1
|
Gillard G, Röper K. β-H-Spectrin is a key component of an apical-medial hub of proteins during cell wedging in tube morphogenesis. J Cell Sci 2024; 137:jcs261946. [PMID: 38988298 PMCID: PMC11361641 DOI: 10.1242/jcs.261946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, β-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of β-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither β-H-Spectrin nor Big bang require microtubules for their localisation. β-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of β-H-Spectrin (β-H-33) displaces endogenous β-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.
Collapse
Affiliation(s)
- Ghislain Gillard
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
2
|
Li D. Role of Spectrin in Endocytosis. Cells 2022; 11:cells11152459. [PMID: 35954302 PMCID: PMC9368487 DOI: 10.3390/cells11152459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoskeletal spectrin is found in (non)erythroid cells. Eukaryotic endocytosis takes place for internalizing cargos from extracellular milieu. The role of spectrin in endocytosis still remains poorly understood. Here, I summarize current knowledge of spectrin function, spectrin-based cytoskeleton and endocytosis of erythrocytes, and highlight how spectrin contributes to endocytosis and working models in different types of cells. From an evolutionary viewpoint, I discuss spectrin and endocytosis in a range of organisms, particularly in plants and yeast where spectrin is absent. Together, the role of spectrin in endocytosis is related to its post-translational modification, movement/rearrangement, elimination (by proteases) and meshwork fencing.
Collapse
Affiliation(s)
- Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Suthakaran N, Brock T, Naraine A, Gonzalez- Lerma P, Hopkins C, Dawson-Scully K. Atropine reduces aldicarb-induced sensitivity to C. elegans electroshock model. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000621. [PMID: 36017190 PMCID: PMC9396355 DOI: 10.17912/micropub.biology.000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022]
Abstract
Atropine has been used as an established anticonvulsant treatment for nerve agent intoxication. Atropine reduces electroshock recovery time among aldicarb-exposed wild-type C. elegans .
Collapse
Affiliation(s)
- Nirthieca Suthakaran
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | | | - Akshay Naraine
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Paola Gonzalez- Lerma
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | | | - Ken Dawson-Scully
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL ;
,
Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL
,
Correspondence to: Ken Dawson-Scully (
)
| |
Collapse
|
4
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
5
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. The role of spectrin in cell adhesion and cell-cell contact. Exp Biol Med (Maywood) 2019; 244:1303-1312. [PMID: 31226892 DOI: 10.1177/1535370219859003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Renata Grochowalska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Dżamila M Bogusławska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| |
Collapse
|
6
|
Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians. Proc Natl Acad Sci U S A 2017; 114:2054-2059. [PMID: 28179572 DOI: 10.1073/pnas.1618778114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the βV giant spectrin, a major component of the outer hair cells' cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-βV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin βV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells' cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.
Collapse
|
7
|
Ng BF, Selvaraj GK, Santa-Cruz Mateos C, Grosheva I, Alvarez-Garcia I, Martín-Bermudo MD, Palacios IM. α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium. Development 2016; 143:1388-99. [PMID: 26952981 PMCID: PMC4852512 DOI: 10.1242/dev.130070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022]
Abstract
The spectrin cytoskeleton crosslinks actin to the membrane, and although it has been greatly studied in erythrocytes, much is unknown about its function in epithelia. We have studied the role of spectrins during epithelia morphogenesis using the Drosophila follicular epithelium (FE). As previously described, we show that α-Spectrin and β-Spectrin are essential to maintain a monolayered FE, but, contrary to previous work, spectrins are not required to control proliferation. Furthermore, spectrin mutant cells show differentiation and polarity defects only in the ectopic layers of stratified epithelia, similar to integrin mutants. Our results identify α-Spectrin and integrins as novel regulators of apical constriction-independent cell elongation, as α-Spectrin and integrin mutant cells fail to columnarize. Finally, we show that increasing and reducing the activity of the Rho1-Myosin II pathway enhances and decreases multilayering of α-Spectrin cells, respectively. Similarly, higher Myosin II activity enhances the integrin multilayering phenotype. This work identifies a primary role for α-Spectrin in controlling cell shape, perhaps by modulating actomyosin. In summary, we suggest that a functional spectrin-integrin complex is essential to balance adequate forces, in order to maintain a monolayered epithelium.
