1
|
Dixit S, Nagraj T, Bhattacharya D, Saxena S, Sahoo S, Chittela RK, Somyajit K, Nagaraju G. RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes. Cell Rep 2024; 43:114594. [PMID: 39116203 DOI: 10.1016/j.celrep.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
Collapse
Affiliation(s)
- Suruchi Dixit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Tarun Nagraj
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | | | - Sneha Saxena
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Satyaranjan Sahoo
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kumar Somyajit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India; Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | - Ganesh Nagaraju
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Matos‐Rodrigues G, Barroca V, Muhammad A, Dardillac E, Allouch A, Koundrioukoff S, Lewandowski D, Despras E, Guirouilh‐Barbat J, Frappart L, Kannouche P, Dupaigne P, Le Cam E, Perfettini J, Romeo P, Debatisse M, Jasin M, Livera G, Martini E, Lopez BS. In vivo reduction of RAD51-mediated homologous recombination triggers aging but impairs oncogenesis. EMBO J 2023; 42:e110844. [PMID: 37661798 PMCID: PMC10577633 DOI: 10.15252/embj.2022110844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.
Collapse
Affiliation(s)
- Gabriel Matos‐Rodrigues
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Vilma Barroca
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Ali‐Akbar Muhammad
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Awatef Allouch
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Stephane Koundrioukoff
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Daniel Lewandowski
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Despras
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Josée Guirouilh‐Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Lucien Frappart
- Leibniz Institute on Aging‐Fritz Lipmann InstituteJenaGermany
| | - Patricia Kannouche
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Jean‐Luc Perfettini
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Paul‐Henri Romeo
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Michelle Debatisse
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Maria Jasin
- Developmental Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Gabriel Livera
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Martini
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
3
|
A noncanonical response to replication stress protects genome stability through ROS production, in an adaptive manner. Cell Death Differ 2023; 30:1349-1365. [PMID: 36869180 PMCID: PMC10154342 DOI: 10.1038/s41418-023-01141-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.
Collapse
|
4
|
Zhang Y, Zhang Q, Zhang Y, Han J. The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer. Int J Mol Sci 2023; 24:ijms24054939. [PMID: 36902370 PMCID: PMC10003558 DOI: 10.3390/ijms24054939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023] Open
Abstract
Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.
Collapse
|
5
|
Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, Neves J, Grinkevich V, Hewitt G, Segura-Bayona S, Bellelli R, Robinson HMR, Higgins GS, Smith GCM, West SC, Rueda DS, Boulton SJ. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Mol Cell 2022; 82:4664-4680.e9. [PMID: 36455556 DOI: 10.1016/j.molcel.2022.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie Sebald
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marek Adamowicz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksandra Vancevska
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Joana Neves
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Vera Grinkevich
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra Segura-Bayona
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen M R Robinson
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Geoff S Higgins
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Graeme C M Smith
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK.
| |
Collapse
|
6
|
Hong Z, Liu T, Wan L, Fa P, Kumar P, Cao Y, Prasad CB, Qiu Z, Joseph L, Hongbing W, Li Z, Wang QE, Guo P, Guo D, Yilmaz AS, Lu L, Papandreou I, Jacob NK, Yan C, Zhang X, She QB, Ma Z, Zhang J. Targeting Squalene Epoxidase Interrupts Homologous Recombination via the ER Stress Response and Promotes Radiotherapy Efficacy. Cancer Res 2022; 82:1298-1312. [PMID: 35045984 PMCID: PMC8983553 DOI: 10.1158/0008-5472.can-21-2229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Over 50% of all patients with cancer are treated with radiotherapy. However, radiotherapy is often insufficient as a monotherapy and requires a nontoxic radiosensitizer. Squalene epoxidase (SQLE) controls cholesterol biosynthesis by converting squalene to 2,3-oxidosqualene. Given that SQLE is frequently overexpressed in human cancer, this study investigated the importance of SQLE in breast cancer and non-small cell lung cancer (NSCLC), two cancers often treated with radiotherapy. SQLE-positive IHC staining was observed in 68% of breast cancer and 56% of NSCLC specimens versus 15% and 25% in normal breast and lung tissue, respectively. Importantly, SQLE expression was an independent predictor of poor prognosis, and pharmacologic inhibition of SQLE enhanced breast and lung cancer cell radiosensitivity. In addition, SQLE inhibition enhanced sensitivity to PARP inhibition. Inhibition of SQLE interrupted homologous recombination by suppressing ataxia-telangiectasia mutated (ATM) activity via the translational upregulation of wild-type p53-induced phosphatase (WIP1), regardless of the p53 status. SQLE inhibition and subsequent squalene accumulation promoted this upregulation by triggering the endoplasmic reticulum (ER) stress response. Collectively, these results identify a novel tumor-specific radiosensitizer by revealing unrecognized cross-talk between squalene metabolites, ER stress, and the DNA damage response. Although SQLE inhibitors have been used as antifungal agents in the clinic, they have not yet been used as antitumor agents. Repurposing existing SQLE-inhibiting drugs may provide new cancer treatments. SIGNIFICANCE Squalene epoxidase inhibitors are novel tumor-specific radiosensitizers that promote ER stress and suppress homologous recombination, providing a new potential therapeutic approach to enhance radiotherapy efficacy.
Collapse
Affiliation(s)
- Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, P.R. China
| | - Tao Liu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Lingfeng Wan
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pankaj Kumar
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Yanan Cao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Chandra Bhushan Prasad
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Liu Joseph
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Wang Hongbing
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Lanchun Lu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Naduparambil K Jacob
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Qing-Bai She
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Zhefu Ma
- Department Breast Surgery and Plastic Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
- Department Breast & Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| |
Collapse
|
7
|
A transcription-based mechanism for oncogenic β-catenin-induced lethality in BRCA1/2-deficient cells. Nat Commun 2021; 12:4919. [PMID: 34389725 PMCID: PMC8363664 DOI: 10.1038/s41467-021-25215-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
BRCA1 or BRCA2 germline mutations predispose to breast, ovarian and other cancers. High-throughput sequencing of tumour genomes revealed that oncogene amplification and BRCA1/2 mutations are mutually exclusive in cancer, however the molecular mechanism underlying this incompatibility remains unknown. Here, we report that activation of β-catenin, an oncogene of the WNT signalling pathway, inhibits proliferation of BRCA1/2-deficient cells. RNA-seq analyses revealed β-catenin-induced discrete transcriptome alterations in BRCA2-deficient cells, including suppression of CDKN1A gene encoding the CDK inhibitor p21. This accelerates G1/S transition, triggering illegitimate origin firing and DNA damage. In addition, β-catenin activation accelerates replication fork progression in BRCA2-deficient cells, which is critically dependent on p21 downregulation. Importantly, we find that upregulated p21 expression is essential for the survival of BRCA2-deficient cells and tumours. Thus, our work demonstrates that β-catenin toxicity in cancer cells with compromised BRCA1/2 function is driven by transcriptional alterations that cause aberrant replication and inflict DNA damage. Germline mutations in BRCA1 or BRCA2 tumour suppressor genes predispose to different cancers, as does oncogene activation. Here the authors reveal that aberrant transcription of specific genes triggered by activation of the oncogene β-catenin causes replication failure and cell death in the context of BRCA1/2 deficiency.
