1
|
Abdelbaki A, Ascanelli C, Okoye CN, Akman HB, Janson G, Min M, Marcozzi C, Hagting A, Grant R, De Luca M, Asteriti IA, Guarguaglini G, Paiardini A, Lindon C. Revisiting degron motifs in human AURKA required for its targeting by APC/C FZR1. Life Sci Alliance 2023; 6:6/2/e202201372. [PMID: 36450448 PMCID: PMC9713472 DOI: 10.26508/lsa.202201372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Cynthia N Okoye
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giacomo Janson
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Mingwei Min
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Chiara Marcozzi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anja Hagting
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria De Luca
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Okoye CN, Rowling PJE, Itzhaki LS, Lindon C. Counting Degrons: Lessons From Multivalent Substrates for Targeted Protein Degradation. Front Physiol 2022; 13:913063. [PMID: 35860655 PMCID: PMC9289945 DOI: 10.3389/fphys.2022.913063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
E3s comprise a structurally diverse group of at least 800 members, most of which target multiple substrates through specific and regulated protein-protein interactions. These interactions typically rely on short linear motifs (SLiMs), called "degrons", in an intrinsically disordered region (IDR) of the substrate, with variable rules of engagement governing different E3-docking events. These rules of engagement are of importance to the field of targeted protein degradation (TPD), where substrate ubiquitination and destruction require tools to effectively harness ubiquitin ligases (E3s). Substrates are often found to contain multiple degrons, or multiple copies of a degron, contributing to the affinity and selectivity of the substrate for its E3. One important paradigm for E3-substrate docking is presented by the Anaphase-Promoting Complex/Cyclosome (APC/C), a multi-subunit E3 ligase that targets hundreds of proteins for destruction during mitotic exit. APC/C substrate targeting takes place in an ordered manner thought to depend on tightly regulated interactions of substrates, with docking sites provided by the substoichiometric APC/C substrate adaptors and coactivators, Cdc20 or Cdh1/FZR1. Both structural and functional studies of individual APC/C substrates indicate that productive ubiquitination usually requires more than one degron, and that degrons are of different types docking to distinct sites on the coactivators. However, the dynamic nature of APC/C substrate recruitment, and the influence of multiple degrons, remains poorly understood. Here we review the significance of multiple degrons in a number of E3-substrate interactions that have been studied in detail, illustrating distinct kinetic effects of multivalency and allovalency, before addressing the role of multiple degrons in APC/C substrates, key to understanding ordered substrate destruction by APC/C. Lastly, we consider how lessons learnt from these studies can be applied in the design of TPD tools.
Collapse
Affiliation(s)
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Pajpach F, Shearwin-Whyatt L, Grützner F. Evolution, Expression and Meiotic Behavior of Genes Involved in Chromosome Segregation of Monotremes. Genes (Basel) 2021; 12:1320. [PMID: 34573302 PMCID: PMC8470780 DOI: 10.3390/genes12091320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosome segregation at mitosis and meiosis is a highly dynamic and tightly regulated process that involves a large number of components. Due to the fundamental nature of chromosome segregation, many genes involved in this process are evolutionarily highly conserved, but duplications and functional diversification has occurred in various lineages. In order to better understand the evolution of genes involved in chromosome segregation in mammals, we analyzed some of the key components in the basal mammalian lineage of egg-laying mammals. The chromosome passenger complex is a multiprotein complex central to chromosome segregation during both mitosis and meiosis. It consists of survivin, borealin, inner centromere protein, and Aurora kinase B or C. We confirm the absence of Aurora kinase C in marsupials and show its absence in both platypus and echidna, which supports the current model of the evolution of Aurora kinases. High expression of AURKBC, an ancestor of AURKB and AURKC present in monotremes, suggests that this gene is performing all necessary meiotic functions in monotremes. Other genes of the chromosome passenger complex complex are present and conserved in monotremes, suggesting that their function has been preserved in mammals. Cohesins are another family of genes that are of vital importance for chromosome cohesion and segregation at mitosis and meiosis. Previous work has demonstrated an accumulation and differential loading of structural maintenance of chromosomes 3 (SMC3) on the platypus sex chromosome complex at meiotic prophase I. We investigated if a similar accumulation occurs in the echidna during meiosis I. In contrast to platypus, SMC3 was only found on the synaptonemal complex in echidna. This indicates that the specific distribution of SMC3 on the sex chromosome complex may have evolved specifically in platypus.