Collapse
Affiliation(s)
- Bing Fu Ng
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Gokul Kannan Selvaraj
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Inna Grosheva
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain
| | - Ines Alvarez-Garcia
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
8
|
Wu J, Bakerink KJ, Evangelista ME, Thomas GH. Cytoplasmic capes are nuclear envelope intrusions that are enriched in endosomal proteins and depend upon βH-spectrin and Annexin B9. PLoS One 2014; 9:e93680. [PMID: 24705398 PMCID: PMC3976414 DOI: 10.1371/journal.pone.0093680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
It is increasingly recognized that non-erythroid spectrins have roles remote from the plasma membrane, notably in endomembrane trafficking. The large spectrin isoform, βH, partners with Annexin B9 to modulate endosomal processing of internalized proteins. This modulation is focused on the early endosome through multivesicular body steps of endocytic processing and loss of either protein appears to cause a traffic jam before removal of ubiquitin at the multivesicular body. We previously reported that βH/Annexin B9 influenced EGF receptor signaling. While investigating this effect we noticed that mSptiz, the membrane bound precursor of the secreted EGF receptor ligand sSpitz, is located in striking intrusions of the nuclear membrane. Here we characterize these structures and identify them as ‘cytoplasmic capes’, which were previously identified in old ultrastructural studies and probably coincide with recently recognized sites of non-nuclear-pore RNA export. We show that cytoplasmic capes contain multiple endosomal markers and that their existence is dependent upon βH and Annexin B9. Diminution of these structures does not lead to a change in mSpitz processing. These results extend the endosomal influence of βH and its partner Annexin B9 to this unusual compartment at the nuclear envelope.
Collapse
Affiliation(s)
- Juan Wu
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Public Health, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katelyn J. Bakerink
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Meagan E. Evangelista
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Graham H. Thomas
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Papal S, Cortese M, Legendre K, Sorusch N, Dragavon J, Sahly I, Shorte S, Wolfrum U, Petit C, El-Amraoui A. The giant spectrin βV couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route. Hum Mol Genet 2013; 22:3773-88. [PMID: 23704327 DOI: 10.1093/hmg/ddt228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the myosin VIIa gene cause Usher syndrome type IB (USH1B), characterized by deaf-blindness. A delay of opsin trafficking has been observed in the retinal photoreceptor cells of myosin VIIa-deficient mice. We identified spectrin βV, the mammalian β-heavy spectrin, as a myosin VIIa- and rhodopsin-interacting partner in photoreceptor cells. Spectrin βV displays a polarized distribution from the Golgi apparatus to the base of the outer segment, which, unlike that of other β spectrins, matches the trafficking route of opsin and other phototransduction proteins. Formation of spectrin βV-rhodopsin complex could be detected in the differentiating photoreceptors as soon as their outer segment emerges. A failure of the spectrin βV-mediated coupling between myosin VIIa and opsin molecules thus probably accounts for the opsin transport delay in myosin VIIa-deficient mice. We showed that spectrin βV also associates with two USH1 proteins, sans (USH1G) and harmonin (USH1C). Spectrins are supposed to function as heteromers of α and β subunits, but fluorescence resonance energy transfer and in vitro binding experiments indicated that spectrin βV can also form homodimers, which likely supports its αII-independent βV functions. Finally, consistent with its distribution along the connecting cilia axonemes, spectrin βV binds to several subunits of the microtubule-based motor proteins, kinesin II and the dynein complex. We therefore suggest that spectrin βV homomers couple some USH1 proteins, opsin and other phototransduction proteins to both actin- and microtubule-based motors, thereby contributing to their transport towards the photoreceptor outer disks.
Collapse
Affiliation(s)
- Samantha Papal
- Institut Pasteur, Unité de génétique et physiologie de l'audition, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
11
|
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. Annexin B9 binds to β(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 2012; 124:2914-26. [PMID: 21878499 DOI: 10.1242/jcs.078667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical β(Heavy)-spectrin (β(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of β(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral β(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when β(H)-positive endosomes are generated either by upregulation of β(H) in pak mutants or through the expression of the dominant-negative version of β(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or β(H). Loss of AnxB9 or β(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes β(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to β(H). These results indicate that AnxB9 and β(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.