Collapse
|
8
|
Neiger HE, Siegler EL, Shi Y. Breast Cancer Predisposition Genes and Synthetic Lethality. Int J Mol Sci 2021; 22:5614. [PMID: 34070674 PMCID: PMC8198377 DOI: 10.3390/ijms22115614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
BRCA1 and BRCA2 are tumor suppressor genes with pivotal roles in the development of breast and ovarian cancers. These genes are essential for DNA double-strand break repair via homologous recombination (HR), which is a virtually error-free DNA repair mechanism. Following BRCA1 or BRCA2 mutations, HR is compromised, forcing cells to adopt alternative error-prone repair pathways that often result in tumorigenesis. Synthetic lethality refers to cell death caused by simultaneous perturbations of two genes while change of any one of them alone is nonlethal. Therefore, synthetic lethality can be instrumental in identifying new therapeutic targets for BRCA1/2 mutations. PARP is an established synthetic lethal partner of the BRCA genes. Its role is imperative in the single-strand break DNA repair system. Recently, Olaparib (a PARP inhibitor) was approved for treatment of BRCA1/2 breast and ovarian cancer as the first successful synthetic lethality-based therapy, showing considerable success in the development of effective targeted cancer therapeutics. Nevertheless, the possibility of drug resistance to targeted cancer therapy based on synthetic lethality necessitates the development of additional therapeutic options. This literature review addresses cancer predisposition genes, including BRCA1, BRCA2, and PALB2, synthetic lethality in the context of DNA repair machinery, as well as available treatment options.
Collapse
Affiliation(s)
- Hannah E. Neiger
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA;
| | - Emily L. Siegler
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| |
Collapse
|
9
|
Matos-Rodrigues G, Guirouilh-Barbat J, Martini E, Lopez BS. Homologous recombination, cancer and the 'RAD51 paradox'. NAR Cancer 2021; 3:zcab016. [PMID: 34316706 PMCID: PMC8209977 DOI: 10.1093/narcan/zcab016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Genetic instability is a hallmark of cancer cells. Homologous recombination (HR) plays key roles in genome stability and variability due to its roles in DNA double-strand break and interstrand crosslink repair, and in the protection and resumption of arrested replication forks. HR deficiency leads to genetic instability, and, as expected, many HR genes are downregulated in cancer cells. The link between HR deficiency and cancer predisposition is exemplified by familial breast and ovarian cancers and by some subgroups of Fanconi anaemia syndromes. Surprisingly, although RAD51 plays a pivotal role in HR, i.e., homology search and in strand exchange with a homologous DNA partner, almost no inactivating mutations of RAD51 have been associated with cancer predisposition; on the contrary, overexpression of RAD51 is associated with a poor prognosis in different types of tumours. Taken together, these data highlight the fact that RAD51 differs from its HR partners with regard to cancer susceptibility and expose what we call the ‘RAD51 paradox’. Here, we catalogue the dysregulations of HR genes in human pathologies, including cancer and Fanconi anaemia or congenital mirror movement syndromes, and we discuss the RAD51 paradox.
Collapse
Affiliation(s)
- Gabriel Matos-Rodrigues
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| | - Emmanuelle Martini
- Université de Paris and Université Paris-Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability, Stem Cells and Radiation, F-92265 Fontenay aux Roses, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| |
Collapse
|
10
|
Wang L, Wulf GM. Not Black or White but Shades of Gray: Homologous Recombination Deficiency as a Continuous Variable Modulated by RNF168. Cancer Res 2020; 80:2720-2721. [PMID: 32616507 DOI: 10.1158/0008-5472.can-20-1248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
In this issue of Cancer Research, the study by Krais and colleagues underscores that DNA damage repair by homologous recombination (HR) is not an all-or-nothing phenomenon, but that HR competency comes on a spectrum, ranging from complete deficiency to proficiency. Residual low-level HR in BRCA1-mutant cancer cells turns out to be critically important for their survival and is afforded by low levels of Histone 2A (H2A) ubiquitination resulting from lowered RNF168 levels. The findings raise the possibility that, if ubiquitination of H2A could be enforced by inhibition of deubiquitinases, residual HR in BRCA1mt cells might be extinguished. Extinction of residual HR might improve the therapeutic efficacy of the emerging inhibitors of DNA damage repair. The development of methods to measure HR directly and quantitatively is crucial to develop this field.See related article by Krais et al., p. 2848.
Collapse
Affiliation(s)
- Lin Wang
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Gerburg M Wulf
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
11
|
Rieckhoff J, Meyer F, Classen S, Zielinski A, Riepen B, Wikman H, Petersen C, Rothkamm K, Borgmann K, Parplys AC. Exploiting Chromosomal Instability of PTEN-Deficient Triple-Negative Breast Cancer Cell Lines for the Sensitization against PARP1 Inhibition in a Replication-Dependent Manner. Cancers (Basel) 2020; 12:cancers12102809. [PMID: 33003585 PMCID: PMC7601067 DOI: 10.3390/cancers12102809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The poor prognosis of patients with TNBC have fostered a major effort to identify more patients who would benefit from targeted therapies. Here we recognize PTEN as a potential CIN-causing gene in TNBC and consider PTEN-deficient TNBC for the treatment with PARP1 inhibitors due to the protective role of PTEN during DNA replication. Abstract Chromosomal instability (CIN) is an emerging hallmark of cancer and its role in therapeutic responses has been increasingly attracting the attention of the research community. To target the vulnerability of tumors with high CIN, it is important to identify the genes and mechanisms involved in the maintenance of CIN. In our work, we recognize the tumor suppressor gene Phosphatase and Tensin homolog (PTEN) as a potential gene causing CIN in triple-negative breast cancer (TNBC) and show that TNBC with low expression levels of PTEN can be sensitized for the treatment with poly-(ADP-ribose)-polymerase 1 (PARP1) inhibitors, independent of Breast Cancer (BRCA) mutations or a BRCA-like phenotype. In silico analysis of mRNA expression data from 200 TNBC patients revealed low expression of PTEN in tumors with a high CIN70 score. Western blot analysis of TNBC cell lines confirm lower protein expression of PTEN compared to non TNBC cell lines. Further, PTEN-deficient cell lines showed cellular sensitivity towards PARP1 inhibition treatment. DNA fiber assays and examination of chromatin bound protein fractions indicate a protective role of PTEN at stalled replication forks. In this study, we recognize PTEN as a potential CIN-causing gene in TNBC and identify its important role in the replication processes.
Collapse
Affiliation(s)
- Johanna Rieckhoff
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
| | - Felix Meyer
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
| | - Sandra Classen
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
| | - Alexandra Zielinski
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
| | - Britta Riepen
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
| | - Harriet Wikman
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Cordula Petersen
- Department of Radiotherapy and Radio Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
| | - Ann Christin Parplys
- Laboratory of Radiobiology & Experimental Radio Oncology, Centre of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.R.); (F.M.); (S.C.); (A.Z.); (B.R.); (K.R.); (K.B.)
