
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, 44016, United States of America
| |
Collapse
|
20
|
Preparation and Affinity-Purification of Supervillin Isoform 4 (SV4) Specific Polyclonal Antibodies. Protein J 2016; 35:107-14. [DOI: 10.1007/s10930-016-9658-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Son K, Smith TC, Luna EJ. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Cytoskeleton (Hoboken) 2015; 72:47-64. [PMID: 25655724 DOI: 10.1002/cm.21210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
We investigated cross-talk between the membrane-associated, myosin II-regulatory protein supervillin and the actin-regulatory small GTPases Rac1, RhoA, and Cdc42. Supervillin knockdown reduced Rac1-GTP loading, but not the GTP loading of RhoA or Cdc42, in HeLa cells with normal levels of the Rac1-activating protein Trio. No reduction in Rac1-GTP loading was observed when supervillin levels were reduced in Trio-depleted cells. Conversely, overexpression of supervillin isoform 1 (SV1) or, especially, isoform 4 (SV4) increased Rac1 activation. Inhibition of the Trio-mediated Rac1 guanine nucleotide exchange activity with ITX3 partially blocked the SV4-mediated increase in Rac1-GTP. Both SV4 and SV1 co-localized with Trio at or near the plasma membrane in ruffles and cell surface projections. Two sequences within supervillin bound directly to Trio spectrin repeats 4-7: SV1-171, which contains N-terminal residues found in both SV1 and SV4 and the SV4-specific differentially spliced coding exons 3, 4, and 5 within SV4 (SV4-E345; SV4 amino acids 276-669). In addition, SV4-E345 interacted with the homologous sequence in rat kalirin (repeats 4-7, amino acids 531-1101). Overexpressed SV1-174 and SV4-E345 affected Rac1-GTP loading, but only in cells with endogenous levels of Trio. Trio residues 771-1057, which contain both supervillin-interaction sites, exerted a dominant-negative effect on cell spreading. Supervillin and Trio knockdowns, separately or together, inhibited cell spreading, suggesting that supervillin regulates the Rac1 guanine nucleotide exchange activity of Trio, and potentially also kalirin, during cell spreading and lamellipodia extension.
Collapse
Affiliation(s)
- Kyonghee Son
- Department of Cell and Developmental Biology, Program in Cell & Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | |
Collapse
|
22
|
Spinazzola JM, Smith TC, Liu M, Luna EJ, Barton ER. Gamma-sarcoglycan is required for the response of archvillin to mechanical stimulation in skeletal muscle. Hum Mol Genet 2015; 24:2470-81. [PMID: 25605665 DOI: 10.1093/hmg/ddv008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/13/2015] [Indexed: 01/23/2023] Open
Abstract
Loss of gamma-sarcoglycan (γ-SG) induces muscle degeneration and signaling defects in response to mechanical load, and its absence is common to both Duchenne and limb girdle muscular dystrophies. Growing evidence suggests that aberrant signaling contributes to the disease pathology; however, the mechanisms of γ-SG-mediated mechanical signaling are poorly understood. To uncover γ-SG signaling pathway components, we performed yeast two-hybrid screens and identified the muscle-specific protein archvillin as a γ-SG and dystrophin interacting protein. Archvillin protein and message levels were significantly upregulated at the sarcolemma of murine γ-SG-null (gsg(-/-)) muscle but delocalized in dystrophin-deficient mdx muscle. Similar elevation of archvillin protein was observed in human quadriceps muscle lacking γ-SG. Reintroduction of γ-SG in gsg(-/-) muscle by rAAV injection restored archvillin levels to that of control C57 muscle. In situ eccentric contraction of tibialis anterior (TA) muscles from C57 mice caused ERK1/2 phosphorylation, nuclear activation of P-ERK1/2 and stimulus-dependent archvillin association with P-ERK1/2. In contrast, TA muscles from gsg(-/-) and mdx mice exhibited heightened P-ERK1/2 and increased nuclear P-ERK1/2 localization following eccentric contractions, but the archvillin-P-ERK1/2 association was completely ablated. These results position archvillin as a mechanically sensitive component of the dystrophin complex and demonstrate that signaling defects caused by loss of γ-SG occur both at the sarcolemma and in the nucleus.