Collapse
Affiliation(s)
- Monika Tjota
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Anatomy, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
13
|
Rac1 modulation of the apical domain is negatively regulated by β (Heavy)-spectrin. Mech Dev 2010; 128:116-28. [PMID: 21111816 DOI: 10.1016/j.mod.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
Epithelial polarity and morphogenesis require the careful coordination of signaling and cytoskeletal elements. In this paper, we describe multiple genetic interactions between the apical cytoskeletal protein β(H) and Rac1 signaling in Drosophila: activation of Rac1 signaling by expression of the exchange factor Trio, is strongly enhanced by reducing β(H) levels, and such reductions in β(H) levels alone are shown to cause an increase in GTP-Rac1 levels. In contrast, co-expression of a C-terminal fragment of β(H) (βH33) suppresses the Trio expression phenotype. In addition, sustained expression of βH33 alone in the eye induces a strong dominant phenotype that is similar to the expression of dominant negative Rac1(N17), and this phenotype is also suppressed by the co-expression of Trio or by knockdown of RacGAP50C. We further demonstrate that a loss-of-function allele in pak, a Rac1 effector and negative regulator of β(H)' dominantly suppresses larval lethality arising loss-of-function karst (β(H)) alleles. Furthermore, expression of constitutively active Pak(myr) in the larval salivary gland induces expansion of the apical membrane and destabilization of the apical polarity determinants Crumbs and aPKC. These effects resemble a Rac1 activation phenotype and are suppressed by βH33. Together, our data suggest that apical proteins including β(H) are negatively regulated by Rac1 activation, but that Rac1 signaling is also suppressed by β(H) through its C-terminal domain. Such a system would be bistable with either Rac1 or β(H) predominant. We suggest a model for apical domain maintenance wherein Rac1 down-regulation of β(H) (via Pak) is opposed by β(H)-mediated down-regulation of Rac1 signaling.
Collapse
|
14
|
Baines AJ. Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 2010; 17:95-103. [PMID: 20688550 DOI: 10.1016/j.tracli.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
Abstract
A group of four proteins - spectrin, ankyrin, 4.1 and adducin - evolved with the metazoa. These membrane-cytoskeletal proteins cross-link actin on the cytoplasmic face of plasma membranes and link a variety of transmembrane proteins to the cytoskeleton. In this paper, the evolution of these proteins is analysed. Genomics indicate that spectrin was the first to appear, since the genome of the choanoflagellate Monosiga brevicolis contains genes for alpha, beta and betaH spectrin. This organism represents a lineage of free-living and colonial protists from which the metazoa are considered to have diverged. This indicates that spectrin emerged in evolution before the animals. Simple animals such as the placozoan Trichoplax adherens also contain recognizable precursors of 4.1, ankyrin and adducin, but these could probably not bind spectrin. Ankyrin and adducin seem to have acquired spectrin-binding activity with the appearance of tissues since they appear to have largely the same domain structure in all eumetazoa. 4.1 was adapted more recently, with the emergence of the vertebrates, to bind spectrin and promote its interaction with actin. A simple hypothesis is that spectrin was prerequisite (but not sufficient) for animal life; that spectrin interaction with ankyrin and adducin was required for evolution of major tissues; and that 4.1 acquired a spectrin-actin binding activity as animal size increased with the appearance of vertebrates. The spectrin/ankyrin/adducin/4.1 complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- A J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, CT2 7NJ, Canterbury, United Kingdom.
| |
Collapse
|
15
|
Lee HG, Zarnescu DC, MacIver B, Thomas GH. The cell adhesion molecule Roughest depends on beta(Heavy)-spectrin during eye morphogenesis in Drosophila. J Cell Sci 2010; 123:277-85. [PMID: 20048344 DOI: 10.1242/jcs.056853] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell junctions have both structural and morphogenetic roles, and contain complex mixtures of proteins whose interdependencies are still largely unknown. Junctions are also major signaling centers that signify correct integration into a tissue, and modulate cell survival. During Drosophila eye development, the activity of the immunoglobulin cell adhesion molecule Roughest (also known as Irregular chiasm C-roughest protein) mediates interommatidial cell (IOC) reorganization, leading to an apoptotic event that refines the retinal lattice. Roughest and the cadherin-based zonula adherens (ZA) are interdependent and both are modulated by the apical polarity determinant, Crumbs. Here we describe a novel relationship between the Crumbs partner beta(Heavy)-spectrin (beta(H)), the ZA and Roughest. Ectopic expression of the C-terminal segment 33 of beta(H) (betaH33) induces defects in retinal morphogenesis, resulting the preferential loss of IOC. This effect is associated with ZA disruption and Roughest displacement. In addition, loss-of-function karst and roughest mutations interact to cause a synergistic and catastrophic effect on retinal development. Finally, we show that beta(H) coimmunoprecipitates with Roughest and that the distribution of Roughest protein is disrupted in karst mutant tissue. These results suggest that the apical spectrin membrane skeleton helps to coordinate the Cadherin-based ZA with Roughest-based morphogenesis.
