1
|
Hong C, Zhang Y, Yang L, Xu H, Cheng K, Lv Z, Chen K, Li Y, Wu H. Epimedin B exhibits pigmentation by increasing tyrosinase family proteins expression, activity, and stability. J Pharm Anal 2024; 14:69-85. [PMID: 38352950 PMCID: PMC10859565 DOI: 10.1016/j.jpha.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Epimedin B (EB) is one of the main flavonoid ingredients present in Epimedium brevicornum Maxim., a traditional herb widely used in China. Our previous study showed that EB was a stronger inducer of melanogenesis and an activator of tyrosinase (TYR). However, the role of EB in melanogenesis and the mechanism underlying the regulation remain unclear. Herein, as an extension to our previous investigation, we provide comprehensive evidence of EB-induced pigmentation in vivo and in vitro and elucidate the melanogenesis mechanism by assessing its effects on the TYR family of proteins (TYRs) in terms of expression, activity, and stability. The results showed that EB increased TYRs expression through microphthalmia-associated transcription factor-mediated p-Akt (referred to as protein kinase B (PKB))/glycogen synthase kinase 3β (GSK3β)/β-catenin, p-p70 S6 kinase cascades, and protein 38 (p38)/mitogen-activated protein (MAP) kinase (MAPK) and extracellular regulated protein kinases (ERK)/MAPK pathways, after which EB increased the number of melanosomes and promoted their maturation for melanogenesis in melanoma cells and human primary melanocytes/skin tissues. Furthermore, EB exerted repigmentation by stimulating TYR activity in hydroquinone- and N-phenylthiourea-induced TYR inhibitive models, including melanoma cells, zebrafish, and mice. Finally, EB ameliorated monobenzone-induced depigmentation in vitro and in vivo through the enhancement of TYRs stability by inhibiting TYR misfolding, TYR-related protein 1 formation, and retention in the endoplasmic reticulum and then by downregulating the ubiquitination and proteolysis processes. These data conclude that EB can target TYRs and alter their expression, activity, and stability, thus stimulating their pigmentation function, which might provide a novel rational strategy for hypopigmentation treatment in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Haoyang Xu
- International Education College, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Kaixian Chen
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| |
Collapse
|
2
|
Niki Y, Adachi N, Fukata M, Fukata Y, Oku S, Makino-Okamura C, Takeuchi S, Wakamatsu K, Ito S, Declercq L, Yarosh DB, Mammone T, Nishigori C, Saito N, Ueyama T. S-Palmitoylation of Tyrosinase at Cysteine 500 Regulates Melanogenesis. J Invest Dermatol 2023; 143:317-327.e6. [PMID: 36063887 DOI: 10.1016/j.jid.2022.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Palmitoylation is a lipid modification involving the attachment of palmitic acid to a cysteine residue, thereby affecting protein function. We investigated the effect of palmitoylation of tyrosinase, the rate-limiting enzyme in melanin synthesis, using a human three-dimensional skin model system and melanocyte culture. The palmitoylation inhibitor, 2-bromopalmitate, increased melanin content and tyrosinase protein levels in melanogenic cells by suppressing tyrosinase degradation. The palmitoylation site was Cysteine500 in the C-terminal cytoplasmic tail of tyrosinase. The nonpalmitoylatable mutant, tyrosinase (C500A), was slowly degraded and less ubiquitinated than wild-type tyrosinase. Screening for the Asp-His-His-Cys (DHHC) family of proteins for tyrosinase palmitoylation suggested that DHHC2, 3, 7, and 15 are involved in tyrosinase palmitoylation. Knockdown of DHHC2, 3, or 15 increased tyrosinase protein levels and melanin content. Determination of their subcellular localization in primary melanocytes revealed that DHHC2, 3, and 15 were localized in the endoplasmic reticulum, Golgi apparatus, and/or melanosomes, whereas only DHHC2 was localized in the melanosomes. Immunoprecipitation showed that DHHC2 and DHHC3 predominantly bind to mature and immature tyrosinase, respectively. Taken together, tyrosinase palmitoylation at Cysteine500 by DHHC2, 3, and/or 15, especially DHHC2 in trans-Golgi apparatus and melanosomes and DHHC3 in the endoplasmic reticulum and cis-Golgi apparatus, regulate melanogenesis by modulating tyrosinase protein levels.
Collapse
Affiliation(s)
- Yoko Niki
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Chieko Makino-Okamura
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan
| | - Lieve Declercq
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Daniel B Yarosh
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Tomas Mammone
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Naoaki Saito
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
3
|
Kamilijiang M, Zang D, Abudukelimu N, Aidarhan N, Liu G, Aisa HA. Anti-Melanogenesis Effect of Polysaccharide from Saussurea involucrata on Forskolin-Induced Melanogenesis in B16F10 Melanoma Cells. Nutrients 2022; 14:5044. [PMID: 36501075 PMCID: PMC9736293 DOI: 10.3390/nu14235044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
As one of the prominent medicinal plants listed in the Chinese pharmacopoeia (2020), Saussurea involucrata (Kar. et Kir.) Sch.-Bip was demonstrated to possess various therapeutic effects. In our recent research, we extracted the polysaccharides from S. involucrata (SIP) at optimal conditions and conducted further structure elucidation on the main fraction as well as the confirmation of its possible anti-inflammatory activity. Hence, in this work, we assessed the in vitro antioxidant activity and anti-melanogenesis effects of the crude SIP in forskolin-induced B16F10 melanoma cells. The results show that SIP possessed strong antioxidant activity and was effective in concentration-dependently decreasing melanin formation and inhibiting tyrosinase activity in forskolin-induced B16F10 cells. Based on these results, the inhibitory mechanism of melanogenesis was investigated by measuring Tyrosinase (TYR), Tyrosinase related protein-1 (TRP-1), Tyrosinase related protein-2 (TRP-2), Microphthalmia-associated transcription factor (MITF), cAMP-response element binding protein (CREB), mitogen-activated protein kinases (MAPK) signaling protein members, and β-catenin degradation in forskolin-induced B16F10 cells. The anti-melanogenesis response of SIP might be attributed to the regulation of c-Jun N-terminal kinase (JNK) phosphorylation and β-catenin degradation pathways. These results suggest that polysaccharides from S. involucrata possess a strong anti-melanogenic effect, and thus could be used as a high-value natural material for skin whitening in cosmeceutical industries.
Collapse
Affiliation(s)
- Mayila Kamilijiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nuermaimaiti Abudukelimu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nurbolat Aidarhan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
4
|
Homma T, Kageyama S, Nishikawa A, Nagata K. Anti-melanogenic activity of salacinol by inhibition of tyrosinase oligosaccharide processing. J Biochem 2021; 167:503-511. [PMID: 31883005 DOI: 10.1093/jb/mvz115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperpigmentation that manifests through melasma and solar lentigo (age spots), although mostly harmless for health, bothers many people. Controlling the rate-limiting activity of tyrosinase is most effective for suppressing excessive melanin formation and accordingly recent research has focused on the maturation of tyrosinase. Salacia, a medicinal plant, has been used to treat diabetes in India and Sri Lanka. Salacia extract reportedly contains components that inhibit the activity of α-glucosidase. Salacinol, the active ingredient in Salacia extract, has unique thiosugar sulphonium sulphate inner salt structure. Here, we observed that the salacinol component of Salacia extract possesses anti-melanogenic activity in comparison to various existing whitening agents. Although the anti-melanogenic mechanism of salacinol is presumably medicated by inhibition of tyrosinase activity, which is often found in existing whitening agents, salacinol did not inhibit tyrosinase activity in vitro. Analysis of the intracellular state of tyrosinase showed a decrease in the mature tyrosinase form due to inhibition of N-linked oligosaccharide processing. Salacinol inhibited the processing glucosidase I/II, which are involved in the initial stage of N-linked glycosylation. Owing to high activity, low cytotoxicity and high hydrophilicity, salacinol is a promising candidate compound in whitening agents aimed for external application on skin.
Collapse
Affiliation(s)
- Toshiyuki Homma
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Inc., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.,Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigeki Kageyama
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Inc., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Atsushi Nishikawa
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kozo Nagata
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Inc., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| |
Collapse
|
5
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
6
|
Martínez J, Marmisolle I, Tarallo D, Quijano C. Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Front Endocrinol (Lausanne) 2020; 11:319. [PMID: 32528413 PMCID: PMC7256191 DOI: 10.3389/fendo.2020.00319] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Secretion is an energy consuming process that plays a relevant role in cell communication and adaptation to the environment. Among others, endocrine cells producing hormones, immune cells producing cytokines or antibodies, neurons releasing neurotransmitters at synapsis, and more recently acknowledged, senescent cells synthesizing and secreting multiple cytokines, growth factors and proteases, require energy to successfully accomplish the different stages of the secretion process. Calcium ions (Ca2+) act as second messengers regulating secretion in many of these cases. In this setting, mitochondria appear as key players providing ATP by oxidative phosphorylation, buffering Ca2+ concentrations and acting as structural platforms. These tasks also require the concerted actions of the mitochondrial dynamics machinery. These proteins mediate mitochondrial fusion and fission, and are also required for transport and tethering of mitochondria to cellular organelles where the different steps of the secretion process take place. Herein we present a brief overview of mitochondrial energy metabolism, mitochondrial dynamics, and the different steps of the secretion processes, along with evidence of the interaction between these pathways. We also analyze the role of mitochondria in secretion by different cell types in physiological and pathological settings.