Collapse
Affiliation(s)
- Janelle M Spinazzola
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, and
| | - Tara C Smith
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Min Liu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, and
| |
Collapse
|
23
|
Yagoub D, Wilkins MR, Lay AJ, Kaczorowski DC, Hatoum D, Bajan S, Hutvagner G, Lai JH, Wu W, Martiniello-Wilks R, Xia P, McGowan EM. Sphingosine kinase 1 isoform-specific interactions in breast cancer. Mol Endocrinol 2014; 28:1899-915. [PMID: 25216046 DOI: 10.1210/me.2013-1423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a signaling enzyme that catalyzes the formation of sphingosine-1-phosphate. Overexpression of SK1 is causally associated with breast cancer progression and resistance to therapy. SK1 inhibitors are currently being investigated as promising breast cancer therapies. Two major transcriptional isoforms, SK143 kDa and SK151 kDa, have been identified; however, the 51 kDa variant is predominant in breast cancer cells. No studies have investigated the protein-protein interactions of the 51 kDa isoform and whether the two SK1 isoforms differ significantly in their interactions. Seeking an understanding of the regulation and role of SK1, we used a triple-labeling stable isotope labeling by amino acids in cell culture-based approach to identify SK1-interacting proteins common and unique to both isoforms. Of approximately 850 quantified proteins in SK1 immunoprecipitates, a high-confidence list of 30 protein interactions with each SK1 isoform was generated via a meta-analysis of multiple experimental replicates. Many of the novel identified SK1 interaction partners such as supervillin, drebrin, and the myristoylated alanine-rich C-kinase substrate-related protein supported and highlighted previously implicated roles of SK1 in breast cancer cell migration, adhesion, and cytoskeletal remodeling. Of these interactions, several were found to be exclusive to the 43 kDa isoform of SK1, including the protein phosphatase 2A, a previously identified SK1-interacting protein. Other proteins such as allograft inflammatory factor 1-like protein, the latent-transforming growth factor β-binding protein, and dipeptidyl peptidase 2 were found to associate exclusively with the 51 kDa isoform of SK1. In this report, we have identified common and isoform-specific SK1-interacting partners that provide insight into the molecular mechanisms that drive SK1-mediated oncogenicity.
Collapse
Affiliation(s)
- Daniel Yagoub
- School of Biotechnology and Biomolecular Sciences (D.Y., M.R.W.), University of New South Wales, Sydney 2052, Australia; Centenary Institute (D.Y., A.L., D.G.K., P.X., E.M.M.), Sydney 2042, Australia; Translational Cancer Research Group (D.H., R.M.-W., E.M.M.), Faculty of Science, School of Medical and Molecular Biosciences, and Faculty of Engineering and Information Technology (S.B., G.H.), University of Technology Sydney, Sydney, New South Wales 2007, Australia; Department of Biochemistry (J.H.L., W.W.), Tufts University School of Medicine, Boston, Massachusetts 02111; Shanghai Medical School (P.X.), Fudan University, 200433 Shanghai, People's Republic of China; and Sydney Medical School (E.M.M.), The University of Sydney, Sydney 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Betapudi V. Life without double-headed non-muscle myosin II motor proteins. Front Chem 2014; 2:45. [PMID: 25072053 PMCID: PMC4083560 DOI: 10.3389/fchem.2014.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA ; Department of Physiology and Biophysics, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
25
|
Smith TC, Fridy PC, Li Y, Basil S, Arjun S, Friesen RM, Leszyk J, Chait BT, Rout MP, Luna EJ. Supervillin binding to myosin II and synergism with anillin are required for cytokinesis. Mol Biol Cell 2013; 24:3603-19. [PMID: 24088567 PMCID: PMC3842989 DOI: 10.1091/mbc.e12-10-0714] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytokinesis, the process by which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking, and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II-binding proteins anillin and supervillin, act earlier. Anillin's role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831-1281, which bind central spindle proteins, and residues 1-170, which bind the myosin II heavy chain (MHC) and the long form of myosin light-chain kinase. MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increases cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity green fluorescent protein nanobody suggests that supervillin and anillin regulate the myosin II and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis.