Collapse
Affiliation(s)
- Hyun-Gwan Lee
- Department of Biology, Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
16
|
Genetic screen in Drosophila melanogaster uncovers a novel set of genes required for embryonic epithelial repair. Genetics 2009; 184:129-40. [PMID: 19884309 DOI: 10.1534/genetics.109.110288] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The wound healing response is an essential mechanism to maintain the integrity of epithelia and protect all organisms from the surrounding milieu. In the "purse-string" mechanism of wound closure, an injured epithelial sheet cinches its hole closed via an intercellular contractile actomyosin cable. This process is conserved across species and utilized by both embryonic as well as adult tissues, but remains poorly understood at the cellular level. In an effort to identify new players involved in purse-string wound closure we developed a wounding strategy suitable for screening large numbers of Drosophila embryos. Using this methodology, we observe wound healing defects in Jun-related antigen (encoding DJUN) and scab (encoding Drosophila alphaPS3 integrin) mutants and performed a forward genetics screen on the basis of insertional mutagenesis by transposons that led to the identification of 30 lethal insertional mutants with defects in embryonic epithelia repair. One of the mutants identified is an insertion in the karst locus, which encodes Drosophila beta(Heavy)-spectrin. We show beta(Heavy)-spectrin (beta(H)) localization to the wound edges where it presumably exerts an essential function to bring the wound to normal closure.
Collapse
|
17
|
Richard M, Muschalik N, Grawe F, Ozüyaman S, Knust E. A role for the extracellular domain of Crumbs in morphogenesis of Drosophila photoreceptor cells. Eur J Cell Biol 2009; 88:765-77. [PMID: 19717208 DOI: 10.1016/j.ejcb.2009.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 12/01/2022] Open
Abstract
Morphogenesis of Drosophila photoreceptor cells includes the subdivision of the apical membrane into the photosensitive rhabdomere and the associated stalk membrane, as well as a considerable elongation of the cell. Drosophila Crumbs (Crb), an evolutionarily conserved transmembrane protein, organizes an apical protein scaffold, which is required for elongation of the photoreceptor cell and extension of the stalk membrane. To further elucidate the role played by different Crb domains during eye morphogenesis, we performed a structure-function analysis in the eye. The analysis showed that the three variants tested, namely full-length Crb, the membrane-bound intracellular domain and the extracellular domain were able to rescue the elongation defects of crb mutant rhabdomeres. However, only full-length Crb and the membrane-bound intracellular domain could partially restore the length of the stalk membrane, while the extracellular domain failed to do so. This failure was associated with the inability of the extracellular domain to recruit beta(Heavy)-spectrin to the stalk membrane. These results highlight the functional importance of the extracellular domain of Crb in the Drosophila eye. They are in line with previous observations, which showed that mutations in the extracellular domain of human CRB1 are associated with retinitis pigmentosa 12 and Leber congenital amaurosis, two severe forms of retinal dystrophy.
Collapse
Affiliation(s)
- Mélisande Richard
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is one type of the neuronal ceroid lipofuscinosis (NCLs), which is a group of pediatric neurodegenerative disorders. The symptoms of JNCL are retinal degeneration (rd), seizures, cognitive, and motor decline. The pathogenesis, summarized in this review, include apoptosis, autophagy, dysfunction in the structure associated with plasmalemma, oxidative stress and disruption of nitric oxide signaling, dysfunction of the mitochondrial and lysosome, unbalanced intracellular pH, and other relative mechanisms. Among them, only apoptosis and autophagy are well known. In apoptosis, the defects in CLN3 result in ceramide accumulation and upstream of mitochondrial membrane per-meabilization, which eventually induce caspase-dependent and caspase-independent cell death. Autophagy exists but is disrupted because the immaturity of autophagic vacuoles leads to the failure of autophagy circulation. Understanding of the pathogenesis, especially the pathways of cell death in JNCL, is helpful to explore the mechanism of neurodegenerative dis-orders, such as JNCL.