Collapse
|
7
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
8
|
Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of Melanogenesis: An Updated Review. J Med Chem 2018; 61:7395-7418. [PMID: 29763564 DOI: 10.1021/acs.jmedchem.7b00967] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melanins are pigment molecules that determine the skin, eye, and hair color of the human subject to its amount, quality, and distribution. Melanocytes synthesize melanin and provide epidermal protection from various stimuli, such as harmful ultraviolet radiation, through the complex process called melanogenesis. However, serious dermatological problems occur when there is excessive production of melanin in different parts of the human body. These include freckles, melasma, senile lentigo, pigmented acne scars, and cancer. Therefore, controlling the production of melanin is an important approach for the treatment of pigmentation related disorderes. In this Perspective, we focus on the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
9
|
Ha JH, Jeong YJ, Xuan SH, Lee JY, Park J, Park SN. Methyl-2-acetylamino-3-(4-hydroxyl-3,5-dimethoxybenzoylthio)propanoate suppresses melanogenesis through ERK signaling pathway mediated MITF proteasomal degradation. J Dermatol Sci 2018; 91:S0923-1811(18)30169-5. [PMID: 29735364 DOI: 10.1016/j.jdermsci.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microphthalmia-associated transcription factor (MITF) is regulated by expression and/or degradation pathway, controlling to the expression of melanogenic enzymes for melanin synthesis. Methyl-2-acetylamino-3-(4-hydroxyl-3,5-dimethoxybenzoylthio)propanoate (MAHDP) is reported to anti-melanogenesis effect but its mechanism remain unclear. OBJECTIVE To investigate the effects of MAHDP on melanogenesis and elucidate its mechanism. METHODS Tyrosinase activity, melanogenic proteins and gene expression levels were measured with MAHDP treatment in B16F1 cells, human melanocytes, reconstructed skin and clinical trial. RESULTS MAHDP attenuated melanin production in α-MSH (melanocyte stimulating hormone) stimulated-B16F1 cells. MAHDP decreased the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). But, MADPH did not affect the phosphorylation of p38 MAPK, JNK and AKT, which are associated with the regulation of MITF expression. These results suggest that MITF downstream is regulated not transcriptionally but translationally. Treatment of MG132 (a proteasomal degradation inhibitor) almost abolished the decrease of MITF protein levels by MAHDP. Phosphorylation and ubiquitination of MITF for proteasomal degradation were increased by treatment of MAHDP. Treatment of PD98059 (an ERK phosphorylation inhibitor) abrogated ERK phosphorylation, downregulation of MITF and tyrosinase as well as the decrease of melanin contents by MAHDP. Therefore, the degradation of MITF proteins by MAHDP is regulated to the ERK signaling. Finally, MAHDP improved the pigmentation in human epidermal melanocytes, a UVB-irradiated the reconstructed skin model and clinical trial without cytotoxicity and skin irritation. CONCLUSION These results clearly demonstrate that MAHDP suppresses the expression of melanogenic enzymes through ERK phosphorylation-mediated MITF proteasomal degradation, and suggest that MAHDP may be efficient as a therapeutic agent for hyperpigmentation.
Collapse
Affiliation(s)
- Ji Hoon Ha
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yoon Ju Jeong
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Song Hua Xuan
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jae-Young Lee
- Daebong LS. Ltd., 692-8, Gojan-dong, Namdong-gu, Incheon 21697, Republic of Korea
| | - Jino Park
- Daebong LS. Ltd., 692-8, Gojan-dong, Namdong-gu, Incheon 21697, Republic of Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
| |
Collapse
|
10
|
Yoon JG, Hwang HJ, Cho JA. Application of the biotin-labeled toxin mutant for affinity isolation of associated proteins in the mammalian cells. J Biosci Bioeng 2018; 125:497-504. [PMID: 29291913 DOI: 10.1016/j.jbiosc.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Cholera toxin (CT), one of the AB5 bacterial toxin families, is produced by Vibrio cholerae, breeches the intestinal epithelial barrier and enters host epithelial cells to cause the massive secretory diarrhea. This study focused on understanding the retro-translocation machinery of the bacterial toxin using biotin-avidin technology to explain toxin trafficking from the endoplasmic reticulum (ER) to the cytosol. Because the association between the A1 chain of CT and other components of the retro-translocation machinery is likely transient or very weak, the successful bioengineering of such a mutant to be trapped as an intermediate in ER is essential for affinity isolation and further analysis. Here, we prepared a mutant toxin that 15 amino acid Biotin Acceptor Peptide (BAP) was fused to the C-terminal of A1 chain of CT. Biotinylation efficiency of the BAP-inserted cholera toxin (BT) was nearly 100%. Moreover, BT was functionally toxic and successfully pulled down by NeutrAvidin in vitro and in vivo. However, NeutrAvidin-bound biotinylated BT was not toxic. These results suggest the possibility of a plug effect of the biotin-NeutrAvidin-BT complex stuck in the ER without retro-translocation to the cytosol. Therefore, this model might identify the interacting proteins with A1 chain of CT in the host cells by holding the moment of retro-translocation of the bacterial toxin. In conclusion, this study established the model using biotin-avidin technology to elucidate the molecular basis for retro-translocation of bacterial toxin from within the lumen of ER to the cytosol.
Collapse
Affiliation(s)
- Ju-Gyeong Yoon
- Department of Food and Nutrition, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Dae-Jeon 34134, South Korea
| | - Hye-Jeong Hwang
- Department of Food and Nutrition, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Dae-Jeon 34134, South Korea
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Dae-Jeon 34134, South Korea.
| |
Collapse
|
11
|
Dolinska MB, Sergeev YV. The consequences of deglycosylation of recombinant intra-melanosomal domain of human tyrosinase. Biol Chem 2017; 399:73-77. [PMID: 28858842 PMCID: PMC6108172 DOI: 10.1515/hsz-2017-0178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/25/2017] [Indexed: 11/15/2022]
Abstract
Tyrosinase, a melanosomal glycoenzyme, catalyzes initial steps of the melanin biosynthesis. While glycosylation was previously studied in vivo, we present three recombinant mutant variants of human tyrosinase, which were obtained using multiple site-directed mutagenesis, expressed in insect larvae, purified and characterized biochemically. The mutagenesis demonstrated the reduced protein expression and enzymatic activity due to possible loss of protein stability and protein degradation. However, the complete deglycosylation of asparagine residues in vitro, including the residue in position 371, interrupts tyrosinase function, which is consistent with a melanin loss in oculocutaneous albinism type 1 (OCA1) patients.
Collapse
Affiliation(s)
- Monika B. Dolinska
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Dr., 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Hwang JA, Park NH, Na YJ, Lee HK, Lee JH, Kim YJ, Lee CS. Coumestrol Down-Regulates Melanin Production in Melan-a Murine Melanocytes through Degradation of Tyrosinase. Biol Pharm Bull 2017; 40:535-539. [PMID: 28381809 DOI: 10.1248/bpb.b16-00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pigmentation reflects skin darkening caused by melanin production, but excessive melanin synthesis may cause problems, such as melasma, solar lentigo, dark spots, and freckles. Considerable effort has been devoted to alleviating these undesired symptoms through the development of safe and effective depigmenting agents. Coumestrol, a plant-derived natural isoflavone with an estrogen-like structure and actions, is known to have anti-aging ability, but its potential depigmenting efficacy has not been evaluated. In the present study, we investigated the effects of coumestrol on melanin synthesis in normal melan-a murine melanocytes. Coumestrol significantly reduced melanin synthesis in a concentration-dependent manner up to a concentration of 25 µM without causing cytotoxicity. It also brightened tissue in an artificial skin model (MelanoDerm) that incorporates both human keratinocytes and melanocytes. Interestingly, although coumestrol did not inhibit tyrosinase activity or transcript level in melan-a cells, it clearly decreased the expression level of tyrosinase protein at a concentration of 25 µM. This coumestrol-induced reduction in tyrosinase protein levels was prevented by pretreatment with the proteasome inhibitor MG-132 or the lysosomal proteolysis inhibitor chloroquine. Collectively, our findings indicate that coumestrol exerts an inhibitory effect on melanin synthesis in melan-a cells, at least in part, through degradation of tyrosinase. These findings suggest that coumestrol is a good candidate for use in depigmentary reagents from a cosmetic and clinical perspective.