Collapse
Affiliation(s)
- Tara C Smith
- Program in Cell and Developmental Dynamics, Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655 Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY 10065 Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY 10065 Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA 01545
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hasegawa H, Hyodo T, Asano E, Ito S, Maeda M, Kuribayashi H, Natsume A, Wakabayashi T, Hamaguchi M, Senga T. The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing. J Cell Sci 2013; 126:3627-37. [PMID: 23750008 DOI: 10.1242/jcs.124818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a widely conserved serine/threonine kinase that regulates progression of multiple stages of mitosis. Although extensive studies about PLK1 functions during cell division have been performed, it is still not known how PLK1 regulates myosin II activation at the equatorial cortex and ingression of the cleavage furrow. In this report, we show that an actin/myosin-II-binding protein, supervillin (SVIL), is a substrate of PLK1. PLK1 phosphorylates Ser238 of SVIL, which can promote the localization of SVIL to the central spindle and association with PRC1. Expression of a PLK1 phosphorylation site mutant, S238A-SVIL, inhibited myosin II activation at the equatorial cortex and induced aberrant furrowing. SVIL has both actin- and myosin-II-binding regions in the N-terminus. Expression of ΔMyo-SVIL (deleted of the myosin-II-binding region), but not of ΔAct-SVIL (deleted of actin-binding region), reduced myosin II activation and caused defects in furrowing. Our study indicates a possible role of phosphorylated SVIL as a molecular link between the central spindle and the contractile ring to coordinate the activation of myosin II for the ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Hitoki Hasegawa
- Division of Cancer Biology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huse M, Catherine Milanoski S, Abeyweera TP. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunol Rev 2013; 251:143-53. [PMID: 23278746 DOI: 10.1111/imr.12014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
28
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
29
|
Fang Z, Luna EJ. Supervillin-mediated suppression of p53 protein enhances cell survival. J Biol Chem 2013; 288:7918-7929. [PMID: 23382381 DOI: 10.1074/jbc.m112.416842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrin-based adhesions promote cell survival as well as cell motility and invasion. We show here that the adhesion regulatory protein supervillin increases cell survival by decreasing levels of the tumor suppressor protein p53 and downstream target genes. RNAi-mediated knockdown of a new splice form of supervillin (isoform 4) or both isoforms 1 and 4 increases the amount of p53 and cell death, whereas p53 levels decrease after overexpression of either supervillin isoform. Cellular responses to DNA damage induced by etoposide or doxorubicin include down-regulation of endogenous supervillin coincident with increases in p53. In DNA-damaged supervillin knockdown cells, p53 knockdown or inhibition partially rescues the loss of cell metabolic activity, a measure of cell proliferation. Knockdown of the p53 deubiquitinating enzyme USP7/HAUSP also reverses the supervillin phenotype, blocking the increase in p53 levels seen after supervillin knockdown and accentuating the decrease in p53 levels triggered by supervillin overexpression. Conversely, supervillin overexpression decreases the association of USP7 and p53 and attenuates USP7-mediated p53 deubiquitination. USP7 binds directly to the supervillin N terminus and can deubiquitinate and stabilize supervillin. Supervillin also is stabilized by derivatization with the ubiquitin-like protein SUMO1. These results show that supervillin regulates cell survival through control of p53 levels and suggest that supervillin and its interaction partners at sites of cell-substrate adhesion constitute a locus for cross-talk between survival signaling and cell motility pathways.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
30
|
Bharadwaj AS, Appukuttan B, Wilmarth PA, Pan Y, Stempel AJ, Chipps TJ, Benedetti EE, Zamora DO, Choi D, David LL, Smith JR. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013; 32:102-80. [PMID: 22982179 PMCID: PMC3679193 DOI: 10.1016/j.preteyeres.2012.08.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022]
Abstract
Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
Collapse
Affiliation(s)
| | | | - Phillip A. Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Yuzhen Pan
- Casey Eye Institute, Oregon Health & Science University
| | | | | | | | | | - Dongseok Choi
- Department of Public Health and Preventive Medicine, Oregon Health & Science University
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Justine R. Smith
- Casey Eye Institute, Oregon Health & Science University
- Department of Cell & Developmental Biology, Oregon Health & Science University
| |
Collapse
|
31
|
Choi JC, Doh J. High-throughput quantitative imaging of cell spreading dynamics by multi-step microscopy projection photolithography based on a cell-friendly photoresist. LAB ON A CHIP 2012; 12:4964-4967. [PMID: 23059818 DOI: 10.1039/c2lc40695k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new method for the high-throughput study of cell spreading dynamics is devised by multi-step microscopy projection photolithography based on a cell-friendly photoresist. By releasing a large number of rounded cells in single cell arrays and monitoring their spreading dynamics by interference reflection microscopy, a large number of cell spreading data can be acquired by a single experiment.