- Correspondence:
| |
Collapse
|
12
|
Ragu S, Matos-Rodrigues G, Lopez BS. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes (Basel) 2020; 11:E409. [PMID: 32283785 PMCID: PMC7230342 DOI: 10.3390/genes11040409] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.
Collapse
Affiliation(s)
| | | | - Bernard S. Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France; (S.R.); (G.M.-R.)
| |
Collapse
|
13
|
Hjorth-Jensen K, Maya-Mendoza A, Dalgaard N, Sigurðsson JO, Bartek J, Iglesias-Gato D, Olsen JV, Flores-Morales A. SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res 2019; 46:9484-9495. [PMID: 30124983 PMCID: PMC6182143 DOI: 10.1093/nar/gky719] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in SPOP, the gene most frequently point-mutated in primary prostate cancer, are associated with a high degree of genomic instability and deficiency in homologous recombination repair of DNA but the underlying mechanisms behind this defect are currently unknown. Here we demonstrate that SPOP knockdown leads to spontaneous replication stress and impaired recovery from replication fork stalling. We show that this is associated with reduced expression of several key DNA repair and replication factors including BRCA2, ATR, CHK1 and RAD51. Consequently, SPOP knockdown impairs RAD51 foci formation and activation of CHK1 in response to replication stress and compromises recovery from replication fork stalling. An SPOP interactome analysis shows that wild type (WT) SPOP but not mutant SPOP associates with multiple proteins involved in transcription, mRNA splicing and export. Consistent with the association of SPOP with transcription, splicing and RNA export complexes, the decreased expression of BRCA2, ATR, CHK1 and RAD51 occurs at the level of transcription.
Collapse
Affiliation(s)
- Kim Hjorth-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Nanna Dalgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jón O Sigurðsson
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amilcar Flores-Morales
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Abstract
XRCC2 is one of five somatic RAD51 paralogs, all of which have Walker A and B ATPase motifs. Each of the paralogs, including XRCC2, has a function in DNA double-strand break repair by homologous recombination (HR). However, their individual roles are not as well understood as that of RAD51 itself. The XRCC2 protein forms a complex (BCDX2) with three other RAD51 paralogs, RAD51B, RAD51C and RAD51D. It is believed that the BCDX2 complex mediates HR downstream of BRCA2 but upstream of RAD51, as XRCC2 is involved in the assembly of RAD51 into DNA damage foci. XRCC2 can bind DNA and, along with RAD51D, can promote homologous pairing in vitro. Consistent with its role in HR, XRCC2-deficient cells have increased levels of spontaneous chromosome instability, and exhibit hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C and cisplatin as well as ionizing radiation, alkylating agents and aldehydes. XRCC2 also functions in promoting DNA replication and chromosome segregation. Biallelic mutation of XRCC2 (FANCU) causes the FA-U subtype of FA, while heterozygosity for deleterious mutations in XRCC2 may be associated with an increased breast cancer risk. XRCC2 appears to function 'downstream' in the FA pathway, since it is not required for FANCD2 monoubiquitination, which is the central step in the FA pathway. Clinically, the only known FA-U patient in the world exhibits severe congenital abnormalities, but had not developed, by seven years of age, the bone marrow failure and cancer that are often seen in patients from other FA complementation groups.
Collapse
Affiliation(s)
- Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| | - Helmut Hanenberg
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| |
Collapse
|
15
|
Prado F. Homologous Recombination: To Fork and Beyond. Genes (Basel) 2018; 9:genes9120603. [PMID: 30518053 PMCID: PMC6316604 DOI: 10.3390/genes9120603] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Accurate completion of genome duplication is threatened by multiple factors that hamper the advance and stability of the replication forks. Cells need to tolerate many of these blocking lesions to timely complete DNA replication, postponing their repair for later. This process of lesion bypass during DNA damage tolerance can lead to the accumulation of single-strand DNA (ssDNA) fragments behind the fork, which have to be filled in before chromosome segregation. Homologous recombination plays essential roles both at and behind the fork, through fork protection/lesion bypass and post-replicative ssDNA filling processes, respectively. I review here our current knowledge about the recombination mechanisms that operate at and behind the fork in eukaryotes, and how these mechanisms are controlled to prevent unscheduled and toxic recombination intermediates. A unifying model to integrate these mechanisms in a dynamic, replication fork-associated process is proposed from yeast results.
Collapse
Affiliation(s)
- Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, 41092 Seville, Spain.
| |
Collapse
|
16
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
17
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
18
|
Marks AB, Fu H, Aladjem MI. Regulation of Replication Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:43-59. [PMID: 29357052 DOI: 10.1007/978-981-10-6955-0_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In eukaryotes, genome duplication starts concomitantly at many replication initiation sites termed replication origins. The replication initiation program is spatially and temporally coordinated to ensure accurate, efficient DNA synthesis that duplicates the entire genome while maintaining other chromatin-dependent functions. Unlike in prokaryotes, not all potential replication origins in eukaryotes are needed for complete genome duplication during each cell cycle. Instead, eukaryotic cells vary the use of initiation sites so that only a fraction of potential replication origins initiate replication each cell cycle. Flexibility in origin choice allows each eukaryotic cell type to utilize different initiation sites, corresponding to unique nuclear DNA packaging patterns. These patterns coordinate replication with gene expression and chromatin condensation. Budding yeast replication origins share a consensus sequence that marks potential initiation sites. Metazoan origins, on the other hand, lack a consensus sequence. Rather, they are associated with a collection of structural features, chromatin packaging features, histone modifications, transcription, and DNA-DNA/DNA-protein interactions. These features confer cell type-specific replication and expression and play an essential role in maintaining genomic stability.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
19
|
Wilhelm T, Ragu S, Magdalou I, Machon C, Dardillac E, Técher H, Guitton J, Debatisse M, Lopez BS. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress. PLoS Genet 2016; 12:e1006007. [PMID: 27135742 PMCID: PMC4852921 DOI: 10.1371/journal.pgen.1006007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis. Endogenous stress is an important stress because it challenges cells daily. However, endogenous stress is difficult to apprehend. Replication forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Here we identify endogenous oxidative stress among the different potential endogenous stresses as being responsible for spontaneous replication defects in homologous recombination-defective cells. Therefore, oxidative and replication stresses, which are both evoked during tumorigenesis and senescence initiation, are linked, and homologous recombination acts as a barrier against spontaneous genetic instability triggered by endogenous oxidative/replication stress.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Sandrine Ragu
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Indiana Magdalou
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Christelle Machon
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Chimie Analytique, Université de Lyon, Université Lyon 1, ISPB Faculté de Pharmacie, Lyon, France
| | - Elodie Dardillac
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Hervé Técher
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Jérôme Guitton
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPB, Faculté de Pharmacie, Lyon, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Bernard S. Lopez
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
- * E-mail:
| |
Collapse
|
20
|
Marks AB, Smith OK, Aladjem MI. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev 2016; 37:67-75. [PMID: 26845042 PMCID: PMC4914405 DOI: 10.1016/j.gde.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Chromosome replication, gene expression and chromatin assembly all occur on the same template, necessitating a tight spatial and temporal coordination to maintain genomic stability. The distribution of replication initiation events is responsive to local and global changes in chromatin structure and is affected by transcriptional activity. Concomitantly, replication origin sequences, which determine the locations of replication initiation events, can affect chromatin structure and modulate transcriptional efficiency. The flexibility observed in the replication initiation landscape might help achieve complete and accurate genome duplication while coordinating the DNA replication program with transcription and other nuclear processes in a cell-type specific manner. This review discusses the relationships among replication origin distribution, local and global chromatin structures and concomitant nuclear metabolic processes.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation. Proc Natl Acad Sci U S A 2015; 112:E6624-33. [PMID: 26627254 DOI: 10.1073/pnas.1508543112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates.