Collapse
|
13
|
Lee SJ, Son YH, Lee KB, Lee JH, Kim HJ, Jeong EM, Park SC, Kim IG. 4-n-butylresorcinol enhances proteolytic degradation of tyrosinase in B16F10 melanoma cells. Int J Cosmet Sci 2016; 39:248-255. [PMID: 27666581 DOI: 10.1111/ics.12368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE 4-n-butylresorcinol is a competitive inhibitor of tyrosinase and has been used as an antimelanogenic agent. However, its inhibition mechanism in intact cells is not fully understood. To elucidate the cellular mechanism, we compared in vitro and in vivo inhibitory effects of 4-n-butylresorcinol on tyrosinase activity. METHODS B16F10 melanoma cells were cultured in media containing α-MSH in the presence or absence of 4-n-butylresorcinol. Tyrosinase mRNA levels, protein levels and activity in B16F10 cells were compared by real-time PCR, immunostaining combined with western blot and colorimetric analysis, respectively. Melanin concentration was measured by colorimetry both in the cells and in the media. Tyrosinase glycosylation and proteolytic degradation were analysed by immunoblotting after cells were treated with Endo H/PNGase F and E64/proteasome inhibitors, respectively. RESULTS 4-n-butylresorcinol inhibited tyrosinase activity and melanin synthesis more effectively in intact cells than in cell lysates. Western blotting and real-time RT-PCR showed that 4-n-butylresorcinol reduced protein levels, but not mRNA levels, of tyrosinase in B16F10 cells. 4-n-butylresorcinol showed no effect on the processing of tyrosinase glycosylation or on trafficking to melanosomes. However, treatment of B16F10 cells with E64 or proteasome inhibitor abrogated the 4-n-butylresorcinol-induced decrease of tyrosinase. Moreover, 4-n-butylresorcinol activated p38 MAPK, resulting in increased ubiquitination of tyrosinase. CONCLUSION 4-n-butylresorcinol inhibits melanogenesis by enhancing proteolytic degradation of tyrosinase as well as competitive binding to tyrosinase. These findings will help to develop new, effective and safe chemicals for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- S-J Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - Y H Son
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - K B Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - J-H Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - H-J Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - E M Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.,Institute of Human-Environment Interface Biology, Biomedical Research Institute, Seoul National University Hospital, Daehak-ro 101, Jongno-gu, Seoul 110-799, South Korea
| | - S C Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - I-G Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.,Institute of Human-Environment Interface Biology, Biomedical Research Institute, Seoul National University Hospital, Daehak-ro 101, Jongno-gu, Seoul 110-799, South Korea
| |
Collapse
|
14
|
Identification of PNGase-dependent ERAD substrates in Saccharomyces cerevisiae. Biochem J 2016; 473:3001-12. [DOI: 10.1042/bcj20160453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/18/2016] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a proteolytic pathway for handling misfolded or improperly assembled proteins that are synthesized in the ER. Cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme that cleaves N-glycans that are attached to ERAD substrates. While the critical roles of N-glycans in monitoring the folding status of carrier proteins in the ER lumen are relatively well understood, the physiological role of PNGase-mediated deglycosylation in the cytosol remained poorly understood. We report herein the identification of endogenous substrates for the cytoplasmic PNGase in Saccharomyces cerevisiae. Using an isotope-coded glycosylation site-specific tagging (IGOT) method-based LC/MS analysis, 11 glycoproteins were specifically detected in the cytosol of PNGase-deletion cells (png1Δ). Among these molecules, at least five glycoproteins were clearly identified as ERAD substrates in vivo. Moreover, four out of the five proteins were found to be either deglycosylated by PNGase in vivo or the overall degradation was delayed in a png1Δ mutant. Our results clearly indicate that the IGOT method promises to be a powerful tool for the identification of endogenous substrates for the cytoplasmic PNGase.
Collapse
|
15
|
Hagiwara M, Ling J, Koenig PA, Ploegh HL. Posttranscriptional Regulation of Glycoprotein Quality Control in the Endoplasmic Reticulum Is Controlled by the E2 Ub-Conjugating Enzyme UBC6e. Mol Cell 2016; 63:753-67. [PMID: 27570074 DOI: 10.1016/j.molcel.2016.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
ER-associated degradation (ERAD) is essential for protein quality control in the ER, not only when the ER is stressed, but also at steady state. We report a new layer of homeostatic control, in which ERAD activity itself is regulated posttranscriptionally and independently of the unfolded protein response by adjusting the endogenous levels of EDEM1, OS-9, and SEL1L (ERAD enhancers). Functional UBC6e requires its precise location in the ER to form a supramolecular complex with Derlin2. This complex targets ERAD enhancers for degradation, a function that depends on UBC6e's enzymatic activity. Ablation of UBC6e causes upregulation of active ERAD enhancers and so increases clearance not only of terminally misfolded substrates, but also of wild-type glycoproteins that fold comparatively slowly in vitro and in vivo. The levels of proteins that comprise the ERAD machinery are thus carefully tuned and adjusted to prevailing needs.
Collapse
Affiliation(s)
| | - Jingjing Ling
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Kim YH, Park JI, Myung CH, Lee JE, Bang S, Chang SE, Hwang JS. 1-Phenyl-3-(2-thiazolyl)-2-thiourea inhibits melanogenesis via a dual-action mechanism. Arch Dermatol Res 2016; 308:473-9. [PMID: 27278925 DOI: 10.1007/s00403-016-1659-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
1-Phenyl-3-(2-thiazolyl)-2-thiourea (PTTU) is a well-characterized dopamine β-hydroxylase inhibitor that prevents 6-hydroxydopamine-induced degenerative neuronal disease. However, the effect of PTTU on melanogenesis has not been reported. In this study, we examined the effect of PTTU on melanogenesis and studied its mechanism of action. We found that PTTU decreased melanin biosynthesis in a dose-dependent manner in normal human epidermal melanocytes (NHEMs). PTTU also inhibited tyrosinase catalytic activity in NHEMs. Moreover, PTTU treatment led to reduced protein levels of tyrosinase in NHEMs, while the protein levels of tyrosinase-related protein-1, tyrosinase-related protein-2, and microphthalmia-associated transcription factor were not affected. However, PTTU treatment did not affect the mRNA expression of tyrosinase. We found that PTTU-accelerated tyrosinase degradation via the ubiquitin-dependent proteasome pathway. In summary, we found that PTTU decreased melanin biosynthesis by decreasing the enzymatic activity and stability of tyrosinase. Our results indicate that PTTU could be used as a depigmentation agent for hyperpigmentation disorder.
Collapse
Affiliation(s)
- Yong Hyun Kim
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | - Jong Il Park
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | - Cheol Hwan Myung
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | - Ji Eun Lee
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | - Seunghyun Bang
- Department of Dermatology and Research Institute of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology and Research Institute of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Jae Sung Hwang
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea.
| |
Collapse
|
17
|
The Development of Sugar-Based Anti-Melanogenic Agents. Int J Mol Sci 2016; 17:583. [PMID: 27092497 PMCID: PMC4849039 DOI: 10.3390/ijms17040583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/16/2023] Open
Abstract
The regulation of melanin production is important for managing skin darkness and hyperpigmentary disorders. Numerous anti-melanogenic agents that target tyrosinase activity/stability, melanosome maturation/transfer, or melanogenesis-related signaling pathways have been developed. As a rate-limiting enzyme in melanogenesis, tyrosinase has been the most attractive target, but tyrosinase-targeted treatments still pose serious potential risks, indicating the necessity of developing lower-risk anti-melanogenic agents. Sugars are ubiquitous natural compounds found in humans and other organisms. Here, we review the recent advances in research on the roles of sugars and sugar-related agents in melanogenesis and in the development of sugar-based anti-melanogenic agents. The proposed mechanisms of action of these agents include: (a) (natural sugars) disturbing proper melanosome maturation by inducing osmotic stress and inhibiting the PI3 kinase pathway and (b) (sugar derivatives) inhibiting tyrosinase maturation by blocking N-glycosylation. Finally, we propose an alternative strategy for developing anti-melanogenic sugars that theoretically reduce melanosomal pH by inhibiting a sucrose transporter and reduce tyrosinase activity by inhibiting copper incorporation into an active site. These studies provide evidence of the utility of sugar-based anti-melanogenic agents in managing skin darkness and curing pigmentary disorders and suggest a future direction for the development of physiologically favorable anti-melanogenic agents.