Collapse
Affiliation(s)
- Jong-Cheol Choi
- Department of Mechanical Engineering, POSTECH, San31, Hyoja-dong, Nam-Gu, Pohang, 790-784, Gyeongbuk, Korea.
| | | |
Collapse
|
32
|
Fedechkin SO, Brockerman J, Luna EJ, Lobanov MY, Galzitskaya OV, Smirnov SL. An N-terminal, 830 residues intrinsically disordered region of the cytoskeleton-regulatory protein supervillin contains Myosin II- and F-actin-binding sites. J Biomol Struct Dyn 2012; 31:1150-9. [PMID: 23075227 DOI: 10.1080/07391102.2012.726531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1-830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1-830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin.
Collapse
Affiliation(s)
- Stanislav O Fedechkin
- a Department of Chemistry , Western Washington University , MS-9150, 516 High Street , Bellingham , WA , 98225-9150 , USA
| | | | | | | | | | | |
Collapse
|
33
|
Edelstein LC, Luna EJ, Gibson IB, Bray M, Jin Y, Kondkar A, Nagalla S, Hadjout-Rabi N, Smith TC, Covarrubias D, Jones SN, Ahmad F, Stolla M, Kong X, Fang Z, Bergmeier W, Shaw C, Leal SM, Bray PF. Human genome-wide association and mouse knockout approaches identify platelet supervillin as an inhibitor of thrombus formation under shear stress. Circulation 2012; 125:2762-71. [PMID: 22550155 DOI: 10.1161/circulationaha.112.091462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND High shear force critically regulates platelet adhesion and thrombus formation during ischemic vascular events. To identify genetic factors that influence platelet thrombus formation under high shear stress, we performed a genome-wide association study and confirmatory experiments in human and animal platelets. METHODS AND RESULTS Closure times in the shear-dependent platelet function analyzer (PFA)-100 were measured on healthy, nondiabetic European Americans (n=125) and blacks (n=116). A genome-wide association (P<5×10(-8)) was identified with 2 single-nucleotide polymorphisms within the SVIL gene (chromosome 10p11.23) in African Americans but not European Americans. Microarray analyses of human platelet RNA demonstrated the presence of SVIL isoform 1 (supervillin) but not muscle-specific isoforms 2 and 3 (archvillin, SmAV). SVIL mRNA levels were associated with SVIL genotypes (P≤0.02) and were inversely correlated with PFA-100 closure times (P<0.04) and platelet volume (P<0.02). Leukocyte-depleted platelets contained abundant levels of the ≈205-kDa supervillin polypeptide. To assess functionality, mice lacking platelet supervillin were generated and back-crossed onto a C57BL/6 background. Compared with controls, murine platelets lacking supervillin were larger by flow cytometry and confocal microscopy and exhibited enhanced platelet thrombus formation under high-shear but not low-shear conditions. CONCLUSIONS We show for the first time that (1) platelets contain supervillin; (2) platelet thrombus formation in the PFA-100 is associated with human SVIL variants and low SVIL expression; and (3) murine platelets lacking supervillin exhibit enhanced platelet thrombus formation at high shear stress. These data are consistent with an inhibitory role for supervillin in platelet adhesion and arterial thrombosis.