Collapse
Affiliation(s)
| | | | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| |
Collapse
|
4
|
Wang R, Ascanelli C, Abdelbaki A, Fung A, Rasmusson T, Michaelides I, Roberts K, Lindon C. Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Commun Biol 2021; 4:640. [PMID: 34050235 PMCID: PMC8163823 DOI: 10.1038/s42003-021-02158-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted protein degradation tools are becoming a new therapeutic modality, allowing small molecule ligands to be reformulated as heterobifunctional molecules (PROteolysis Targeting Chimeras, PROTACs) that recruit ubiquitin ligases to targets of interest, leading to ubiquitination and destruction of the targets. Several PROTACs against targets of clinical interest have been described, but detailed descriptions of the cell biology modulated by PROTACs are missing from the literature. Here we describe the functional characterization of a PROTAC derived from AURKA inhibitor MLN8237 (alisertib). We demonstrate efficient and specific destruction of both endogenous and overexpressed AURKA by Cereblon-directed PROTACs. At the subcellular level, we find differential targeting of AURKA on the mitotic spindle compared to centrosomes. The phenotypic consequences of PROTAC treatment are therefore distinct from those mediated by alisertib, and in mitotic cells differentially regulate centrosome- and chromatin- based microtubule spindle assembly pathways. In interphase cells PROTAC-mediated clearance of non-centrosomal AURKA modulates the cytoplasmic role played by AURKA in mitochondrial dynamics, whilst the centrosomal pool is refractory to PROTAC-mediated clearance. Our results point to differential sensitivity of subcellular pools of substrate, governed by substrate conformation or localization-dependent accessibility to PROTAC action, a phenomenon not previously described for this new class of degrader compounds. Wang et al develop tools to target the mitotic regulator AURKA by synthesising PROTACs based on the inhibitor MLN8237. They find that the new PROTAC compound efficiently clears cytoplasmic and mitotic spindle-associated AURKA but does not eliminate AURKA activity from centrosomes, demonstrating the possibility of targeting subpopulations.
Collapse
Affiliation(s)
- Richard Wang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Alex Fung
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tim Rasmusson
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.,Bristol Myers Squibb, Cambridge, MA, USA
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Tavernier N, Thomas Y, Vigneron S, Maisonneuve P, Orlicky S, Mader P, Regmi SG, Van Hove L, Levinson NM, Gasmi-Seabrook G, Joly N, Poteau M, Velez-Aguilera G, Gavet O, Castro A, Dasso M, Lorca T, Sicheri F, Pintard L. Bora phosphorylation substitutes in trans for T-loop phosphorylation in Aurora A to promote mitotic entry. Nat Commun 2021; 12:1899. [PMID: 33771996 PMCID: PMC7997955 DOI: 10.1038/s41467-021-21922-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is instrumental for mitotic entry and progression. Plk1 is activated by phosphorylation on a conserved residue Thr210 in its activation segment by the Aurora A kinase (AURKA), a reaction that critically requires the co-factor Bora phosphorylated by a CyclinA/B-Cdk1 kinase. Here we show that phospho-Bora is a direct activator of AURKA kinase activity. We localize the key determinants of phospho-Bora function to a 100 amino acid region encompassing two short Tpx2-like motifs and a phosphoSerine-Proline motif at Serine 112, through which Bora binds AURKA. The latter substitutes in trans for the Thr288 phospho-regulatory site of AURKA, which is essential for an active conformation of the kinase domain. We demonstrate the importance of these determinants for Bora function in mitotic entry both in Xenopus egg extracts and in human cells. Our findings unveil the activation mechanism of AURKA that is critical for mitotic entry.
Collapse
Affiliation(s)
- N Tavernier
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - Y Thomas
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - S Vigneron
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - P Maisonneuve
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S Orlicky
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - P Mader
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S G Regmi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - L Van Hove
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - N M Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - G Gasmi-Seabrook
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - N Joly
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - M Poteau
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - G Velez-Aguilera
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - O Gavet
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - A Castro
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - M Dasso
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - T Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - F Sicheri
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - L Pintard
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France.
| |
Collapse
|
6
|
Davis AJ, Tsinkevich M, Rodencal J, Abbas HA, Su XH, Gi YJ, Fang B, Rajapakshe K, Coarfa C, Gunaratne PH, Koomen JM, Tsai KY, Flores ER. TAp63-Regulated miRNAs Suppress Cutaneous Squamous Cell Carcinoma through Inhibition of a Network of Cell-Cycle Genes. Cancer Res 2020; 80:2484-2497. [PMID: 32156775 DOI: 10.1158/0008-5472.can-19-1892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/18/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
TAp63 is a p53 family member and potent tumor and metastasis suppressor. Here, we show that TAp63-/- mice exhibit an increased susceptibility to ultraviolet radiation-induced cutaneous squamous cell carcinoma (cuSCC). A human-to-mouse comparison of cuSCC tumors identified miR-30c-2* and miR-497 as underexpressed in TAp63-deficient cuSCC. Reintroduction of these miRNAs significantly inhibited the growth of cuSCC cell lines and tumors. Proteomic profiling of cells expressing either miRNA showed downregulation of cell-cycle progression and mitosis-associated proteins. A mouse to human and cross-platform comparison of RNA-sequencing and proteomics data identified a 7-gene signature, including AURKA, KIF18B, PKMYT1, and ORC1, which were overexpressed in cuSCC. Knockdown of these factors in cuSCC cell lines suppressed tumor cell proliferation and induced apoptosis. In addition, selective inhibition of AURKA suppressed cuSCC cell proliferation, induced apoptosis, and showed antitumor effects in vivo. Finally, treatment with miR-30c-2* or miR-497 miRNA mimics was highly effective in suppressing cuSCC growth in vivo. Our data establish TAp63 as an essential regulator of novel miRNAs that can be therapeutically targeted for potent suppression of cuSCC. SIGNIFICANCE: This study provides preclinical evidence for the use of miR-30c-2*/miR-497 delivery and AURKA inhibition in the treatment of cuSCC, which currently has no FDA-approved targeted therapies.See related commentary by Parrales and Iwakuma, p. 2439.