Collapse
|
22
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Somyajit K, Saxena S, Babu S, Mishra A, Nagaraju G. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res 2015; 43:9835-55. [PMID: 26354865 PMCID: PMC4787763 DOI: 10.1093/nar/gkv880] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/23/2015] [Indexed: 12/22/2022] Open
Abstract
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sneha Saxena
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sharath Babu
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
24
|
Replication stress in Mammalian cells and its consequences for mitosis. Genes (Basel) 2015; 6:267-98. [PMID: 26010955 PMCID: PMC4488665 DOI: 10.3390/genes6020267] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022] Open
Abstract
The faithful transmission of genetic information to daughter cells is central to maintaining genomic stability and relies on the accurate and complete duplication of genetic material during each cell cycle. However, the genome is routinely exposed to endogenous and exogenous stresses that can impede the progression of replication. Such replication stress can be an early cause of cancer or initiate senescence. Replication stress, which primarily occurs during S phase, results in consequences during mitosis, jeopardizing chromosome segregation and, in turn, genomic stability. The traces of replication stress can be detected in the daughter cells during G1 phase. Alterations in mitosis occur in two types: 1) local alterations that correspond to breaks, rearrangements, intertwined DNA molecules or non-separated sister chromatids that are confined to the region of the replication dysfunction; 2) genome-wide chromosome segregation resulting from centrosome amplification (although centrosomes do not contain DNA), which amplifies the local replication stress to the entire genome. Here, we discuss the endogenous causes of replication perturbations, the mechanisms of replication fork restart and the consequences for mitosis, chromosome segregation and genomic stability.
Collapse
|
25
|
Oji Y, Tatsumi N, Kobayashi J, Fukuda M, Ueda T, Nakano E, Saito C, Shibata S, Sumikawa M, Fukushima H, Saito A, Hojo N, Suzuki M, Hoshikawa T, Shimura T, Morii E, Oka Y, Hosen N, Komatsu K, Sugiyama H. Wilms' tumor gene WT1 promotes homologous recombination-mediated DNA damage repair. Mol Carcinog 2014; 54:1758-71. [PMID: 25418835 DOI: 10.1002/mc.22248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/05/2014] [Accepted: 10/10/2014] [Indexed: 01/16/2023]
Abstract
The Wilms' tumor gene WT1 is overexpressed in leukemia and various types of solid tumors and plays an oncogenic role in these malignancies. Alternative splicing at two sites yields four major isoforms, 17AA(+)KTS(+), 17AA(+)KTS(-), 17AA(-)KTS(+), and 17AA(-)KTS(-), and all the isoforms are expressed in the malignancies. However, among the four isoforms, function of WT1[17AA(-)KTS(+)] isoform still remains undetermined. In the present study, we showed that forced expression of WT1[17AA(-)KTS(+)] isoform significantly inhibited apoptosis by DNA-damaging agents such as Doxorubicin, Mitomycin, Camptothesisn, and Bleomycin in immortalized fibroblast MRC5SV and cervical cancer HeLa cells. Knockdown of Rad51, an essential factor for homologous recombination (HR)-mediated DNA repair canceled the resistance to Doxorubicin induced by WT1[17AA(-)KTS(+)] isoform. GFP recombination assay showed that WT1[17AA(-)KTS(+)] isoform alone promoted HR, but that three other WT1 isoforms did not. WT1[17AA(-)KTS(+)] isoform significantly upregulated the expression of HR genes, XRCC2, Rad51D, and Rad54. Knockdown of XRCC2, Rad51D, and Rad54 inhibited the HR activity and canceled resistance to Doxorubicin in MRC5SV cells with forced expression of WT1[17AA(-)KTS(+)] isoform. Furthermore, chromatin immunoprecipitation (ChIP) assay showed the binding of WT1[17AA(-)KTS(+)] isoform protein to promoters of XRCC2 and Rad51D. Immunohistochemical study showed that Rad54 and XRCC2 proteins were highly expressed in the majority of non-small-cell lung cancer (NSCLC) and gastric cancer, and that expression of these two proteins was significantly correlated with that of WT1 protein in NSCLCs. Our results presented here showed that WT1[17AA(-)KTS(+)] isoform had a function to promote HR-mediated DNA repair.