Collapse
Affiliation(s)
- Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Curtis Building, Room 324, 1015 Walnut St, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhu GJ, Wang F, Chen C, Xu L, Zhang WC, Fan C, Peng YJ, Chen J, He WQ, Guo SY, Zuo J, Gao X, Zhu MS. Myosin light-chain kinase is necessary for membrane homeostasis in cochlear inner hair cells. PLoS One 2012; 7:e34894. [PMID: 22485190 PMCID: PMC3317649 DOI: 10.1371/journal.pone.0034894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 03/08/2012] [Indexed: 12/04/2022] Open
Abstract
The structural homeostasis of the cochlear hair cell membrane is critical for all aspects of sensory transduction, but the regulation of its maintenance is not well understood. In this report, we analyzed the cochlear hair cells of mice with specific deletion of myosin light chain kinase (MLCK) in inner hair cells. MLCK-deficient mice showed impaired hearing, with a 5- to 14-dB rise in the auditory brainstem response (ABR) thresholds to clicks and tones of different frequencies and a significant decrease in the amplitude of the ABR waves. The mutant inner hair cells produced several ball-like structures around the hair bundles in vivo, indicating impaired membrane stability. Inner hair cells isolated from the knockout mice consistently displayed less resistance to hypoosmotic solution and less membrane F-actin. Myosin light-chain phosphorylation was also reduced in the mutated inner hair cells. Our results suggest that MLCK is necessary for maintaining the membrane stability of inner hair cells.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Epithelium/enzymology
- Epithelium/metabolism
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression
- Hair Cells, Auditory, Inner/enzymology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Homeostasis
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Myosin Light Chains/metabolism
- Myosin VIIa
- Myosin-Light-Chain Kinase/deficiency
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/physiology
- Myosins/metabolism
- Organ of Corti/cytology
- Osmotic Pressure
- Phosphorylation
- Protein Processing, Post-Translational
- Sequence Deletion
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
Collapse
Affiliation(s)
- Guang-Jie Zhu
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Fang Wang
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Chen Chen
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Lin Xu
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wen-Cheng Zhang
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
- Zhejiang Provincial Key Lab for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, Wenzhou, China
| | - Chi Fan
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Ya-Jing Peng
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Jie Chen
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wei-Qi He
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Shi-Ying Guo
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Xia Gao
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
- * E-mail: (XG); (M-SZ)
| | - Min-Sheng Zhu
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
- Zhejiang Provincial Key Lab for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, Wenzhou, China
- * E-mail: (XG); (M-SZ)
| |
Collapse
|
35
|
Bhuwania R, Cornfine S, Fang Z, Krüger M, Luna EJ, Linder S. Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J Cell Sci 2012; 125:2300-14. [PMID: 22344260 DOI: 10.1242/jcs.100032] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are actin-rich adhesion and invasion structures. Especially in macrophages, podosomes exist in two subpopulations, large precursors at the cell periphery and smaller podosomes (successors) in the cell interior. To date, the mechanisms that differentially regulate these subpopulations are largely unknown. Here, we show that the membrane-associated protein supervillin localizes preferentially to successor podosomes and becomes enriched at precursors immediately before their dissolution. Consistently, podosome numbers are inversely correlated with supervillin protein levels. Using deletion constructs, we find that the myosin II regulatory N-terminus of supervillin [SV(1-174)] is crucial for these effects. Phosphorylated myosin light chain (pMLC) localizes at supervillin-positive podosomes, and time-lapse analyses show that enrichment of GFP-supervillin at podosomes coincides with their coupling to contractile myosin-IIA-positive cables. We also show that supervillin binds only to activated myosin IIA, and a dysregulated N-terminal construct [SV(1-830)] enhances pMLC levels at podosomes. Thus, preferential recruitment of supervillin to podosome subpopulations might both require and induce actomyosin contractility. Using siRNA and pharmacological inhibition, we demonstrate that supervillin and myosin IIA cooperate to regulate podosome lifetime, podosomal matrix degradation and cell polarization. In sum, we show here that podosome subpopulations differ in their molecular composition and identify supervillin, in cooperation with myosin IIA, as a crucial factor in the regulation of podosome turnover and function.
Collapse
Affiliation(s)
- Ridhirama Bhuwania
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Lobert VH, Stenmark H. The ESCRT machinery mediates polarization of fibroblasts through regulation of myosin light chain. J Cell Sci 2012; 125:29-36. [DOI: 10.1242/jcs.088310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent evidence implicates the endosomal sorting complex required for transport (ESCRT) in the regulation of epithelial polarity in Drosophila melanogaster, but the mechanisms responsible for this action remain unclear. Here we show that ESCRTs determine cell orientation during directed migration in human fibroblasts. We find that endosomal retention of α5β1 integrin and its downstream signaling effector Src in ESCRT-depleted cells is accompanied by the failure to activate myosin light chain kinase (MLCK), which thereby cannot phosphorylate myosin regulatory light chain (MRLC). Using this mechanism, ESCRT-depleted fibroblasts fail to orient their Golgi complex to undergo directional migration and show impaired focal adhesion turnover and increased spreading on fibronectin. Consistent with these findings, expression of a phosphomimetic mutant of MRLC in ESCRT-depleted cells restores normal phenotypes during cell spreading and orientation of the Golgi. These results suggest that, through their role in regulating integrin trafficking, ESCRTs regulate phosphorylation of MRLC and, subsequently, Golgi orientation and cell spreading.