Collapse
|
18
|
Jung H, Chung H, Chang SE, Kang DH, Oh ES. FK506 regulates pigmentation by maturing the melanosome and facilitating their transfer to keratinocytes. Pigment Cell Melanoma Res 2016; 29:199-209. [DOI: 10.1111/pcmr.12443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Hyejung Jung
- Department of Life Sciences; The Research Center for Cellular Homeostasis; Ewha Womans University; Seoul Korea
| | - Heesung Chung
- Department of Life Sciences; The Research Center for Cellular Homeostasis; Ewha Womans University; Seoul Korea
| | - Sung Eun Chang
- Department of Dermatology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Duk-Hee Kang
- Division of Nephrology; Department of Internal Medicine; Ewha Medical Research Center; Ewha Womans University School of Medicine; Seoul Korea
| | - Eok-Soo Oh
- Department of Life Sciences; The Research Center for Cellular Homeostasis; Ewha Womans University; Seoul Korea
| |
Collapse
|
19
|
Cheung FK, Leung AWN, Liu WK, Che CT. Tyrosinase inhibitory activity of a glucosylated hydroxystilbene in mouse melan-a melanocytes. JOURNAL OF NATURAL PRODUCTS 2014; 77:1270-4. [PMID: 24933607 PMCID: PMC4076036 DOI: 10.1021/np4008798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 05/19/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucopyranoside (1), isolated from Polygonum multiflorum, is a noncompetitive inhibitor of tyrosinase in cell-free kinetics; it reduced the Vmax values in a dose-dependent manner. Compound 1 inhibited PKA-induced melanogenesis, reduced the protein expression of tyrosinase and its transcription factor, the microphthalmia-associated transcription factor, and lowered the complex formation between tyrosinase and tyrosinase-related protein 1 (TRP-1). Immunofluorescence microscopy revealed no association of tyrosinase with the endoplasmic reticulum or lysosomes, implying the absence of a direct effect of 1 on the maturation process of the enzyme. The antimelanogenic activity of 1 is likely mediated through a noncompetitive inhibition on tyrosinase, down-regulation of the expression of melanogenic proteins, and reduction of tyrosinase/TRP-1 complex formation.
Collapse
Affiliation(s)
- Florence
Wing-Ki Cheung
- School
of Biomedical Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong
- School
of Chinese Medicine, The Chinese University
of Hong Kong, Shatin, Hong Kong
| | | | - Wing Keung Liu
- School
of Biomedical Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong
| | - Chun-Tao Che
- School
of Chinese Medicine, The Chinese University
of Hong Kong, Shatin, Hong Kong
- Department
of Medicinal Chemistry and Pharmacognosy and WHO Collaborating Center
for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Tel: +1 312 996 5234. Fax: +1 312 996 7107. E-mail:
| |
Collapse
|
20
|
Sunryd JC, Cheon B, Graham JB, Giorda KM, Fissore RA, Hebert DN. TMTC1 and TMTC2 are novel endoplasmic reticulum tetratricopeptide repeat-containing adapter proteins involved in calcium homeostasis. J Biol Chem 2014; 289:16085-99. [PMID: 24764305 DOI: 10.1074/jbc.m114.554071] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway. A variety of cell biological and biochemical assays was employed to demonstrate that TMTC1 and TMTC2 are both ER resident integral membrane proteins with multiple clusters of TPR domains oriented within the ER lumen. Proteomic analysis followed by co-immunoprecipitation verification found that both proteins associated with the ER calcium uptake pump SERCA2B, and TMTC2 also bound to the carbohydrate-binding chaperone calnexin. Live cell calcium measurements revealed that overexpression of either TMTC1 or TMTC2 caused a reduction of calcium released from the ER following stimulation, whereas the knockdown of TMTC1 or TMTC2 increased the stimulated calcium released. Together, these results implicate TMTC1 and TMTC2 as ER proteins involved in ER calcium homeostasis.
Collapse
Affiliation(s)
- Johan C Sunryd
- From the Departments of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Banyoon Cheon
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 Veterinary and Animal Sciences
| | - Jill B Graham
- From the Departments of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kristina M Giorda
- From the Departments of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 Veterinary and Animal Sciences
| | - Daniel N Hebert
- From the Departments of Biochemistry and Molecular Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
21
|
Bin BH, Seo J, Yang SH, Lee E, Choi H, Kim KH, Cho EG, Lee TR. Novel inhibitory effect of the antidiabetic drug voglibose on melanogenesis. Exp Dermatol 2014; 22:541-6. [PMID: 23879813 DOI: 10.1111/exd.12195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
Abstract
Overproduction of melanin can lead to medical disorders such as postinflammatory melanoderma and melasma. Therefore, developing antimelanogenic agents is important for both medical and cosmetic purposes. In this report, we demonstrated for the first time that the antidiabetic drug voglibose is a potent antimelanogenic agent. Voglibose is a representative antidiabetic drug possessing inhibitory activity towards human α-glucosidase; it blocked the proper N-glycan modification of tyrosinase, resulting in a dramatic reduction of the tyrosinase protein level by altering its stability and subsequently decreasing melanin production. Acarbose, another antihyperglycaemic drug that has a lower inhibitory effect on human intracellular α-glucosidase compared with voglibose, did not cause any changes in either the N-glycan modification of tyrosinase or the tyrosinase protein level, indicating that voglibose was the most efficient antimelanogenic agent among the widely used antihyperglycaemic agents. Considering that voglibose was originally selected from the valiolamine derivatives in a screen for an oral antidiabetic drug with a strong inhibitory activity towards intestinal α-glucosidase and low cell permeability, we propose an alternative strategy for screening compounds from valiolamine derivatives that show high inhibitory activity towards human intracellular α-glucosidases and high cell permeability, with the goal of obtaining antimelanogenic agents that are effective inside the cells.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hwang JA, Goh MJ, Kim EJ, Lee MR, Park NH, Na YJ, Cho JC, Lee HK. Identification of Sake Extract as a New Anti-melanogenic Ingredient by in vitro and Clinical Trials. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Overproduction of melanin is the cause of skin hyperpigmentation, which is related to several skin diseases and cosmetic concerns. Sake is a Japanese alcoholic beverage produced from rice and water by fermentation, but is little known for its effect on melanogenesis. To identify the effect of sake extract on melanin synthesis, a melanin assay was performed in melan-A murine melanocytes. Sake extract treatment significantly inhibited melanin production in a dose-dependent manner, and tyrosinase, the rate-limiting enzyme of melanogenesis, decreased significantly at the protein level. Further investigations were performed with multiple assay systems; a sake extract reduced melanin production in melan-A/SP-1 murine cell co-culture, and also in MelanoDermTM, a skin equivalent model of human keratinocytes-melanocytes. Finally, subjects were treated with a formula containing the sake extract. Topical application of the sake extract product improved skin lightness (L*) significantly within 7 days. We identified sake extract as a new anti-melanogenic ingredient through in vitro and in vivo experiments. These results suggest that a sake extract can be used to improve skin hyperpigmentation.
Collapse
Affiliation(s)
- Jeong-Ah Hwang
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| | - Myeong-Jin Goh
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| | - Eun-Joo Kim
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| | - Myong-Ryul Lee
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| | - Nok-Hyun Park
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| | - Yong-Joo Na
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| | - Jun-Cheol Cho
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| | - Hae-Kwang Lee
- Skin Research Institute, AMOREPACIFIC R&D Center, 314–1 Bora-dong, Giheung-gu, 446–729 Yongin, South Korea
| |
Collapse
|
23
|
Establishment of an in vitro transport assay that reveals mechanistic differences in cytosolic events controlling cholera toxin and T-cell receptor α retro-translocation. PLoS One 2013; 8:e75801. [PMID: 24146777 PMCID: PMC3795749 DOI: 10.1371/journal.pone.0075801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Following retrograde trafficking to the endoplasmic reticulum (ER), cholera toxin A1 (CTA1) subunit hijacks ER-associated degradation (ERAD) machinery and retro-translocates into the cytosol to induce toxicity. We previously established a cell-based in vivo assay to identify ER components that regulate this process. However, elucidating cytosolic events that govern CTA1 retro-translocation using this assay is difficult as manipulating cytosolic factors often perturbs toxin retrograde transport to the ER. To circumvent this problem, we developed an in vitro assay in semi-permeabilized cells that directly monitors CTA1 release from the ER into the cytosol. We demonstrate CTA1 is released into the cytosol as a folded molecule in a p97- and proteasome-independent manner. Release nonetheless involves a GTP-dependent reaction. Upon extending this assay to the canonical ERAD substrate T-cell receptor α (TCRα), we found the receptor is unfolded when released into the cytosol and degraded by membrane-associated proteasome. In this reaction, p97 initially extracts TCRα from the ER membrane, followed by TCRα discharge into the cytosol that requires additional energy-dependent cytosolic activities. Our results reveal mechanistic insights into cytosolic events controlling CTA1 and TCRα retro-translocation, and provide a reliable tool to further probe this process.