Collapse
Affiliation(s)
- Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Tatsumi
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Mari Fukuda
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tazu Ueda
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eri Nakano
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chisae Saito
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Syohei Shibata
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mihoko Sumikawa
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Fukushima
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akari Saito
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nozomi Hojo
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miyu Suzuki
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Hoshikawa
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenshi Komatsu
- Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
26
|
Prado F. Homologous recombination maintenance of genome integrity during DNA damage tolerance. Mol Cell Oncol 2014; 1:e957039. [PMID: 27308329 PMCID: PMC4905194 DOI: 10.4161/23723548.2014.957039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replication forks by providing mechanisms to circumvent the lesion and fill in the tracks of single-stranded DNA that are generated during the process of lesion bypass. These activities postpone repair of the blocking lesion to ensure that DNA replication is completed in a timely manner. Experimental evidence generated over the last few years indicates that HR participates in this DNA damage tolerance response together with additional error-free (template switch) and error-prone (translesion synthesis) mechanisms through intricate connections, which are presented here. The choice between repair and tolerance, and the mechanism of tolerance, is critical to avoid increased mutagenesis and/or genome rearrangements, which are both hallmarks of cancer.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) ; Consejo Superior de Investigaciones Científicas (CSIC) ; Seville, Spain
| |
Collapse
|
27
|
Parplys AC, Kratz K, Speed MC, Leung SG, Schild D, Wiese C. RAD51AP1-deficiency in vertebrate cells impairs DNA replication. DNA Repair (Amst) 2014; 24:87-97. [PMID: 25288561 DOI: 10.1016/j.dnarep.2014.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023]
Abstract
RAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells. Targeted inactivation of both RAD51AP1 alleles has no effect on either viability or doubling-time in undamaged cells, but leads to increased levels of cytotoxicity after exposure to cisplatin or to ionizing radiation. Interestingly, ectopic expression of GgRAD51AP1, but not of HsRAD51AP1 is able to fully complement in cell survival assays. Notably, in RAD51AP1-deficient DT40 cells the resolution of DNA damage-induced RAD51 foci is greatly slowed down, while their formation is not impaired. We also identify, for the first time, an important role for RAD51AP1 in counteracting both spontaneous and DNA damage-induced replication stress. In human and in chicken cells, RAD51AP1 is required to maintain wild type speed of replication fork progression, and both RAD51AP1-depleted human cells and RAD51AP1-deficient DT40 cells respond to replication stress by a slow-down of replication fork elongation rates. However, increased firing of replication origins occurs in RAD51AP1-/- DT40 cells, likely to ensure the timely duplication of the entire genome. Taken together, our results may explain why RAD51AP1 commonly is overexpressed in tumor cells and tissues, and we speculate that the disruption of RAD51AP1 function could be a promising approach in targeted tumor therapy.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Katja Kratz
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Michael C Speed
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
28
|
Yoon SW, Kim DK, Kim KP, Park KS. Rad51 regulates cell cycle progression by preserving G2/M transition in mouse embryonic stem cells. Stem Cells Dev 2014; 23:2700-11. [PMID: 24991985 DOI: 10.1089/scd.2014.0129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination (HR) maintains genomic integrity against DNA replication stress and deleterious lesions, such as double-strand breaks (DSBs). Rad51 recombinase is critical for HR events that mediate the exchange of genetic information between parental chromosomes in eukaryotes. Additionally, Rad51 and HR accessory factors may facilitate replication fork progression by preventing replication fork collapse and repair DSBs that spontaneously arise during the normal cell cycle. In this study, we demonstrated a novel role for Rad51 during the cell cycle in mouse embryonic stem cells (mESCs). In mESCs, Rad51 was constitutively expressed throughout the cell cycle, and the formation of Rad51 foci increased as the cells entered S phase. Suppression of Rad51 expression caused cells to accumulate at G2/M phase and activated the DNA damage checkpoint, but it did not affect the self-renewal or differentiation capacity of mESCs. Even though Rad51 suppression significantly inhibited the proliferation rate of mESCs, Rad51 suppression did not affect the replication fork progression and speed, indicating that Rad51 repaired DNA damage and promoted DNA replication in S phase through an independent mechanism. In conclusion, Rad51 may contribute to G2/M transition in mESCs, while preserving genomic integrity in global organization of DNA replication fork.
Collapse
Affiliation(s)
- Sang-Wook Yoon
- 1 Department of Life Science, Chung-Ang University , Seoul, Korea
| | | | | | | |
Collapse
|
29
|
Heterozygous mutations in PALB2 cause DNA replication and damage response defects. Nat Commun 2014; 4:2578. [PMID: 24153426 PMCID: PMC3826652 DOI: 10.1038/ncomms3578] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
Besides mutations in BRCA1/BRCA2, heterozygous defects in PALB2 are important in breast cancer predisposition. PALB2 heterozygosity increases the risk of malignancy about sixfold. PALB2 interacts with BRCA1 and BRCA2 to regulate homologous recombination and mediate DNA damage response. Here we show, by analysing lymphoblastoid cell lines from heterozygous female PALB2 mutation carriers, that PALB2 haploinsufficiency causes aberrant DNA replication/damage response. Mutation carrier cells show increased origin firing and shorter distance between consecutive replication forks. Carrier cell lines also show elevated ATR protein, but not phosphorylation levels, and a majority of them display aberrant Chk1-/Chk2-mediated DNA damage response. Elevated chromosome instability is observed in primary blood lymphocytes of PALB2 mutation carriers, indicating that the described mechanisms of genome destabilization operate also at the organism level. These findings provide a new mechanism for early stages of breast cancer development that may also apply to other heterozygous homologous recombination signalling pathway gene mutations in hereditary cancer predisposition.
Collapse
|
30
|
Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. Is homologous recombination really an error-free process? Front Genet 2014; 5:175. [PMID: 24966870 PMCID: PMC4052342 DOI: 10.3389/fgene.2014.00175] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that plays a pivotal role in the equilibrium between genetic stability and diversity. HR is commonly considered to be error-free, but several studies have shown that HR can be error-prone. Here, we discuss the actual accuracy of HR. First, we present the product of genetic exchanges (gene conversion, GC, and crossing over, CO) and the mechanisms of HR during double strand break repair and replication restart. We discuss the intrinsic capacities of HR to generate genome rearrangements by GC or CO, either during DSB repair or replication restart. During this process, abortive HR intermediates generate genetic instability and cell toxicity. In addition to genome rearrangements, HR also primes error-prone DNA synthesis and favors mutagenesis on single stranded DNA, a key DNA intermediate during the HR process. The fact that cells have developed several mechanisms protecting against HR excess emphasize its potential risks. Consistent with this duality, several pro-oncogenic situations have been consistently associated with either decreased or increased HR levels. Nevertheless, this versatility also has advantages that we outline here. We conclude that HR is a double-edged sword, which on one hand controls the equilibrium between genome stability and diversity but, on the other hand, can jeopardize the maintenance of genomic integrity. Therefore, whether non-homologous end joining (which, in contrast with HR, is not intrinsically mutagenic) or HR is the more mutagenic process is a question that should be re-evaluated. Both processes can be "Dr. Jekyll" in maintaining genome stability/variability and "Mr. Hyde" in jeopardizing genome integrity.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Équipe Labélisée, Université Paris-Sud, «LIGUE 2014» Villejuif, France
| | | | - Pascale Bertrand
- CEA DSV, UMR 967 CEA-INSERM-Université Paris Diderot-Université Paris Sud, Institut de Radiobiologie Cellulaire et Moléculaire Fontenay-aux-Roses, France
| | - Bernard S Lopez
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Équipe Labélisée, Université Paris-Sud, «LIGUE 2014» Villejuif, France
| |
Collapse
|
31
|
Magdalou I, Lopez BS, Pasero P, Lambert SAE. The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 2014; 30:154-64. [PMID: 24818779 DOI: 10.1016/j.semcdb.2014.04.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/29/2014] [Indexed: 01/28/2023]
Abstract
Alterations of the dynamics of DNA replication cause genome instability. These alterations known as "replication stress" have emerged as a major source of genomic instability in pre-neoplasic lesions, contributing to cancer development. The concept of replication stress covers a wide variety of events that distort the temporal and spatial DNA replication program. These events have endogenous or exogenous origins and impact globally or locally on the dynamics of DNA replication. They may arise within a short window of time (acute stress) or during each S phase (chronic stress). Here, we review the known situations in which the dynamics of DNA replication is distorted. We have united them in four main categories: (i) inadequate firing of replication origins (deficiency or excess), (ii) obstacles to fork progression, (iii) conflicts between replication and transcription and (iv) DNA replication under inappropriate metabolic conditions (unbalanced DNA replication). Because the DNA replication program is a process tightly regulated by many factors, replication stress often appears as a cascade of events. A local stress may prevent the completion of DNA replication at a single locus and subsequently compromise chromosome segregation in mitosis and therefore have a global effect on genome integrity. Finally, we discuss how replication stress drives genome instability and to what extent it is relevant to cancer biology.