Collapse
Affiliation(s)
- Andrew John Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Maksym Tsinkevich
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jason Rodencal
- Department of Biology, Stanford University School of Medicine, Stanford, California
| | - Hussein A Abbas
- Hematology/Oncology Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao-Hua Su
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Young-Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Fang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
7
|
Jerabkova K, Sumara I. Cullin 3, a cellular scripter of the non-proteolytic ubiquitin code. Semin Cell Dev Biol 2019; 93:100-110. [DOI: 10.1016/j.semcdb.2018.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022]
|
8
|
Grant R, Abdelbaki A, Bertoldi A, Gavilan MP, Mansfeld J, Glover DM, Lindon C. Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted cryptic targeting sequence at the N-terminus. Open Biol 2018; 8:170272. [PMID: 29899121 PMCID: PMC6030116 DOI: 10.1098/rsob.170272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Aurora A kinase (AURKA) is a major regulator of mitosis and an important driver of cancer progression. The roles of AURKA outside of mitosis, and how these might contribute to cancer progression, are not well understood. Here, we show that a fraction of cytoplasmic AURKA is associated with mitochondria, co-fractionating in cell extracts and interacting with mitochondrial proteins by reciprocal co-immunoprecipitation. We have also found that the dynamics of the mitochondrial network are sensitive to AURKA inhibition, depletion or overexpression. This can account for the different mitochondrial morphologies observed in RPE-1 and U2OS cell lines, which show very different levels of expression of AURKA. We identify the mitochondrial fraction of AURKA as influencing mitochondrial morphology, because an N-terminally truncated version of the kinase that does not localize to mitochondria does not affect the mitochondrial network. We identify a cryptic mitochondrial targeting sequence in the AURKA N-terminus and discuss how alternative conformations of the protein may influence its cytoplasmic fate.
Collapse
Affiliation(s)
- Rhys Grant
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Alessia Bertoldi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Maria P Gavilan
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Catherine Lindon
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
9
|
Lim NR, Yeap YYC, Ang CS, Williamson NA, Bogoyevitch MA, Quinn LM, Ng DCH. Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation. Cell Cycle 2016; 15:413-24. [PMID: 26713495 DOI: 10.1080/15384101.2015.1127472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization.
Collapse
Affiliation(s)
- Nicholas R Lim
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Yvonne Y C Yeap
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,d School of Biomedical Sciences, University of Queensland , St Lucia , Australia
| | - Ching-Seng Ang
- b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Nicholas A Williamson
- b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Marie A Bogoyevitch
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Leonie M Quinn
- c Department of Anatomy and Neuroscience , University of Melbourne , Victoria , Australia
| | - Dominic C H Ng
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,d School of Biomedical Sciences, University of Queensland , St Lucia , Australia
| |
Collapse
|
10
|
Rivas S, Armisén R, Rojas DA, Maldonado E, Huerta H, Tapia JC, Espinoza J, Colombo A, Michea L, Hayman MJ, Marcelain K. The Ski Protein is Involved in the Transformation Pathway of Aurora Kinase A. J Cell Biochem 2016; 117:334-43. [PMID: 26138431 DOI: 10.1002/jcb.25275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Oncogenic kinase Aurora A (AURKA) has been found to be overexpresed in several tumors including colorectal, breast, and hematological cancers. Overexpression of AURKA induces centrosome amplification and aneuploidy and it is related with cancer progression and poor prognosis. Here we show that AURKA phosphorylates in vitro the transcripcional co-repressor Ski on aminoacids Ser326 and Ser383. Phosphorylations on these aminoacids decreased Ski protein half-life. Reduced levels of Ski resulted in centrosomes amplification and multipolar spindles formation, same as AURKA overexpressing cells. Importantly, overexpression of Ski wild type, but not S326D and S383D mutants inhibited centrosome amplification and cellular transformation induced by AURKA. Altogether, these results suggest that the Ski protein is a target in the transformation pathway mediated by the AURKA oncogene.