Collapse
Affiliation(s)
- Viola Hélène Lobert
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello 0310, Oslo, Norway
- Institute for Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7005 Trondheim, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello 0310, Oslo, Norway
- Institute for Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7005 Trondheim, Norway
| |
Collapse
|
37
|
Liu HP, Yu MC, Jiang MH, Chen JX, Yan DP, Liu F, Ge BX. Association of supervillin with KIR2DL1 regulates the inhibitory signaling of natural killer cells. Cell Signal 2011; 23:487-96. [DOI: 10.1016/j.cellsig.2010.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 01/06/2023]
|
38
|
Smith TC, Fang Z, Luna EJ. Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken) 2010; 67:346-64. [PMID: 20309963 DOI: 10.1002/cm.20449] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)-terminus. We show here that the supervillin carboxy (C)-terminus can be modeled as supervillin-specific loops extending from gelsolin-like repeats plus a villin-like headpiece. We have identified 27 new candidate interactors from yeast two-hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co-localize with and mis-localize EGFP-supervillin in mammalian cells, suggesting associations in vivo. Supervillin-interacting sequences within BUB1, FLNA, HAX1, and MIF4GD also mimic supervillin over-expression by inhibiting cell spreading. Most new interactors have known roles in supervillin-associated processes, e.g. cell motility, membrane trafficking, ERK signaling, and matrix invasion; three (KIF14, KIFC3, STARD9/KIF16A) have kinesin motor domains; and five (EPLIN, KIF14, BUB1, ODF2/cenexin, RHAMM) are important for cell division. GST fusions of the supervillin G2-G3 or G4-G6 repeats co-sediment KIF14 and EPLIN, respectively, consistent with a direct association. Supervillin depletion leads to increased numbers of bi- and multi-nucleated cells. Cytokinesis failure occurs predominately during early cytokinesis. Supervillin localizes with endogenous myosin II and EPLIN in the cleavage furrow, and overlaps with the oncogenic kinesin, KIF14, at the midbody. We conclude that supervillin, like its interactors, is important for efficient cytokinesis. Our results also suggest that supervillin and its interaction partners coordinate actin and microtubule motor functions throughout the cell cycle.
Collapse
Affiliation(s)
- Tara C Smith
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
39
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Nonmuscle myosin-dependent synthesis of type I collagen. J Mol Biol 2010; 401:564-78. [PMID: 20603131 DOI: 10.1016/j.jmb.2010.06.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/09/2010] [Accepted: 06/25/2010] [Indexed: 01/15/2023]
Abstract
Type I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen alpha1(I) homotrimer, diminished intracellular colocalization of collagen alpha1(I) and alpha2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen alpha1(I) and alpha2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
40
|
Fang Z, Takizawa N, Wilson KA, Smith TC, Delprato A, Davidson MW, Lambright DG, Luna EJ. The membrane-associated protein, supervillin, accelerates F-actin-dependent rapid integrin recycling and cell motility. Traffic 2010; 11:782-99. [PMID: 20331534 DOI: 10.1111/j.1600-0854.2010.01062.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell Biology, University of Massachusetts Medical School, Biotech 4, Suite 306, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gu BJ, Rathsam C, Stokes L, McGeachie AB, Wiley JS. Extracellular ATP dissociates nonmuscle myosin from P2X(7) complex: this dissociation regulates P2X(7) pore formation. Am J Physiol Cell Physiol 2009; 297:C430-9. [PMID: 19494237 DOI: 10.1152/ajpcell.00079.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The P2X(7) receptor is a ligand-gated cation channel that is highly expressed on monocyte-macrophages and that mediates the pro-inflammatory effects of extracellular ATP. Dilation of the P2X(7) channel and massive K(+) efflux follows initial channel opening, but the mechanism of secondary pore formation is unclear. The proteins associated with P2X(7) were isolated by using anti-P2X(7) monoclonal antibody-coated Dynabeads from both interferon-gamma plus LPS-stimulated monocytic THP-1 cells and P2X(7)-transfected HEK-293 cells. Two nonmuscle myosins, NMMHC-IIA and myosin Va, were found to associate with P2X(7) in THP-1 cells and HEK-293 cells, respectively. Activation of the P2X(7) receptor by ATP caused dissociation of P2X(7) from nonmuscle myosin in both cell types. The interaction of P2X(7) and NMMHC-IIA molecules was confirmed by fluorescent life time measurements and fluorescent resonance of energy transfer-based time-resolved flow cytometry assay. Reducing the expression of NMMHC-IIA or myosin Va by small interfering RNA or short hairpin RNA led to a significant increase of P2X(7) pore function without any increase in surface expression or ion channel function of P2X(7) receptors. S-l-blebbistatin, a specific inhibitor of NMMHC-IIA ATPase, inhibited both ATP-induced ethidium uptake and ATP-induced dissociation of P2X(7)-NMMHC-IIA complex. In both cell types nonmuscle myosin closely interacts with P2X(7) and is dissociated from the complex by extracellular ATP. Dissociation of this anchoring protein may be required for the transition of P2X(7) channel to a pore.