Collapse
Affiliation(s)
- Indiana Magdalou
- Université Paris Sud, CNRS, UMR 8200 and Institut de Cancérologie Gustave Roussy, équipe labélisée «LIGUE 2014», Villejuif, France
| | - Bernard S Lopez
- Université Paris Sud, CNRS, UMR 8200 and Institut de Cancérologie Gustave Roussy, équipe labélisée «LIGUE 2014», Villejuif, France
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UPR 1142, équipe labélisée LIGUE contre le Cancer, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Sarah A E Lambert
- Institut Curie, centre de recherche, CNRS UMR338, Bat 110, centre universitaire, 91405 Orsay, France.
| |
Collapse
|
32
|
Prado F. Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments. Bioessays 2014; 36:451-62. [PMID: 24615940 PMCID: PMC4312893 DOI: 10.1002/bies.201300161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Homologous recombination (HR) is required to protect and restart stressed replication forks. Paradoxically, the Mrc1 branch of the S phase checkpoints, which is activated by replicative stress, prevents HR repair at breaks and arrested forks. Indeed, the mechanisms underlying HR can threaten genome integrity if not properly regulated. Thus, understanding how cells avoid genetic instability associated with replicative stress, a hallmark of cancer, is still a challenge. Here I discuss recent results that support a model by which HR responds to replication stress through replicative and repair activities that operate at different stages of the cell cycle (S and G2, respectively) and in distinct subnuclear structures. Remarkably, the replication checkpoint appears to control this scenario by inhibiting the assembly of HR repair centers at stressed forks during S phase, thereby avoiding genetic instability.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
33
|
Spontaneous slow replication fork progression elicits mitosis alterations in homologous recombination-deficient mammalian cells. Proc Natl Acad Sci U S A 2013; 111:763-8. [PMID: 24347643 DOI: 10.1073/pnas.1311520111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination deficient (HR(-)) mammalian cells spontaneously display reduced replication fork (RF) movement and mitotic extra centrosomes. We show here that these cells present a complex mitotic phenotype, including prolonged metaphase arrest, anaphase bridges, and multipolar segregations. We then asked whether the replication and the mitotic phenotypes are interdependent. First, we determined low doses of hydroxyurea that did not affect the cell cycle distribution or activate CHK1 phosphorylation but did slow the replication fork movement of wild-type cells to the same level than in HR(-) cells. Remarkably, these low hydroxyurea doses generated the same mitotic defects (and to the same extent) in wild-type cells as observed in unchallenged HR(-) cells. Reciprocally, supplying nucleotide precursors to HR(-) cells suppressed both their replication deceleration and mitotic extra centrosome phenotypes. Therefore, subtle replication stress that escapes to surveillance pathways and, thus, fails to prevent cells from entering mitosis alters metaphase progression and centrosome number, resulting in multipolar mitosis. Importantly, multipolar mitosis results in global unbalanced chromosome segregation involving the whole genome, even fully replicated chromosomes. These data highlight the cross-talk between chromosome replication and segregation, and the importance of HR at the interface of these two processes for protection against general genome instability.
Collapse
|
34
|
Carr AM, Lambert S. Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J Mol Biol 2013; 425:4733-44. [PMID: 23643490 DOI: 10.1016/j.jmb.2013.04.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/30/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022]
Abstract
Homologous recombination (HR) is an evolutionary-conserved mechanism involved in a subtle balance between genome stability and diversity. HR is a faithful DNA repair pathway and has been largely characterized in the context of double-strand break (DSB) repair. Recently, multiple functions for the HR machinery have been identified at arrested forks. These are evident across different organisms and include replication fork-stabilization and fork-restart functions. Interestingly, a DSB appears not to be a prerequisite for HR-mediated replication maintenance. HR has the ability to rebuild a replisome at inactivated forks, but perhaps surprisingly, the resulting replisome is liable to intrastrand and interstrand switches leading to replication errors. Here, we review our current understanding of the replication maintenance function of HR. The error proneness of these pathways leads us to suggest that the origin of replication-associated genome instability should be re-evaluated.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
35
|
Barlow J, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT, Gutierez-Cruz G, Sun HW, McKinnon P, Wright G, Casellas R, Robbiani DF, Staudt L, Fernandez-Capetillo O, Nussenzweig A. Identification of early replicating fragile sites that contribute to genome instability. Cell 2013; 152:620-32. [PMID: 23352430 PMCID: PMC3629730 DOI: 10.1016/j.cell.2013.01.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 12/20/2022]
Abstract
DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.
Collapse
Affiliation(s)
- Jacqueline Barlow
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Robert B. Faryabi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Amy Malhowski
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Hua Tang Chen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Gustavo Gutierez-Cruz
- Laboratory of Muscle Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH Bethesda MD 20892
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH Bethesda MD 20892
| | - Peter McKinnon
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - George Wright
- Metabolism Branch Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Rafael Casellas
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH Bethesda MD 20892
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Louis Staudt
- Metabolism Branch Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | | | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| |
Collapse
|
36
|
Frum RA, Deb S, Deb SP. Use of the DNA fiber spreading technique to detect the effects of mutant p53 on DNA replication. Methods Mol Biol 2013; 962:147-55. [PMID: 23150444 PMCID: PMC4839281 DOI: 10.1007/978-1-62703-236-0_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA replication involves a coordinated progression through S phase, and disruption of these regulated steps may cause gene abnormalities, which may lead to cancer. Different stages of DNA replication can be detected immunofluorescently that would indicate how replication is progressing in a cell population or under specific conditions. We describe a method for labeling replicating DNA with two nucleotide analogs, and then detecting the sequential patterns of incorporation using fluorescently labeled antibodies on DNA spread onto a glass slide. Quantification of the different types of replication patterns produced by this method reveals how replication is achieved under different conditions by the predominance and lengths of elongating replication forks progressing from single or clustered origins, as well as the sites of termination from two converging forks.
Collapse
|
37
|
Costes A, Lambert SAE. Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 2012; 3:39-71. [PMID: 24970156 PMCID: PMC4030885 DOI: 10.3390/biom3010039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.
Collapse
Affiliation(s)
- Audrey Costes
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| | - Sarah A E Lambert
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| |
Collapse
|
38
|
RMI1 promotes DNA replication fork progression and recovery from replication fork stress. Mol Cell Biol 2012; 32:3054-64. [PMID: 22645306 DOI: 10.1128/mcb.00255-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RMI1 is a member of an evolutionarily conserved complex composed of BLM and topoisomerase IIIα (TopoIIIα). This complex exhibits strand passage activity in vitro, which is likely important for DNA repair and DNA replication in vivo. The inactivation of RMI1 causes genome instability, including elevated levels of sister chromatid exchange and accelerated tumorigenesis. Using molecular combing to analyze DNA replication at the single-molecule level, we show that RMI1 is required to promote normal replication fork progression. The fork progression defect in RMI1-depleted cells is alleviated in cells lacking BLM, indicating that RMI1 functions downstream of BLM in promoting replication elongation. RMI1 localizes to subnuclear foci with BLM and TopoIIIα in response to replication stress. The proper localization of the complex requires a BLM-TopoIIIα-RMI1 interaction and is essential for RMI1 to promote recovery from replication stress. These findings reveal direct roles of RMI1 in DNA replication and the replication stress response, which could explain the molecular basis for its involvement in suppressing sister chromatid exchange and tumorigenesis.