Collapse
Affiliation(s)
- Solange Rivas
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ricardo Armisén
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Diego A Rojas
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Edio Maldonado
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Hernán Huerta
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Julio C Tapia
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Jaime Espinoza
- Department of Pathology, UC-Center for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile 8330034, Santiago, Chile
| | - Alicia Colombo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Luis Michea
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Millenium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Michael J Hayman
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, New York 11794
| | - Katherine Marcelain
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| |
Collapse
|
11
|
Kotak S, Afshar K, Busso C, Gönczy P. Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. J Cell Sci 2016; 129:3015-25. [PMID: 27335426 DOI: 10.1242/jcs.184416] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/16/2016] [Indexed: 01/04/2023] Open
Abstract
Accurate spindle positioning is essential for error-free cell division. The one-cell Caenorhabditis elegans embryo has proven instrumental for dissecting mechanisms governing spindle positioning. Despite important progress, how the cortical forces that act on astral microtubules to properly position the spindle are modulated is incompletely understood. Here, we report that the PP6 phosphatase PPH-6 and its associated subunit SAPS-1, which positively regulate pulling forces acting on spindle poles, associate with the Aurora A kinase AIR-1 in C. elegans embryos. We show that acute inactivation of AIR-1 during mitosis results in excess pulling forces on astral microtubules. Furthermore, we uncover that AIR-1 acts downstream of PPH-6-SAPS-1 in modulating spindle positioning, and that PPH-6-SAPS-1 negatively regulates AIR-1 localization at the cell cortex. Moreover, we show that Aurora A and the PP6 phosphatase subunit PPP6C are also necessary for spindle positioning in human cells. There, Aurora A is needed for the cortical localization of NuMA and dynein during mitosis. Overall, our work demonstrates that Aurora A kinases and PP6 phosphatases have an ancient function in modulating spindle positioning, thus contributing to faithful cell division.
Collapse
Affiliation(s)
- Sachin Kotak
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Katayon Afshar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
12
|
Duhamel S, Girondel C, Dorn JF, Tanguay PL, Voisin L, Smits R, Maddox PS, Meloche S. Deregulated ERK1/2 MAP kinase signaling promotes aneuploidy by a Fbxw7β-Aurora A pathway. Cell Cycle 2016; 15:1631-42. [PMID: 27152455 DOI: 10.1080/15384101.2016.1183851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aneuploidy is a common feature of human solid tumors and is often associated with poor prognosis. There is growing evidence that oncogenic signaling pathways, which are universally dysregulated in cancer, contribute to the promotion of aneuploidy. However, the mechanisms connecting signaling pathways to the execution of mitosis and cytokinesis are not well understood. Here, we show that hyperactivation of the ERK1/2 MAP kinase pathway in epithelial cells impairs cytokinesis, leading to polyploidization and aneuploidy. Mechanistically, deregulated ERK1/2 signaling specifically downregulates expression of the F-box protein Fbxw7β, a substrate-binding subunit of the SCF(Fbxw7) ubiquitin ligase, resulting in the accumulation of the mitotic kinase Aurora A. Reduction of Aurora A levels by RNA interference or pharmacological inhibition of MEK1/2 reverts the defect in cytokinesis and decreases the frequency of abnormal cell divisions induced by oncogenic H-Ras(V12). Reciprocally, overexpression of Aurora A or silencing of Fbxw7β phenocopies the effect of H-Ras(V12) on cell division. In vivo, conditional activation of MEK2 in the mouse intestine lowers Fbxw7β expression, resulting in the accumulation of cells with enlarged nuclei. We propose that the ERK1/2/ Fbxw7β/Aurora A axis identified in this study contributes to genomic instability and tumor progression.
Collapse
Affiliation(s)
- Stéphanie Duhamel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada
| | - Charlotte Girondel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| | - Jonas F Dorn
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Pierre-Luc Tanguay
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Laure Voisin
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Ron Smits
- d Department of Gastroenterology and Hepatology , Erasmus MC , Rotterdam , The Netherlands
| | - Paul S Maddox
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,e Department of Pathology and Cell Biology , Université de Montréal , Montreal , Quebec , Canada
| | - Sylvain Meloche
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| |
Collapse
|
13
|
Lindon C, Grant R, Min M. Ubiquitin-Mediated Degradation of Aurora Kinases. Front Oncol 2016; 5:307. [PMID: 26835416 PMCID: PMC4716142 DOI: 10.3389/fonc.2015.00307] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/25/2015] [Indexed: 11/18/2022] Open
Abstract
The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting of these critical mitotic regulators and discuss the different factors that contribute to proteolytic control of Aurora kinase activity in the cell.