Collapse
|
24
|
Goh MJ, Lee HK, Cheng L, Kong DY, Yeon JH, He QQ, Cho JC, Na YJ. Depigmentation effect of kadsuralignan F on melan-a murine melanocytes and human skin equivalents. Int J Mol Sci 2013; 14:1655-66. [PMID: 23322017 PMCID: PMC3565339 DOI: 10.3390/ijms14011655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 11/23/2022] Open
Abstract
The development of melanogenic inhibitors is important for the prevention of hyperpigmentation, and, recently, consideration has been given to natural materials or traditionally used ingredients such as Chinese medicine. The aim of this study is the evaluation of a new anti-melanogenic candidate, kadsuralignan F, from the natural plant Kadsura coccinea, as well as the determination of mechanisms of melanogenesis inhibition at a molecular level. Kadsuralignan F significantly reduced melanin synthesis in a dose-dependent manner in a murine melanocyte cell line and human skin equivalents. There was no direct inhibition on mushroom tyrosinase or cell-extract tyrosinase activity, and mRNA expression of tyrosinase and other melanogenic genes such as tyrosinase-related protein-1 (trp-1) or trp-2 were not affected by kadsuralignan F. Interestingly, the protein level of tyrosinase was dramatically downregulated with kadsuralignan F treatment. We found that a decrease of tyrosinase protein by kadsuralignan F was fully recovered by MG132, a proteasome inhibitor, but not by chloroquine, a lysosome inhibitor. In this study, we found that kadsuralignan F, a lignan from an extract of Kadsura coccinea, has an inhibitory activity on melanin synthesis through tyrosinase degradation. These findings suggest that kadsuralignan F can be used as an active ingredient for hyperpigmentation treatment.
Collapse
Affiliation(s)
- Myeong-Jin Goh
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
| | - Hae-Kwang Lee
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
| | - Liang Cheng
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai 200040, China; E-Mails: (L.C.); (D.-Y.K.)
| | - De-Yun Kong
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai 200040, China; E-Mails: (L.C.); (D.-Y.K.)
| | - Jae-Ho Yeon
- Amorepacific Shanghai R&I Center, 383 Yumin Road, Jiading District, Shanghai 201801, China; E-Mails: (J.-H.Y.); (Q.-Q.H.)
| | - Quan-Quan He
- Amorepacific Shanghai R&I Center, 383 Yumin Road, Jiading District, Shanghai 201801, China; E-Mails: (J.-H.Y.); (Q.-Q.H.)
| | - Jun-Cheol Cho
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
| | - Yong Joo Na
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-31-280-5966; Fax: +82-31-282-6063
| |
Collapse
|
25
|
Marin MB, Ghenea S, Spiridon LN, Chiritoiu GN, Petrescu AJ, Petrescu SM. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One 2012; 7:e42998. [PMID: 22905195 PMCID: PMC3414498 DOI: 10.1371/journal.pone.0042998] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/16/2012] [Indexed: 01/08/2023] Open
Abstract
EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD) pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID) and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.
Collapse
Affiliation(s)
- Marioara B. Marin
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Laurentiu N. Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Gabriela N. Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
- * E-mail: (SMP); (AJP)
| | - Stefana-Maria Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
- * E-mail: (SMP); (AJP)
| |
Collapse
|
26
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
27
|
Mallinger A, Wen HM, Dankle GM, Glenn KA. Using a ubiquitin ligase as an unfolded protein sensor. Biochem Biophys Res Commun 2011; 418:44-8. [PMID: 22227190 DOI: 10.1016/j.bbrc.2011.12.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
A significant fraction of all proteins are misfolded and must be degraded. The ubiquitin-proteasome pathway provides an essential protein quality control function necessary for normal cellular homeostasis. Substrate specificity is mediated by proteins called ubiquitin ligases. In the endoplasmic reticulum (ER) a specialized pathway, the endoplasmic reticulum associated degradation (ERAD) pathway provides means to eliminate misfolded proteins from the ER. One marker used by the ER to identify misfolded glycoproteins is the presence of a high-mannose (Man5-8GlcNAc2) glycan. Recently, FBXO2 was shown to bind high mannose glycans and participate in ERAD. Using glycan arrays, immobilized glycoprotein pulldowns, and glycan competition assays we demonstrate that FBXO2 preferentially binds unfolded glycoproteins. Using recombinant, bacterially expressed GST-FBXO2 as an unfolded protein sensor we demonstrate it can be used to monitor increases in misfolded glycoproteins after physiological or pharmaceutical stressors.
Collapse
Affiliation(s)
- Adam Mallinger
- Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA
| | | | | | | |
Collapse
|
28
|
Konta L, Száraz P, Magyar JÉ, Révész K, Bánhegyi G, Mandl J, Csala M. Inhibition of glycoprotein synthesis in the endoplasmic reticulum as a novel anticancer mechanism of (-)-epigallocatechin-3-gallate. Biofactors 2011; 37:468-76. [PMID: 22162335 DOI: 10.1002/biof.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/20/2011] [Indexed: 11/05/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been found to trigger the unfolded protein response (UPR) likely due to the inhibition of glucosidase II, a key enzyme of glycoprotein processing and quality control in the endoplasmic reticulum (ER). These findings strongly suggest that EGCG interferes with glycoprotein maturation and sorting in the ER. This hypothesis was tested in SK-Mel28 human melanoma cells by assessing the effect of EGCG and deoxynojirimycin (DNJ) on the synthesis of two endogenous glycoproteins. Both tyrosinase and vascular endothelial growth factor (VEGF) protein levels were remarkably reduced despite unaltered mRNA expression in EGCG- or DNJ-treated cells compared to control. The hindrance of tyrosinase and VEGF protein synthesis could be prevented by proteasome inhibitor, lactacystine. Collectively, our results support that glucosidase II inhibitor EGCG interferes with protein processing and quality control in the ER, which diverts tyrosinase, VEGF, and likely other glycoproteins towards proteasomal degradation. This mechanism provides a novel therapeutic approach in dermatology and might play an important role in the antitumor effect or hepatotoxicity of EGCG.
Collapse
Affiliation(s)
- Laura Konta
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University & MTA-SE Pathobiochemistry Research Group, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
29
|
Lajoie P, Snapp EL. Changes in BiP availability reveal hypersensitivity to acute endoplasmic reticulum stress in cells expressing mutant huntingtin. J Cell Sci 2011; 124:3332-43. [PMID: 21896647 DOI: 10.1242/jcs.087510] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is caused by expanded glutamine repeats within the huntingtin (Htt) protein. Mutant Htt (mHtt) in the cytoplasm has been linked to induction of the luminal endoplasmic reticulum (ER) stress pathway, the unfolded protein response (UPR). How mHtt impacts the susceptibility of the ER lumen to stress remains poorly understood. To investigate molecular differences in the ER in cells expressing mHtt, we used live-cell imaging of a sensitive reporter of the misfolded secretory protein burden, GFP fused to the ER chaperone BiP (also known as GRP78), which decreases in mobility as it binds increasing amounts of misfolded proteins. Striatal neurons expressing full-length mHtt showed no differences in BiP-GFP mobility and no evidence of UPR activation compared with wild-type cells at steady state. However, mHtt-expressing cells were acutely sensitive to misfolded secretory proteins. Treatment with ER stressors, tunicamycin or DTT, rapidly decreased BiP-GFP mobility in mHtt striatal cells and accelerated UPR activation compared with wild-type cells. mHtt-expressing cells exhibited decreased misfolded protein flux as a result of ER associated degradation (ERAD) dysfunction. Furthermore, UPR-adapted mHtt cells succumbed to misfolded protein stresses that could be tolerated by adapted wild-type cells. Thus, mHtt expression impairs misfolded secretory protein turnover, decreases the ER stress threshold, and increases cell vulnerability to insults.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
30
|
Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol Cell 2011; 41:432-44. [PMID: 21329881 DOI: 10.1016/j.molcel.2011.01.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/17/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
Abstract
ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.