Collapse
|
39
|
Rousseau L, Etienne O, Roque T, Desmaze C, Haton C, Mouthon MA, Bernardino-Sgherri J, Essers J, Kanaar R, Boussin FD. In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells. PLoS One 2012; 7:e37194. [PMID: 22666344 PMCID: PMC3362579 DOI: 10.1371/journal.pone.0037194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/18/2012] [Indexed: 01/15/2023] Open
Abstract
We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways.
Collapse
Affiliation(s)
- Laure Rousseau
- Laboratoire de Radiopathologie, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
| | - Olivier Etienne
- Laboratoire de Radiopathologie, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
| | - Telma Roque
- Laboratoire de Radiopathologie, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
| | - Chantal Desmaze
- Laboratoire de Radiopathologie, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
| | - Céline Haton
- Laboratoire de Radiopathologie, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
| | - Marc-André Mouthon
- Laboratoire de Radiopathologie, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
- Laboratoire de Gamétogenèse, Apoptose et Génotoxicité, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
| | - Jeroen Essers
- Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - François D. Boussin
- Laboratoire de Radiopathologie, SCSR, iRCM, DSV, CEA, Fontenay-aux-Roses, France
- U967, INSERM, Fontenay-aux-Roses, France
- UMR 967, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France
- UMR 967, Université Paris Sud, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
40
|
Abstract
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.
Collapse
|
41
|
Common fragile sites: mechanisms of instability revisited. Trends Genet 2011; 28:22-32. [PMID: 22094264 DOI: 10.1016/j.tig.2011.10.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/05/2011] [Accepted: 10/05/2011] [Indexed: 12/22/2022]
Abstract
Common fragile sites (CFSs) are large chromosomal regions prone to breakage upon replication stress that are considered a driving force of oncogenesis. CFSs were long believed to contain sequences blocking fork progression, thus impeding replication completion and leading to DNA breaks upon chromosome condensation. However, recent studies show that delayed completion of DNA replication instead depends on a regional paucity in initiation events. Because the distribution and the timing of these events are cell type dependent, different chromosomal regions can be committed to fragility in different cell types. These new data reveal the epigenetic nature of CFSs and open the way to a reevaluation of the role played by these sites in the formation of chromosome rearrangements found in tumors from different tissues.
Collapse
|
42
|
Outwin E, Carpenter G, Bi W, Withers MA, Lupski JR, O'Driscoll M. Increased RPA1 gene dosage affects genomic stability potentially contributing to 17p13.3 duplication syndrome. PLoS Genet 2011; 7:e1002247. [PMID: 21901111 PMCID: PMC3161930 DOI: 10.1371/journal.pgen.1002247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/03/2011] [Indexed: 11/18/2022] Open
Abstract
A novel microduplication syndrome involving various-sized contiguous duplications in 17p13.3 has recently been described, suggesting that increased copy number of genes in 17p13.3, particularly PAFAH1B1, is associated with clinical features including facial dysmorphism, developmental delay, and autism spectrum disorder. We have previously shown that patient-derived cell lines from individuals with haploinsufficiency of RPA1, a gene within 17p13.3, exhibit an impaired ATR-dependent DNA damage response (DDR). Here, we show that cell lines from patients with duplications specifically incorporating RPA1 exhibit a different although characteristic spectrum of DDR defects including abnormal S phase distribution, attenuated DNA double strand break (DSB)-induced RAD51 chromatin retention, elevated genomic instability, and increased sensitivity to DNA damaging agents. Using controlled conditional over-expression of RPA1 in a human model cell system, we also see attenuated DSB-induced RAD51 chromatin retention. Furthermore, we find that transient over-expression of RPA1 can impact on homologous recombination (HR) pathways following DSB formation, favouring engagement in aberrant forms of recombination and repair. Our data identifies unanticipated defects in the DDR associated with duplications in 17p13.3 in humans involving modest RPA1 over-expression.
Collapse
Affiliation(s)
- Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Gillian Carpenter
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marjorie A. Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
AKT1/BRCA1 in the control of homologous recombination and genetic stability: the missing link between hereditary and sporadic breast cancers. Oncotarget 2011; 1:691-9. [PMID: 21321378 DOI: 10.18632/oncotarget.101202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endogenous replicative stress could be one trigger leading to tumor initiation: indeed, activation of the DNA damage response (DDR), considered the result of replicative stress, is observed in pre-cancerous cells; moreover, in hereditary breast cancers, almost all of the genes affected relate to the DDR. The most frequently mutated gene in hereditary breast cancers, BRCA1, is essential for homologous recombination (HR), a fundamental process for maintaining genome stability that permits the reactivation of blocked replication forks . Recent studies have established links between DDR and the oncogenic kinase AKT1, which is upregulated in about 50% of sporadic breast cancers. More specifically, the activation of AKT1 shows a deficient phenotype in BRCA1 and HR, revealing molecular similarities between hereditary and sporadic breast cancers. However, these results reveal a paradox regarding the physiological role of AKT1: in non-tumor cells, AKT1 promotes cellular proliferation, but consequently endangers genome integrity during replication if HR is inhibited. Since HR could itself lead to genetic instability, we propose that, under physiological conditions, moderate activation of AKT1 does not inhibit but prevents an excess of HR. The regulation of AKT1 would represent a fine transitory system for controlling HR and maintaining genomic integrity.
Collapse
|
44
|
Laulier C, Cheng A, Stark JM. The relative efficiency of homology-directed repair has distinct effects on proper anaphase chromosome separation. Nucleic Acids Res 2011; 39:5935-44. [PMID: 21459848 PMCID: PMC3152340 DOI: 10.1093/nar/gkr187] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Homology-directed repair (HDR) is essential to limit mutagenesis, chromosomal instability (CIN) and tumorigenesis. We have characterized the consequences of HDR deficiency on anaphase, using markers for incomplete chromosome separation: DAPI-bridges and Ultra-fine bridges (UFBs). We show that multiple HDR factors (Rad51, Brca2 and Brca1) are critical for complete chromosome separation during anaphase, while another chromosome break repair pathway, non-homologous end joining, does not affect chromosome segregation. We then examined the consequences of mild versus severe HDR disruption, using two different dominant-negative alleles of the strand exchange factor, Rad51. We show that mild HDR disruption is viable, but causes incomplete chromosome separation, as detected by DAPI-bridges and UFBs, while severe HDR disruption additionally results in multipolar anaphases and loss of clonogenic survival. We suggest that mild HDR disruption favors the proliferation of cells that are prone to CIN due to defective chromosome separation during anaphase, whereas, severe HDR deficiency leads to multipolar divisions that are prohibitive for cell proliferation.