Collapse
Affiliation(s)
- Catherine Lindon
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Mingwei Min
- Department of Cell Biology, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
14
|
Tsunematsu T, Arakaki R, Yamada A, Ishimaru N, Kudo Y. The Non-Canonical Role of Aurora-A in DNA Replication. Front Oncol 2015; 5:187. [PMID: 26380219 PMCID: PMC4548192 DOI: 10.3389/fonc.2015.00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Aurora-A is a well-known mitotic kinase that regulates mitotic entry, spindle formation, and chromosome maturation as a canonical role. During mitosis, Aurora-A protein is stabilized by its phosphorylation at Ser51 via blocking anaphase-promoting complex/cyclosome-mediated proteolysis. Importantly, overexpression and/or hyperactivation of Aurora-A is involved in tumorigenesis via aneuploidy and genomic instability. Recently, the novel function of Aurora-A for DNA replication has been revealed. In mammalian cells, DNA replication is strictly regulated for preventing over-replication. Pre-replication complex (pre-RC) formation is required for DNA replication as an initiation step occurring at the origin of replication. The timing of pre-RC formation depends on the protein level of geminin, which is controlled by the ubiquitin–proteasome pathway. Aurora-A phosphorylates geminin to prevent its ubiquitin-mediated proteolysis at the mitotic phase to ensure proper pre-RC formation and ensuing DNA replication. In this review, we introduce the novel non-canonical role of Aurora-A in DNA replication.
Collapse
Affiliation(s)
- Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| |
Collapse
|
15
|
Pal SK, He M, Tong T, Wu H, Liu X, Lau C, Wang JH, Warden C, Wu X, Signoretti S, Choueiri TK, Karam JA, Jones JO. RNA-seq reveals aurora kinase-driven mTOR pathway activation in patients with sarcomatoid metastatic renal cell carcinoma. Mol Cancer Res 2015; 13:130-7. [PMID: 25183163 PMCID: PMC4608366 DOI: 10.1158/1541-7786.mcr-14-0352] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Sarcomatoid metastatic renal cell carcinoma (mRCC) is associated with a poor prognosis, and the biology of the disease has been inadequately characterized. RNA sequencing (RNA-seq) was performed on adjacent benign, clear cell, and sarcomatoid components from clinical specimens with sarcomatoid mRCC. M phase and cell-cycle pathways were enriched in sarcomatoid versus adjacent clear cell components, suggesting greater cell proliferation. The expression of aurora kinase A (AURKA) was increased as part of these pathways, and its increased expression was validated by quantitative PCR (qPCR). Immunohistochemical (IHC) analysis revealed that AURKA levels were increased in sarcomatoid tissue compared with their benign or clear cell parts. The increase in AURKA correlated with increased mTOR pathway activity, as evidenced by increased expression of phosphorylated mTOR (S2448) and ribosomal protein S6K (T389). When AURKA was stably expressed in a RCC cell line (Renca), it resulted in increased expression and activity of mTOR, suggesting that overexpression of AURKA can activate the mTOR pathway. These results warrant the analysis of a larger clinical cohort and suggest that targeting AURKA and/or mTOR in patients with sarcomatoid mRCC should be explored. IMPLICATIONS Comparative RNA-seq of adjacent sarcomatoid and clear cell histology of RCC indicates a proliferative phenotype and increased AURKA-dependent activation of mTOR signaling in sarcomatoid RCC, which could be targeted by available agents.