Collapse
|
31
|
An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc Natl Acad Sci U S A 2011; 108:E323-31. [PMID: 21670269 DOI: 10.1073/pnas.1101892108] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of unconventional translational and posttranslational mechanisms contribute to the production of antigenic peptides, thereby increasing the diversity of the peptide repertoire presented by MHC class I molecules. Here, we describe a class I-restricted peptide that combines several posttranslational modifications. It is derived from tyrosinase and recognized by tumor-infiltrating lymphocytes isolated from a melanoma patient. This unusual antigenic peptide is made of two noncontiguous tyrosinase fragments that are spliced together in the reverse order. In addition, it contains two aspartate residues that replace the asparagines encoded in the tyrosinase sequence. We confirmed that this peptide is naturally presented at the surface of melanoma cells, and we showed that its processing sequentially requires translation of tyrosinase into the endoplasmic reticulum and its retrotranslocation into the cytosol, where deglycosylation of the two asparagines by peptide-N-glycanase turns them into aspartates by deamidation. This process is followed by cleavage and splicing of the appropriate fragments by the standard proteasome and additional transport of the resulting peptide into the endoplasmic reticulum through the transporter associated with antigen processing (TAP).
Collapse
|
32
|
Tamura T, Cormier JH, Hebert DN. Characterization of early EDEM1 protein maturation events and their functional implications. J Biol Chem 2011; 286:24906-15. [PMID: 21632540 DOI: 10.1074/jbc.m111.243998] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) quality control factor EDEM1 associates with a number of ER proteins and ER-associated degradation (ERAD) substrates; however, an understanding of its role in ERAD is unclear. The early maturation events for EDEM1 including signal sequence cleavage and glycosylation were analyzed, and their relationship to the function of EDEM1 was determined. EDEM1 has five N-linked glycosylation sites with the most C-terminal site recognized poorly cotranslationally, resulting in the accumulation of EDEM1 containing four or five glycans. The fifth site was modified post-translationally when bypassed cotranslationally. Signal sequence cleavage of EDEM1 was found to be a slow and inefficient process. Signal sequence cleavage produced a soluble form of EDEM1 that efficiently associated with the oxidoreductase ERdj5 and most effectively accelerated the turnover of a soluble ERAD substrate. In contrast, a type-II membrane form of EDEM1 was generated when the signal sequence was uncleaved, creating an N-terminal transmembrane segment. The membrane form of EDEM1 efficiently associated with the ER membrane protein SEL1L and accelerated the turnover of a membrane-associated ERAD substrate. Together, these results demonstrated that signal sequence cleavage functionally regulated the association of EDEM1-soluble and membrane-integrated isoforms with distinct ERAD machinery and substrates.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
33
|
Tamura T, Sunryd JC, Hebert DN. Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 2010; 27:412-27. [PMID: 20553226 DOI: 10.3109/09687688.2010.495354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized and specialized organelle optimized for the production of proteins. It is comprised of a highly interconnected network of tubules that contain a large set of resident proteins dedicated to the maturation and processing of proteins that traverse the eukaryotic secretory pathway. As protein maturation is an imperfect process, frequently resulting in misfolding and/or the formation of aggregates, proteins are subjected to a series of evaluation processes within the ER. Proteins deemed native are sorted for anterograde trafficking, while immature or non-native proteins are initially retained in the ER in an attempt to rescue the aberrant products. Terminally misfolded substrates are eventually targeted for turnover through the ER-associated degradation or ERAD pathway to protect the cell from the release of a defective product. A clearer picture of the identity of the machinery involved in these quality control evaluation processes and their mechanisms of actions has emerged over the past decade.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
34
|
Lai CW, Aronson DE, Snapp EL. BiP availability distinguishes states of homeostasis and stress in the endoplasmic reticulum of living cells. Mol Biol Cell 2010; 21:1909-21. [PMID: 20410136 PMCID: PMC2883936 DOI: 10.1091/mbc.e09-12-1066] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BiP availability represents a powerful tool for reporting global secretory protein misfolding levels and investigating the molecular events of ER stress in single cells, independent of traditional UPR markers. Accumulation of misfolded secretory proteins causes cellular stress and induces the endoplasmic reticulum (ER) stress pathway, the unfolded protein response (UPR). Although the UPR has been extensively studied, little is known about the molecular changes that distinguish the homeostatic and stressed ER. The increase in levels of misfolded proteins and formation of complexes with chaperones during ER stress are predicted to further crowd the already crowded ER lumen. Surprisingly, using live cell fluorescence microscopy and an inert ER reporter, we find the crowdedness of stressed ER, treated acutely with tunicamycin or DTT, either is comparable to homeostasis or significantly decreases in multiple cell types. In contrast, photobleaching experiments revealed a GFP-tagged variant of the ER chaperone BiP rapidly undergoes a reversible quantitative decrease in diffusion as misfolded proteins accumulate. BiP mobility is sensitive to exceptionally low levels of misfolded protein stressors and can detect intermediate states of BiP availability. Decreased BiP availability temporally correlates with UPR markers, but restoration of BiP availability correlates less well. Thus, BiP availability represents a novel and powerful tool for reporting global secretory protein misfolding levels and investigating the molecular events of ER stress in single cells, independent of traditional UPR markers.
Collapse
Affiliation(s)
- Chun Wei Lai
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
35
|
Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:694-705. [PMID: 20219571 DOI: 10.1016/j.bbamcr.2010.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 01/16/2023]
Abstract
Recognition and elimination of misfolded proteins are essential cellular processes. More than thirty percent of the cellular proteins are proteins of the secretory pathway. They fold in the lumen or membrane of the endoplasmic reticulum from where they are sorted to their site of action. The folding process, as well as any refolding after cell stress, depends on chaperone activity. In case proteins are unable to acquire their native conformation, chaperones with different substrate specificity and activity guide them to elimination. For most misfolded proteins of the endoplasmic reticulum this requires retro-translocation to the cytosol and polyubiquitylation of the misfolded protein by an endoplasmic reticulum associated machinery. Thereafter ubiquitylated proteins are guided to the proteasome for degradation. This review summarizes our up to date knowledge of chaperone classes and chaperone function in endoplasmic reticulum associated degradation of protein waste.
Collapse
|
36
|
Role of the ubiquitin proteasome system in regulating skin pigmentation. Int J Mol Sci 2009; 10:4428-4434. [PMID: 20057953 PMCID: PMC2790116 DOI: 10.3390/ijms10104428] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/29/2009] [Accepted: 10/09/2009] [Indexed: 11/16/2022] Open
Abstract
Pigmentation of the skin, hair and eyes is regulated by tyrosinase, the critical rate-limiting enzyme in melanin synthesis by melanocytes. Tyrosinase is degraded endogenously, at least in part, by the ubiquitin proteasome system (UPS). Several types of inherited hypopigmentary diseases, such as oculocutaneous albinism and Hermansky-Pudlak syndrome, involve the aberrant processing and/or trafficking of tyrosinase and its subsequent degradation which can occur due to the quality-control machinery. Studies on carbohydrate modifications have revealed that tyrosinase in the endoplasmic reticulum (ER) is proteolyzed via ER-associated protein degradation and that tyrosinase degradation can also occur following its complete maturation in the Golgi. Among intrinsic factors that regulate the UPS, fatty acids have been shown to modulate tyrosinase degradation in contrasting manners through increased or decreased amounts of ubiquitinated tyrosinase that leads to its accelerated or decelerated degradation by proteasomes.
Collapse
|
37
|
Cormier JH, Tamura T, Sunryd JC, Hebert DN. EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 2009; 34:627-33. [PMID: 19524542 DOI: 10.1016/j.molcel.2009.05.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/20/2009] [Accepted: 05/21/2009] [Indexed: 11/16/2022]
Abstract
Terminally misfolded or unassembled secretory proteins are retained in the endoplasmic reticulum (ER) and subsequently cleared by the ER-associated degradation (ERAD) pathway. The degradation of ERAD substrates involves mannose trimming of N-linked glycans; however, the mechanisms of substrate recognition and sorting to the ERAD pathway are poorly defined. EDEM1 (ER degradation-enhancing alpha-mannosidase-like 1 protein) has been proposed to play a role in ERAD substrate signaling or recognition. We show that EDEM1 specifically binds nonnative proteins in a glycan-independent manner. Inhibition of mannosidase activity with kifunensine or disruption of the EDEM1 mannosidase-like domain by mutation had no effect on EDEM1 substrate binding but diminished its association with the ER membrane adaptor protein SEL1L. These results support a model whereby EDEM1 binds nonnative proteins and uses its mannosidase-like domain to target aberrant proteins to the ER membrane dislocation and ubiquitination complex containing SEL1L.
Collapse
Affiliation(s)
- James H Cormier
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
38
|
Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 2008; 9:944-57. [PMID: 19002207 DOI: 10.1038/nrm2546] [Citation(s) in RCA: 1024] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein folding in the endoplasmic reticulum (ER) is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway. During ERAD, molecular chaperones and associated factors recognize and target substrates for retrotranslocation to the cytoplasm, where they are degraded by the ubiquitin-proteasome machinery. The discovery of diseases that are associated with ERAD substrates highlights the importance of this pathway. Here, we summarize our current understanding of each step during ERAD, with emphasis on the factors that catalyse distinct activities.