Collapse
Affiliation(s)
- Corentin Laulier
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | | | | |
Collapse
|
45
|
Hall M, Misra S, Chaudhuri M, Chaudhuri G. Peptide aptamer mimicking RAD51-binding domain of BRCA2 inhibits DNA damage repair and survival in Trypanosoma brucei. Microb Pathog 2011; 50:252-62. [PMID: 21296653 DOI: 10.1016/j.micpath.2010.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
The eukaryotic DNA recombination repair protein BRCA2 is functional in the parasitic protozoan Trypanosoma brucei. The mechanism of the involvement of BRCA2 in homologous recombination includes its interaction with the DNA recombinase proteins of the RAD51 family. BRCA2 is known to interact with RAD51 through its unique and essential BRC sequence motifs. T. brucei BRCA2 homolog (TbBRCA2) has fifteen repeating BRC motifs as compared to mammalian BRCA2 that has only eight. We report here our yeast 2-hybrid analysis studies on the interactions of TbBRCA2 BRC motifs with five different RAD51 paralogues of T. brucei. Our study revealed that a single BRC motif is sufficient to bind to these RAD51 paralogues. To test the possibility whether a single 44 amino acid long repeating unit of the TbBRCA2 BRC motif may be exploited as an inhibitor of T. brucei growth, we ectopically expressed this peptide segment in the procyclic form of the parasite and evaluated its effects on cell survival as well as the sensitivity of these cells to the DNA damaging agent methyl methane sulfonate (MMS). Expression of a single BRC motif led to MMS sensitivity and inhibited cellular proliferation in T. brucei.
Collapse
Affiliation(s)
- Mack Hall
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
46
|
Guirouilh-Barbat J, Wilhelm T, Lopez BS. AKT1/BRCA1 in the control of homologous recombination and genetic stability: the missing link between hereditary and sporadic breast cancers. Oncotarget 2010; 1:691-699. [PMID: 21321378 PMCID: PMC3157734 DOI: 10.18632/oncotarget.203] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/16/2010] [Indexed: 11/25/2022] Open
Abstract
Endogenous replicative stress could be one trigger leading to tumor initiation: indeed, activation of the DNA damage response (DDR), considered the result of replicative stress, is observed in pre-cancerous cells; moreover, in hereditary breast cancers, almost all of the genes affected relate to the DDR. The most frequently mutated gene in hereditary breast cancers, BRCA1, is essential for homologous recombination (HR), a fundamental process for maintaining genome stability that permits the reactivation of blocked replication forks . Recent studies have established links between DDR and the oncogenic kinase AKT1, which is upregulated in about 50% of sporadic breast cancers. More specifically, the activation of AKT1 shows a deficient phenotype in BRCA1 and HR, revealing molecular similarities between hereditary and sporadic breast cancers. However, these results reveal a paradox regarding the physiological role of AKT1: in non-tumor cells, AKT1 promotes cellular proliferation, but consequently endangers genome integrity during replication if HR is inhibited. Since HR could itself lead to genetic instability, we propose that, under physiological conditions, moderate activation of AKT1 does not inhibit but prevents an excess of HR. The regulation of AKT1 would represent a fine transitory system for controlling HR and maintaining genomic integrity.
Collapse
|
47
|
Abstract
The timely duplication of eukaryotic genomes depends on the coordinated activation of thousands of replication origins distributed along the chromosomes. Origin activation follows a temporal program that is imposed by the chromosomal context and is under the control of S-phase checkpoints. Although the general mechanisms regulating DNA replication are now well-understood at the level of individual origins, little is known on the coordination of thousands of initiation events at a genome-wide level. Recent studies using DNA combing and other single-molecule assays have shown that eukaryotic genomes contain a large excess of replication origins. Most of these origins remain "dormant" in normal growth conditions but are activated when fork progression is impeded. In this review, we discuss how DNA fiber technologies have changed our view of eukaryotic replication programs and how origin redundancy contributes to the maintenance of genome integrity in eukaryotic cells.
Collapse
Affiliation(s)
- Sandie Tuduri
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | |
Collapse
|
48
|
Frum RA, Khondker ZS, Kaufman DG. Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells. Cell Cycle 2010; 8:3133-48. [PMID: 19738421 DOI: 10.4161/cc.8.19.9682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line.
Collapse
Affiliation(s)
- Rebecca A Frum
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
49
|
Krude T, Christov CP, Hyrien O, Marheineke K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J Cell Sci 2009; 122:2836-45. [PMID: 19657016 DOI: 10.1242/jcs.047563] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-coding Y RNAs have recently been identified as essential novel factors for chromosomal DNA replication in mammalian cell nuclei, but mechanistic details of their function have not been defined. Here, we identify the execution point for Y RNA function during chromosomal DNA replication in a mammalian cell-free system. We determined the effect of degradation of Y3 RNA on replication origin activation and on fork progression rates at single-molecule resolution by DNA combing and nascent-strand analysis. Degradation of Y3 RNA inhibits the establishment of new DNA replication forks at the G1- to S-phase transition and during S phase. This inhibition is negated by addition of exogenous Y1 RNA. By contrast, progression rates of DNA replication forks are not affected by degradation of Y3 RNA or supplementation with exogenous Y1 RNA. These data indicate that Y RNAs are required for the establishment, but not for the elongation, of chromosomal DNA replication forks in mammalian cell nuclei. We conclude that the execution point for non-coding Y RNA function is the activation of chromosomal DNA replication origins.
Collapse
Affiliation(s)
- Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.
| | | | | | | |
Collapse
|
50
|
Rampakakis E, Di Paola D, Chan MK, Zannis-Hadjopoulos M. Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation. J Cell Biochem 2009; 108:400-7. [PMID: 19585526 DOI: 10.1002/jcb.22266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome duplication relies on the timely activation of multiple replication origins throughout the genome during S phase. Each origin is marked by the assembly of a multiprotein pre-replication complex (pre-RC) and the recruitment of the replicative machinery, which can gain access to replication origins on the DNA through the barrier of specific chromatin structures. Inheritance of the genetic information is further accompanied by maintenance and inheritance of the epigenetic marks, which are accomplished by the activity of histone and DNA modifying enzymes traveling with the replisome. Here, we studied the changes in the chromatin structure at the loci of three replication origins, the early activated human lamin B2 (LB2) and monkey Ors8 (mOrs8) origins and the late-activated human homologue of the latter (hOrs8), during their activation, by measuring the abundance of post-translationally modified histone H3. The data show that dynamic changes in the levels of acetylated, methylated and phosphorylated histone H3 occur during the initiation of DNA replication at these three origin loci, which differ between early- and late-firing origins as well as between human- and monkey-derived cell lines. These results suggest that specific histone modifications are associated with origin firing, temporal activation and replication fork progression and underscore the importance of species specificity.
Collapse
Affiliation(s)
- E Rampakakis
- Rosalind and Morris Goodman Cancer Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | | | | | |
Collapse
|