Collapse
Affiliation(s)
- Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Miaoling He
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tommy Tong
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Huiqing Wu
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xueli Liu
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Jin-Hui Wang
- Functional Genomics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Charles Warden
- Functional Genomics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xiwei Wu
- Functional Genomics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Sabina Signoretti
- Department of Pathology, Dana Farber Cancer Center, Boston, Massachusetts
| | - Toni K Choueiri
- Department of Medical Oncology, Dana Farber Cancer Center, Boston, Massachusetts
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeremy O Jones
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
16
|
Shagisultanova E, Dunbrack RL, Golemis EA. Issues in interpreting the in vivo activity of Aurora-A. Expert Opin Ther Targets 2014; 19:187-200. [PMID: 25384454 DOI: 10.1517/14728222.2014.981154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Based on its role as a mitotic regulatory kinase, overexpressed and associated with aneuploidy in cancer, small-molecule inhibitors have been developed for Aurora-A (AURKA) kinase. In preclinical and clinical assessments, these agents have shown efficacy in inducing stable disease or therapeutic response. In optimizing the use of Aurora-A inhibitors, it is critical to have robust capacity to measure the kinase activity of Aurora-A in tumors. AREAS COVERED We provide an overview of molecular mechanisms of mitotic and non-mitotic activation of Aurora-A kinase, and interaction of Aurora-A with its regulatory partners. Typically, Aurora-A activity is measured by use of phospho-antibodies targeting an autophosphorylated T288 epitope. However, recent studies have identified alternative means of Aurora-A activation control, including allosteric regulation by partners, phosphorylation on alternative activating residues (S51, S98), dephosphorylation on inhibitory sites (S342) and T288 phosphorylation by alternative kinases such as Pak enzymes. Additional work has shown that the relative abundance of Aurora-A partners can affect the activity of Aurora-A inhibitors, and that Aurora-A activation also occurs in interphase cells. EXPERT OPINION Taken together, this work suggests the need for comprehensive analysis of Aurora-A activity and expression of Aurora-A partners in order to stratify patients for likely therapeutic response.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Fox Chase Cancer Center, Department of Medical Oncology , Philadelphia, PA 19111 , USA
| | | | | |
Collapse
|
17
|
Neumayer G, Belzil C, Gruss OJ, Nguyen MD. TPX2: of spindle assembly, DNA damage response, and cancer. Cell Mol Life Sci 2014; 71:3027-47. [PMID: 24556998 PMCID: PMC11114040 DOI: 10.1007/s00018-014-1582-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
For more than 15 years, TPX2 has been studied as a factor critical for mitosis and spindle assembly. These functions of TPX2 are attributed to its Ran-regulated microtubule-associated protein properties and to its control of the Aurora A kinase. Overexpressed in cancers, TPX2 is being established as marker for the diagnosis and prognosis of malignancies. During interphase, TPX2 resides preferentially in the nucleus where its function had remained elusive until recently. The latest finding that TPX2 plays a role in amplification of the DNA damage response, combined with the characterization of TPX2 knockout mice, open new perspectives to understand the biology of this protein. This review provides an historic overview of the discovery of TPX2 and summarizes its cytoskeletal and signaling roles with relevance to cancer therapies. Finally, the review aims to reconcile discrepancies between the experimental and pathological effects of TPX2 overexpression and advances new roles for compartmentalized TPX2.
Collapse
Affiliation(s)
- Gernot Neumayer
- Department of Clinical Neurosciences, Department of Cell Biology and Anatomy, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada,
| | | | | | | |
Collapse
|
18
|
Goldenson B, Crispino JD. The aurora kinases in cell cycle and leukemia. Oncogene 2014; 34:537-45. [PMID: 24632603 PMCID: PMC4167158 DOI: 10.1038/onc.2014.14] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022]
Abstract
The Aurora kinases, which include Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are serine/threonine kinases required for the control of mitosis (AURKA and AURKB) and meiosis (AURKC). Since their discovery nearly 20 years ago, Aurora kinases have been studied extensively in cell and cancer biology. Several early studies found that Aurora kinases are amplified and overexpressed at the transcript and protein level in various malignancies, including several types of leukemia. These discoveries and others provided a rationale for the development of small-molecule inhibitors of Aurora kinases as leukemia therapies. The first generation of Aurora kinase inhibitors did not fare well in clinical trials, owing to poor efficacy and high toxicity. However, the creation of second-generation, highly selective Aurora kinase inhibitors has increased the enthusiasm for targeting these proteins in leukemia. This review will describe the functions of each Aurora kinase, summarize their involvement in leukemia and discuss inhibitor development and efficacy in leukemia clinical trials.
Collapse
Affiliation(s)
- B Goldenson
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - J D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
19
|
Holt JE, Pye V, Boon E, Stewart JL, García-Higuera I, Moreno S, Rodríguez R, Jones KT, McLaughlin EA. The APC/C activator FZR1 is essential for meiotic prophase I in mice. Development 2014; 141:1354-65. [PMID: 24553289 DOI: 10.1242/dev.104828] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fizzy-related 1 (FZR1) is an activator of the Anaphase promoting complex/cyclosome (APC/C) and an important regulator of the mitotic cell division cycle. Using a germ-cell-specific conditional knockout model we examined its role in entry into meiosis and early meiotic events in both sexes. Loss of APC/C(FZR1) activity in the male germline led to both a mitotic and a meiotic testicular defect resulting in infertility due to the absence of mature spermatozoa. Spermatogonia in the prepubertal testes of such mice had abnormal proliferation and delayed entry into meiosis. Although early recombination events were initiated, male germ cells failed to progress beyond zygotene and underwent apoptosis. Loss of APC/C(FZR1) activity was associated with raised cyclin B1 levels, suggesting that CDK1 may trigger apoptosis. By contrast, female FZR1Δ mice were subfertile, with premature onset of ovarian failure by 5 months of age. Germ cell loss occurred embryonically in the ovary, around the time of the zygotene-pachytene transition, similar to that observed in males. In addition, the transition of primordial follicles into the growing follicle pool in the neonatal ovary was abnormal, such that the primordial follicles were prematurely depleted. We conclude that APC/C(FZR1) is an essential regulator of spermatogonial proliferation and early meiotic prophase I in both male and female germ cells and is therefore important in establishing the reproductive health of adult male and female mammals.