Collapse
|
19
|
Legendre K, Safieddine S, Küssel-Andermann P, Petit C, El-Amraoui A. alphaII-betaV spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells. J Cell Sci 2008; 121:3347-56. [PMID: 18796539 DOI: 10.1242/jcs.028134] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The sensitivity and frequency selectivity of the mammalian cochlea involves a mechanical amplification process called electromotility, which requires prestin-dependent length changes of the outer hair cell (OHC) lateral wall in response to changes in membrane electric potential. The cortical lattice, the highly organized cytoskeleton underlying the OHC lateral plasma membrane, is made up of F-actin and spectrin. Here, we show that alphaII and two of the five beta-spectrin subunits, betaII and betaV, are present in OHCs. betaII spectrin is restricted to the cuticular plate, a dense apical network of actin filaments, whereas betaV spectrin is concentrated at the cortical lattice. Moreover, we show that alphaII-betaV spectrin directly interacts with F-actin and band 4.1, two components of the OHC cortical lattice. betaV spectrin is progressively recruited into the cortical lattice between postnatal day 2 (P2) and P10 in the mouse, in parallel with prestin membrane insertion, which itself parallels the maturation of cell electromotility. Although betaV spectrin does not directly interact with prestin, we found that addition of lysates derived from mature auditory organs, but not from the brain or liver, enables betaV spectrin-prestin interaction. Using this assay, betaV spectrin, via its PH domain, indirectly interacts with the C-terminal cytodomain of prestin. We conclude that the cortical network involved in the sound-induced electromotility of OHCs contains alphaII-betaV spectrin, and not the conventional alphaII-betaII spectrin.
Collapse
Affiliation(s)
- Kirian Legendre
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
20
|
Novel interactions of CLN3 protein link Batten disease to dysregulation of fodrin-Na+, K+ ATPase complex. Exp Cell Res 2008; 314:2895-905. [PMID: 18621045 DOI: 10.1016/j.yexcr.2008.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/22/2008] [Accepted: 06/13/2008] [Indexed: 01/15/2023]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease) is the most common progressive neurodegenerative disorder of childhood. CLN3, the transmembrane protein underlying JNCL, is proposed to participate in multiple cellular events including membrane trafficking and cytoskeletal functions. We demonstrate here that CLN3 interacts with the plasma membrane-associated cytoskeletal and endocytic fodrin and the associated Na(+), K(+) ATPase. The ion pumping activity of Na(+), K(+) ATPase was unchanged in Cln3(-/-) mouse primary neurons. However, the immunostaining pattern of fodrin appeared abnormal in JNCL fibroblasts and Cln3(-/-) mouse brains suggesting disturbances in the fodrin cytoskeleton. Furthermore, the basal subcellular distribution as well as ouabain-induced endocytosis of neuron-specific Na(+), K(+) ATPase were remarkably affected in Cln3(-/-) mouse primary neurons. These data suggest that CLN3 is involved in the regulation of plasma membrane fodrin cytoskeleton and consequently, the plasma membrane association of Na(+), K(+) ATPase. Most of the processes regulated by multifunctional fodrin and Na(+), K(+) ATPase are also affected in JNCL and Cln3-deficiency implicating that dysregulation of fodrin cytoskeleton and non-pumping functions of Na(+), K(+) ATPase may play a role in the neuronal degeneration in JNCL.
Collapse
|
21
|
Das A, Base C, Manna D, Cho W, Dubreuil RR. Unexpected complexity in the mechanisms that target assembly of the spectrin cytoskeleton. J Biol Chem 2008; 283:12643-53. [PMID: 18287096 DOI: 10.1074/jbc.m800094200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectrin cytoskeleton assembles within discrete regions of the plasma membrane in a wide range of animal cell types. Although recent studies carried out in vertebrate systems indicate that spectrin assembly occurs indirectly through the adapter protein ankyrin, recent studies in Drosophila have established that spectrin can also assemble through a direct ankyrin-independent mechanism. Here we tested specific regions of the spectrin molecule for a role in polarized assembly and function. First, we tested mutant beta-spectrins lacking ankyrin binding activity and/or the COOH-terminal pleckstrin homology (PH) domain for their assembly competence in midgut, salivary gland, and larval brain. Remarkably, three different assembly mechanisms operate in these three cell types: 1) neither site was required for assembly in salivary gland; 2) only the PH domain was required in midgut copper cells; and 3) either one of the two sites was sufficient for spectrin assembly in larval brain. Further characterization of the PH domain revealed that it binds strongly to lipid mixtures containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) but not phosphatidylinositol 3,4,5-trisphosphate. A K8Q mutation in the lipid binding region of the PH domain eliminated the PIP(2) interaction in vitro, yet the mutant protein retained full biological function in vivo. Reporter gene studies revealed that PIP(2) and the spectrin PH domain codistribute with one another in cells but not with authentic wild type alphabeta-spectrin. Thus, it appears that the PH domain imparts membrane targeting activity through a second mechanism that takes precedence over its PIP(2) binding activity.