Collapse
Affiliation(s)
- Shruthi S Vembar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
39
|
Chakraborty D, Chakraborty AK. Evidence for tyrosinase as a beta1,6 branch containing glycoprotein: substrate of GnT-V. Life Sci 2008; 83:260-3. [PMID: 18655794 DOI: 10.1016/j.lfs.2008.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/30/2022]
Abstract
Tyrosinase is a rate-limiting enzyme in mammalian melanogenesis, and is known as a glycoprotein. Post-translational processing of mammalian tyrosinase is required for its folding, sorting, and for enzymatic activity. Here we show for the first time that the mammalian tyrosinase has beta1,6-branched N-glycan structure that can be recognized by binding with specific lectin Leukoagglutinating phytohematoagglutinin (L-PHA). Further, this specific glycoconjugate structure has been shown to have a function relationship in melanin synthesis.
Collapse
Affiliation(s)
- Debjit Chakraborty
- Department of Psychiatry, Calcutta Medical College, Kolkata, West Bengal, 700073 India
| | | |
Collapse
|
40
|
Tamura T, Cormier JH, Hebert DN. Sweet bays of ERAD. Trends Biochem Sci 2008; 33:298-300. [PMID: 18538572 DOI: 10.1016/j.tibs.2008.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 11/25/2022]
Abstract
Proteins that improperly mature in the endoplasmic reticulum (ER) are dislocated to the cytoplasm for proteasome-mediated destruction. A recent study provides insight into the incompletely understood processes for selection and targeting of aberrant proteins for ER-associated protein degradation. The identification of the ER chaperones GRP94 and BiP as binding partners for the mannose-binding proteins OS-9 and XTP3-B, indicates that these protein complexes bind to aberrant proteins and direct them to the Hrd1 dislocation and ubiquitylation complex in the ER membrane.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Amherst, MA 01003, USA
| | | | | |
Collapse
|
41
|
Dong M, Bridges JP, Apsley K, Xu Y, Weaver TE. ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol Biol Cell 2008; 19:2620-30. [PMID: 18400946 DOI: 10.1091/mbc.e07-07-0674] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutations in the SFTPC gene associated with interstitial lung disease in human patients result in misfolding, endoplasmic reticulum (ER) retention, and degradation of the encoded surfactant protein C (SP-C) proprotein. In this study, genes specifically induced in response to transient expression of two disease-associated mutations were identified by microarray analyses. Immunoglobulin heavy chain binding protein (BiP) and two heat shock protein 40 family members, endoplasmic reticulum-localized DnaJ homologues ERdj4 and ERdj5, were significantly elevated and exhibited prolonged and specific association with the misfolded proprotein; in contrast, ERdj3 interacted with BiP, but it did not associate with either wild-type or mutant SP-C. Misfolded SP-C, ERdj4, and ERdj5 coprecipitated with p97/VCP indicating that the cochaperones remain associated with the misfolded proprotein until it is dislocated to the cytosol. Knockdown of ERdj4 and ERdj5 expression increased ER retention and inhibited degradation of misfolded SP-C, but it had little effect on the wild-type protein. Transient expression of ERdj4 and ERdj5 in X-box binding protein 1(-/-) mouse embryonic fibroblasts substantially restored rapid degradation of mutant SP-C proprotein, whereas transfection of HPD mutants failed to rescue SP-C endoplasmic reticulum-associated protein degradation. ERdj4 and ERdj5 promote turnover of misfolded SP-C and this activity is dependent on their ability to stimulate BiP ATPase activity.
Collapse
Affiliation(s)
- Mei Dong
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, and The University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
42
|
Kobayashi T, Hearing VJ. Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J Cell Sci 2007; 120:4261-8. [PMID: 18042623 DOI: 10.1242/jcs.017913] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations of the critical and rate-limiting melanogenic enzyme tyrosinase (Tyr) result in hypopigmentation of the hair, skin and eyes. Two other related enzymes, Tyrp1 and Dct, catalyze distinct post-Tyr reactions in melanin biosynthesis. Tyr, Tyrp1 and Dct have been proposed to interact with and stabilize each other in multi-enzyme complexes, and in vitro, Tyr activity is more stable in the presence of Tyrp1 and/or Dct. We recently reported that Tyr is degraded more quickly in mutant Tyrp1 mouse melanocytes than in wild-type Tyrp1 melanocytes, and that decreased stability of Tyr can be partly rescued by infection with wild-type Tyrp1. Although interactions between Tyr and Tyrp1 have been demonstrated in vitro, there is no direct evidence for Tyr interaction with Tyrp1 in vivo. In this study, we use in vivo chemical crosslinking to stabilize the association of Tyr with other cellular proteins. Western blot analysis revealed that Tyrp1, but not Dct, associates with Tyr in murine melanocytes in vivo, and more specifically, in melanosomes. Two-dimensional SDS-PAGE analysis detected heterodimeric species of Tyr and Tyrp1. Taken together, these data demonstrate that Tyrp1 interacts directly with Tyr in vivo, which may regulate the stability and trafficking of melanogenic enzymes and thus pigment synthesis.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | |
Collapse
|
43
|
Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007; 87:1377-408. [PMID: 17928587 DOI: 10.1152/physrev.00050.2006] [Citation(s) in RCA: 490] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A substantial fraction of eukaryotic gene products are synthesized by ribosomes attached at the cytosolic face of the endoplasmic reticulum (ER) membrane. These polypeptides enter cotranslationally in the ER lumen, which contains resident molecular chaperones and folding factors that assist their maturation. Native proteins are released from the ER lumen and are transported through the secretory pathway to their final intra- or extracellular destination. Folding-defective polypeptides are exported across the ER membrane into the cytosol and destroyed. Cellular and organismal homeostasis relies on a balanced activity of the ER folding, quality control, and degradation machineries as shown by the dozens of human diseases related to defective maturation or disposal of individual polypeptides generated in the ER.
Collapse
Affiliation(s)
- Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
44
|
Brodsky JL. The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem J 2007; 404:353-63. [PMID: 17521290 PMCID: PMC2747773 DOI: 10.1042/bj20061890] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over one-third of all newly synthesized polypeptides in eukaryotes interact with or insert into the membrane or the lumenal space of the ER (endoplasmic reticulum), an event that is essential for the subsequent folding, post-translational modification, assembly and targeting of these proteins. Consequently, the ER houses a large number of factors that catalyse protein maturation, but, in the event that maturation is aborted or inefficient, the resulting aberrant proteins may be selected for ERAD (ER-associated degradation). Many of the factors that augment protein biogenesis in the ER and that mediate ERAD substrate selection are molecular chaperones, some of which are heat- and/or stress-inducible and are thus known as Hsps (heat-shock proteins). But, regardless of whether they are constitutively expressed or are inducible, it has been assumed that all molecular chaperones function identically. As presented in this review, this assumption may be false. Instead, a growing body of evidence suggests that a chaperone might be involved in either folding or degrading a given substrate that transits through the ER. A deeper appreciation of this fact is critical because (i) the destruction of some ERAD substrates results in specific diseases, and (ii) altered ERAD efficiency might predispose individuals to metabolic disorders. Moreover, a growing number of chaperone-modulating drugs are being developed to treat maladies that arise from the synthesis of a unique mutant protein; therefore it is critical to understand how altering the activity of a single chaperone will affect the quality control of other nascent proteins that enter the ER.
Collapse
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, 274A Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
45
|
Ray K, Chaki M, Sengupta M. Tyrosinase and ocular diseases: Some novel thoughts on the molecular basis of oculocutaneous albinism type 1. Prog Retin Eye Res 2007; 26:323-58. [PMID: 17355913 DOI: 10.1016/j.preteyeres.2007.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tyrosinase (TYR) is a multifunctional copper-containing glycoenzyme (approximately 80 kDa), which plays a key role in the rate-limiting steps of the melanin biosynthetic pathway. This membrane-bound protein, possibly evolved by the fusion of two different copper-binding proteins, is mainly expressed in epidermal, ocular and follicular melanocytes. In the melanocytes, TYR functions as an integrated unit with other TYR-related proteins (TYRP1, TYRP2), lysosome-associated membrane protein 1 (LAMP1) and melanocyte-stimulating hormone receptors; thus forming a melanogenic complex. Mutations in the TYR gene (TYR, 11q14-21, MIM 606933) cause oculocutaneous albinism type 1 (OCA1, MIM 203100), a developmental disorder having an autosomal recessive mode of inheritance. In addition, TYR can act as a modifier locus for primary congenital glaucoma (PCG) and it also contributes significantly in the eye developmental process. Expression of TYR during neuroblast division helps in later pathfinding by retinal ganglion cells from retina to the dorsal lateral geniculate nucleus. However, mutation screening of TYR is complicated by the presence of a pseudogene-TYR like segment (TYRL, 11p11.2, MIM 191270), sharing approximately 98% sequence identity with the 3' region of TYR. Thus, in absence of a full-proof strategy, any nucleotide variants identified in the 3' region of TYR could actually be present in TYRL. Interestingly, despite extensive search, the second TYR mutation in 15% of the OCA1 cases remains unidentified. Several possible locations of these "uncharacterized mutations" (UCMs) have been speculated so far. Based on the structure of TYR gene, its sequence context and some experimental evidences, we propose two additional possibilities, which on further investigations might shed light on the molecular basis of UCMs in TYR of OCA1 patients; (i) partial deletion of the exons 4 and 5 region of TYR that is homologous with TYRL and (ii) variations in the polymorphic GA complex repeat located between distal and proximal elements of the human TYR promoter that can modulate the expression of the gene leading to disease pathogenesis.