Collapse
Affiliation(s)
- Janet E Holt
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Singh SA, Winter D, Kirchner M, Chauhan R, Ahmed S, Ozlu N, Tzur A, Steen JA, Steen H. Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation. EMBO J 2014; 33:385-99. [PMID: 24510915 DOI: 10.1002/embj.201385876] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using multiplexed quantitative proteomics, we analyzed cell cycle-dependent changes of the human proteome. We identified >4,400 proteins, each with a six-point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co-regulated, we clustered the proteins with abundance profiles most similar to known Anaphase-Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/C(CDH1)-dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1-dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de-)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.
Collapse
Affiliation(s)
- Sasha A Singh
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kamaraj B, Kumar A, Purohit R. Evolutionary reconstruction and population genetics analysis of aurora kinases. PLoS One 2013; 8:e75763. [PMID: 24086628 PMCID: PMC3782425 DOI: 10.1371/journal.pone.0075763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/16/2013] [Indexed: 12/03/2022] Open
Abstract
Background Aurora kinases belong to the highly conserved kinase family and play a vital role in cell cycle regulation. The structure and function of these kinases are inter-related and sometimes they also act as substitutes in case of knockdown of other aurora kinases. Method In this work we carried out the evolutionary reconstruction and population genetic studies of aurora kinase proteins. Substitution saturation test, CAI (Codon adaptation index), gene expression and RSCU (Relative synonymous codon usage) values were computed for all the three aurora kinases. Linear regression method was used to check the dependency of gene expression on their CAI values. Results The results suggested that aurora-B and aurora-C has shown convergence in their evolutionary pathway. Moreover, the aurora-A I57V mutation showed high penetrance in human population and exist at very high frequency (84.4%) when compared to the native residue (15.6%). The mutation showed notable range of functional gain and seemed to be promising for the evolution of aurora-A function. Mutant allele might also become a challenging prospect for understanding the pattern of evolution followed by cell cycle kinases. Conclusion The overall result suggested that the aurora-A is currently under the evolutionary transition and to determine the functional significance of the mutation further investigation are required.
Collapse
Affiliation(s)
- Balu Kamaraj
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Ambuj Kumar
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Rituraj Purohit
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
22
|
Min M, Mayor U, Lindon C. Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates. Open Biol 2013; 3:130097. [PMID: 24004664 PMCID: PMC3787748 DOI: 10.1098/rsob.130097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/06/2013] [Indexed: 01/13/2023] Open
Abstract
Ordered progression of mitosis requires precise control in abundance of mitotic regulators. The anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase plays a key role by directing ubiquitin-mediated destruction of targets in a temporally and spatially defined manner. Specificity in APC/C targeting is conferred through recognition of substrate D-box and KEN degrons, while the specificity of ubiquitination sites, as another possible regulated dimension, has not yet been explored. Here, we present the first analysis of ubiquitination sites in the APC/C substrate ubiquitome. We show that KEN is a preferred ubiquitin acceptor in APC/C substrates and that acceptor sites are enriched in predicted disordered regions and flanked by serine residues. Our experimental data confirm a role for the KEN lysine as an ubiquitin acceptor contributing to substrate destruction during mitotic progression. Using Aurora A and Nek2 kinases as examples, we show that phosphorylation on the flanking serine residue could directly regulate ubiquitination and subsequent degradation of substrates. We propose a novel layer of regulation in substrate ubiquitination, via phosphorylation adjacent to the KEN motif, in APC/C-mediated targeting.
Collapse
Affiliation(s)
- Mingwei Min
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ugo Mayor
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, Derio 48160, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Catherine Lindon
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
23
|
Park MT, Oh ET, Song MJ, Lee H, Choi EK, Park HJ. NQO1 prevents radiation-induced aneuploidy by interacting with Aurora-A. Carcinogenesis 2013; 34:2470-85. [PMID: 23803694 DOI: 10.1093/carcin/bgt225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aneuploidy is the most common characteristic of human cancer cells. It also causes genomic instability, which is involved in the initiation of cancer development. Various lines of evidence indicate that nicotinamide adenine dinucleotide(P)H quinone oxidoreductase 1 (NQO1) plays an important role in cancer prevention, but the molecular mechanisms underlying this effect have not yet been fully elucidated. Here, we report that ionizing radiation (IR) induces substantial aneuploidy and centrosome amplification in NQO1-deficient cancer cells, suggesting that NQO1 plays a crucial role in preventing aneuploidy. NQO1 deficiency markedly increased the protein stability of Aurora-A in irradiated cancer cells. Small interfering RNA targeting Aurora-A effectively attenuated IR-induced centrosome amplification concerned with aneuploidy in NQO1-deficient cancer cells. Furthermore, we found that NQO1 specifically binds to Aurora-A via competing with the microtubule-binding protein, TPX2 (targeting protein for Xklp2), and contributes to the degradation of Aurora-A. Our results collectively demonstrate that NQO1 plays a key role in suppressing IR-induced centrosome amplification and aneuploidy through a direct interaction with Aurora-A.