Collapse
Affiliation(s)
- Ben J Gu
- Department of Medicine, Nepean Clinical School, Penrith, NSW, Australia
| | | | | | | | | |
Collapse
|
42
|
McMichael BK, Wysolmerski RB, Lee BS. Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion. J Biol Chem 2009; 284:12266-75. [PMID: 19269977 DOI: 10.1074/jbc.m808621200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nonmuscle myosin IIA heavy chain (Myh9) is strongly associated with adhesion structures of osteoclasts. In this study, we demonstrate that during osteoclastogenesis, myosin IIA heavy chain levels are temporarily suppressed, an event that stimulates the onset of cell fusion. This suppression is not mediated by changes in mRNA or translational levels but instead is due to a temporary increase in the rate of myosin IIA degradation. Intracellular activity of cathepsin B is significantly enhanced at the onset of osteoclast precursor fusion, and specific inhibition of its activity prevents myosin IIA degradation. Further, treatment of normal cells with cathepsin B inhibitors during the differentiation process reduces cell fusion and bone resorption capacity, whereas overexpression of cathepsin B enhances fusion. Ongoing suppression of the myosin IIA heavy chain via RNA interference results in formation of large osteoclasts with significantly increased numbers of nuclei, whereas overexpression of myosin IIA results in less osteoclast fusion. Increased multinucleation caused by myosin IIA suppression does not require RANKL. Further, knockdown of myosin IIA enhances cell spreading and lessens motility. These data taken together strongly suggest that base-line expression of nonmuscle myosin IIA inhibits osteoclast precursor fusion and that a temporary, cathepsin B-mediated decrease in myosin IIA levels triggers precursor fusion during osteoclastogenesis.
Collapse
Affiliation(s)
- Brooke K McMichael
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
43
|
Crowley JL, Smith TC, Fang Z, Takizawa N, Luna EJ. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol Biol Cell 2008; 20:948-62. [PMID: 19109420 DOI: 10.1091/mbc.e08-08-0867] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.
Collapse
Affiliation(s)
- Jessica L Crowley
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
44
|
Lucas-Lopez C, Allingham JS, Lebl T, Lawson CPAT, Brenk R, Sellers JR, Rayment I, Westwood NJ. The small molecule tool (S)-(-)-blebbistatin: novel insights of relevance to myosin inhibitor design. Org Biomol Chem 2008; 6:2076-84. [PMID: 18528569 DOI: 10.1039/b801223g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The small molecule blebbistatin is now a front line tool in the study of myosin function. Chemical modification of the tricyclic core of blebbistatin could deliver the next generation of myosin inhibitors and to help address this we report here on the impact of structural changes in the methyl-substituted aromatic ring of blebbistatin on its biological activity. Chemical methods for the preparation of isomeric methyl-containing analogues are reported and a series of co-crystal structures are used to rationalise the observed variations in their biological activity. These studies further support the view that the previously identified binding mode of blebbistatin to Dictyostelium discoideum myosin II is of relevance to its mode of action. A discussion of the role that these observations have on planning the synthesis of focused libraries of blebbistatin analogues is also provided including an assessment of possibilities by computational methods. These studies are ultimately directed at the development of novel myosin inhibitors with improved affinity and different selectivity profiles from blebbistatin itself.
Collapse
Affiliation(s)
- Cristina Lucas-Lopez
- School of Chemistry and the Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | | | | | | | | | | | | | | |
Collapse
|