Collapse
Affiliation(s)
- Kunal Ray
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | |
Collapse
|
46
|
Abstract
The endoplasmic reticulum (ER) is the site of folding for proteins that are resident in the ER or that are destined for the Golgi, endosomes, lysosomes, the plasma membrane, or secretion. Cotranslational addition of preassembled glucose(3)-mannose(9)-N-acetylglucosamine(2) core oligosaccharides (N-glycosylation) is a common event for polypeptides synthesized in this compartment. Protein-bound oligosaccharides are exposed to several ER glycanases that sequentially remove terminal glucose or mannose residues. Their activity must be tightly regulated because the N-glycan composition determines whether the associated protein is subjected to folding attempts in the ER lumen or whether it is retrotranslocated into the cytosol and degraded.
Collapse
Affiliation(s)
- Maurizio Molinari
- Institute for Research in Biomedicine, Via V. Vela 6, CH-6500 Bellinzona, Switzerland.
| |
Collapse
|
47
|
Choi H, Ahn S, Chang H, Cho NS, Joo K, Lee BG, Chang I, Hwang JS. Influence of N-glycan processing disruption on tyrosinase and melanin synthesis in HM3KO melanoma cells. Exp Dermatol 2007; 16:110-7. [PMID: 17222224 DOI: 10.1111/j.1600-0625.2006.00515.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tyrosinase, a type I membrane glycoprotein, is synthesized and glycosylated in the endoplasmic reticulum (ER) and Golgi. The enzyme is subsequently transported to melanosomes where it participates in melanogenesis. Previous studies showed that the disruption of early ER N-glycan processing by deoxynojirimycin (DNJ), an inhibitor of alpha-glucosidase, suppresses tyrosinase enzymatic activity and melanogenesis. However, the disruption of late glycan processing, mainly performed by ER and Golgi alpha-1,2-mannosidases, on tyrosinase enzymatic activity and melanogenesis remains to be investigated. Following treatment of HM3KO human melanoma cells with deoxymannojirimycin (DMJ), an inhibitor of alpha-1,2-mannosidase, transport of tyrosinase to the melanosome, enzymatic activity, and melanogenesis were reduced in a dose-dependent manner. However, DMJ did not directly inhibit tyrosinase enzymatic activity and expression. Interestingly, an extract of Streptomyces subrutilus culture medium (ESSCM) containing DMJ and DNJ as the main components inhibited glycosylation and transport of tyrosinase to the melanosome as well as melanin synthesis, but with no negative effects on cell viability. These inhibitory effects of ESSCM were stronger than those of DMJ or DNJ alone. Tyrosinase glycosylation and melanogenesis in HM3KO melanoma cells were more effectively inhibited by DMJ and DNJ combined than DMJ or DNJ alone. Accordingly, we propose that ESSCM is a potential candidate for treating undesirable hyperpigmentation conditions, such as melasma, postinflammatory melanoderma, and solar lentigo.
Collapse
Affiliation(s)
- Hyunjung Choi
- Skin Research Institute, R&D Center, Amore-Pacific Corp, Yongin-Si, Gyeonggi-Do, Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chakraborty AK, Pawelek J. Beta1,6-branched oligosaccharides regulate melanin content and motility in macrophage-melanoma fusion hybrids. Melanoma Res 2007; 17:9-16. [PMID: 17235237 DOI: 10.1097/cmr.0b013e3280114f34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In previous studies, fusion of peritoneal macrophages or blood monocytes with mouse melanoma cells produced hybrids with upregulated expression of the glycosyltransferase beta1,6-N-acetylglucosaminyltransferase V (GnT-V) and its enzymatic product, beta1,6-branched oligosaccharides. This correlated with marked increases in motility, metastatic potential and, surprisingly, melanin content. This study was designed to establish direct roles for beta1,6-branched oligosaccharides in melanogenesis and motility. The levels of beta1,6-branched oligosaccharides were lowered by transfecting beta1,4-N-acetylglucosaminyltransferase III, a competitive inhibitor of GnT-V. beta1,4-N-acetylglucosaminyltransferase III transfection virtually eliminated melanin production and markedly decreased chemotactic motility. This implied that the metastatic and melanogenic phenotypes in hybrids were each upregulated by beta1,6-branched oligosaccharides. Although roles for beta1,6-branched oligosaccharides in motility and metastasis have been reported previously, this is the first study to directly implicate these structures in melanogenesis. Although drawn from experimental models, the findings might explain the well known hypermelanotic regions of human cutaneous malignant melanoma as hypermelanotic cutaneous malignant melanoma cells are rich in beta1,6-branched oligosaccharides. They might also explain why melanogenesis pathways differ between malignant and normal melanocytes as GnT-V is a myeloid-associated enzyme that is aberrantly expressed in melanoma cells but not in normal melanocytes.
Collapse
Affiliation(s)
- Ashok K Chakraborty
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520-8059, USA
| | | |
Collapse
|
49
|
Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase. J Invest Dermatol 2007; 127:751-61. [PMID: 17218941 DOI: 10.1038/sj.jid.5700683] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tyrosinase, a copper-containing glycoprotein, is the rate-limiting enzyme critical for melanin biosynthesis in specialized organelles termed melanosomes that are produced only by melanocytic cells. Inhibitors of tyrosinase activity have long been sought as therapeutic means to treat cutaneous hyperpigmentary disorders. Multiple potential approaches exist that could control pigmentation via the regulation of tyrosinase activity, for example: the transcription of its messenger RNA, its maturation via glycosylation, its trafficking to melanosomes, as well as modulation of its catalytic activity and/or stability. However, relatively little attention has been paid to regulating pigmentation via the stability of tyrosinase, which depends on its processing and maturation in the endoplasmic reticulum and Golgi, its delivery to melanosomes and its degradation via the ubiquitin-proteasome pathway and/or the endosomal/lysosomal system. Recently, it has been shown that carbohydrate modification, molecular chaperone engagement, and ubiquitylation all play pivotal roles in regulating the degradation/stability of tyrosinase. While such processes affect virtually all proteins, such effects on tyrosinase have immediate and dramatic consequences on pigmentation. In this review, we classify melanogenic inhibitory factors in terms of their modulation of tyrosinase function and we summarize current understanding of how the quality control of tyrosinase processing impacts its stability and melanogenic activity.
Collapse
Affiliation(s)
- Hideya Ando
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
50
|
Chaki M, Sengupta M, Mukhopadhyay A, Subba Rao I, Majumder PP, Das M, Samanta S, Ray K. OCA1 in Different Ethnic Groups of India is Primarily Due to Founder Mutations in the Tyrosinase Gene. Ann Hum Genet 2006; 70:623-30. [PMID: 16907708 DOI: 10.1111/j.1469-1809.2006.00247.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders characterized by an abnormally low amount of melanin in the eyes, skin and hair, and associated with common developmental abnormalities of the eye. Defects in the tyrosinase gene (TYR) cause a common type of OCA, known as oculocutaneous albinism type 1 (OCA1). The molecular basis of OCA has been studied extensively in different population groups, but very little information is available on Indian patients. Our investigation covering thirteen ethnic groups of India, some representing >20 million people, revealed that among 25 OCA families 12 were affected with OCA1, and that these cases were primarily due to founder mutations in TYR. We detected nine mutations and eight SNPs in TYR, of which six mutations (five point mutations & one gross deletion) were novel. In contrast to most reports describing compound heterozygotes, the presence of homozygotes in 10 out of the 12 pedigrees underscores the lack of intermixing between these ethnic groups in India. Haplotype analysis suggested a few founder chromosomes causing the disease in the majority of the patients. Direct detection of the mutations prevalent in specific ethnic groups could be used for carrier detection and genetic counselling.
Collapse
Affiliation(s)
- M Chaki
- Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|