Collapse
Affiliation(s)
- Amlan Das
- Laboratory for Molecular Biology and Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
22
|
Conder R, Yu H, Zahedi B, Harden N. The serine/threonine kinase dPak is required for polarized assembly of F-actin bundles and apical–basal polarity in the Drosophila follicular epithelium. Dev Biol 2007; 305:470-82. [PMID: 17383630 DOI: 10.1016/j.ydbio.2007.02.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 01/29/2007] [Accepted: 02/23/2007] [Indexed: 01/24/2023]
Abstract
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.
Collapse
Affiliation(s)
- Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
23
|
Hülsmeier J, Pielage J, Rickert C, Technau GM, Klämbt C, Stork T. Distinct functions of alpha-Spectrin and beta-Spectrin during axonal pathfinding. Development 2007; 134:713-22. [PMID: 17215305 DOI: 10.1242/dev.02758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect beta-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that beta-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, beta-Spectrin is associated with alpha-Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of beta-Spectrin significantly reduces levels of neuronal alpha-Spectrin expression, whereas gain of beta-Spectrin leads to an increase in alpha-Spectrin protein expression. Because the loss of alpha-spectrin does not result in an embryonic nervous system phenotype, beta-Spectrin appears to act at least partially independent of alpha-Spectrin to control axonal patterning.
Collapse
Affiliation(s)
- Jörn Hülsmeier
- Institut für Neurobiologie, Badestr. 9, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Phillips MD, Thomas GH. Brush border spectrin is required for early endosome recycling in Drosophila. J Cell Sci 2006; 119:1361-70. [PMID: 16537648 DOI: 10.1242/jcs.02839] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An apical brush border is a characteristic of many mature epithelia. This dynamic structure consists of dense microvilli supported by F-actin bundles that protrude into the apical cytoplasm, where they are crosslinked by spectrin and myosin II to form the terminal web. Little is known about the terminal web, through which vesicles transit to and from the apical membrane. Analysis of mutations in beta(Heavy)-spectrin, the Drosophila brush border spectrin, reveals that this protein is necessary for the maintenance of Rab5 endosomes in the midgut. As a consequence, an apical H+ V-ATPase that is probably responsible for lumenal acidification is lost both from the brush border and Rab5 endosomes. Epistasis tests indicate that beta(Heavy)-spectrin is required during endocytosis after Dynamin and before Rab5-mediated endosome activities. These data are consistent with the location of spectrin in the terminal web, and suggest that this molecule is required for correct sorting decisions at the early endosome.
Collapse
Affiliation(s)
- Matthew D Phillips
- Departments of Biology, and of Biochemistry and Molecular Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
25
|
Praitis V, Ciccone E, Austin J. SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C. elegans. Dev Biol 2005; 283:157-70. [PMID: 15890334 DOI: 10.1016/j.ydbio.2005.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 03/24/2005] [Accepted: 04/06/2005] [Indexed: 01/27/2023]
Abstract
During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.
Collapse
Affiliation(s)
- Vida Praitis
- Biology Department, Grinnell College, Grinnell, IA 50112, USA.
| | | | | |
Collapse
|
26
|
Bialkowska K, Saido TC, Fox JEB. SH3 domain of spectrin participates in the activation of Rac in specialized calpain-induced integrin signaling complexes. J Cell Sci 2005; 118:381-95. [PMID: 15632109 DOI: 10.1242/jcs.01625] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, we used cultured cells spreading on beta3 integrin substrates to examine the possibility that spectrin is involved in signal transduction. Spectrin clustered with specialized calpain-induced beta3 integrin signaling complexes that mediate the initial attachment of cells and initiate Rac activation and lamellipodia extension. It was absent from focal complexes and focal adhesions, the integrin complexes that mediate adhesion in lamellipodia and fully spread cells. Spectrin contains a Src homology (SH3) domain of unknown function. Cells overexpressing this domain adhered and calpain-induced integrin signaling complexes formed. However, Rac activation, lamellipodia extension and cell spreading were inhibited. Spreading was restored by overexpression of constitutively active Rac. These studies point to a previously unrecognized role for spectrin and its SH3 domain in initiating Rac activation in the specialized integrin clusters that initiate cell adhesion and spreading. Thus, spectrin may have a pivotal role in initiating integrin-induced physiological and pathological events such as development, proliferation, cell survival, wound healing, metastasis and atherosclerosis.
Collapse
Affiliation(s)
- Katarzyna Bialkowska
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|