Collapse
Affiliation(s)
- Moon-Taek Park
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon 400-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Ice RJ, McLaughlin SL, Livengood RH, Culp MV, Eddy ER, Ivanov AV, Pugacheva EN. NEDD9 depletion destabilizes Aurora A kinase and heightens the efficacy of Aurora A inhibitors: implications for treatment of metastatic solid tumors. Cancer Res 2013; 73:3168-80. [PMID: 23539442 DOI: 10.1158/0008-5472.can-12-4008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora A kinase (AURKA) is overexpressed in 96% of human cancers and is considered an independent marker of poor prognosis. While the majority of tumors have elevated levels of AURKA protein, few have AURKA gene amplification, implying that posttranscriptional mechanisms regulating AURKA protein levels are significant. Here, we show that NEDD9, a known activator of AURKA, is directly involved in AURKA stability. Analysis of a comprehensive breast cancer tissue microarray revealed a tight correlation between the expression of both proteins, significantly corresponding with increased prognostic value. A decrease in AURKA, concomitant with increased ubiquitination and proteasome-dependent degradation, occurs due to depletion or knockout of NEDD9. Reexpression of wild-type NEDD9 was sufficient to rescue the observed phenomenon. Binding of NEDD9 to AURKA is critical for AURKA stabilization, as mutation of S296E was sufficient to disrupt binding and led to reduced AURKA protein levels. NEDD9 confers AURKA stability by limiting the binding of the cdh1-substrate recognition subunit of APC/C ubiquitin ligase to AURKA. Depletion of NEDD9 in tumor cells increases sensitivity to AURKA inhibitors. Combination therapy with NEDD9 short hairpin RNAs and AURKA inhibitors impairs tumor growth and distant metastasis in mice harboring xenografts of breast tumors. Collectively, our findings provide rationale for the use of AURKA inhibitors in treatment of metastatic tumors and predict the sensitivity of the patients to AURKA inhibitors based on NEDD9 expression.
Collapse
Affiliation(s)
- Ryan J Ice
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Identification of a hidden strain switch provides clues to an ancient structural mechanism in protein kinases. Proc Natl Acad Sci U S A 2012; 110:924-9. [PMID: 23277537 DOI: 10.1073/pnas.1207104110] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein kinase catalytic domain contains several conserved residues of unknown functions. Here, using a combination of computational and experimental approaches, we show that the function of some of these residues is to maintain the backbone geometry of the active site in a strained conformation. Specifically, we find that the backbone geometry of the catalytically important HRD motif deviates from ideality in high-resolution structures and the strained geometry results in favorable hydrogen bonds with conserved noncatalytic residues in the active site. In particular, a conserved aspartate in the F-helix hydrogen bonds to the strained HRD backbone in diverse eukaryotic and eukaryotic-like protein kinase crystal structures. Mutations that alter this hydrogen-bonding interaction impair catalytic activity in Aurora kinase. Although the backbone strain is present in most active conformations, several inactive conformations lack the strain because of a peptide flip in the HRD backbone. The peptide flip is correlated with loss of hydrogen bonds with the F-helix aspartate as well as with other interactions associated with kinase regulation. Within protein kinases that are regulated by activation loop phosphorylation, the strained residue is an arginine, which coordinates with the activation loop phosphate. Based on analysis of strain across the protein kinase superfamily, we propose a model in which backbone strain co-evolved with conserved residues for allosteric control of catalytic activity. Our studies provide new clues for the design of allosteric protein kinase inhibitors.
Collapse
|
26
|
Ping Z, Lim R, Bashir T, Pagano M, Guardavaccaro D. APC/C (Cdh1) controls the proteasome-mediated degradation of E2F3 during cell cycle exit. Cell Cycle 2012; 11:1999-2005. [PMID: 22580460 DOI: 10.4161/cc.20402] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
E2F transcription factors regulate gene expression in concert with the retinoblastoma tumor suppressor family. These transcriptional complexes are master regulators of cell cycle progression and, in addition, control the expression of genes involved in DNA repair, G 2/M checkpoint and differentiation. E2F3 has recently attracted particular attention, because it is amplified in various human tumors. Here we show that E2F3 becomes unstable as cells exit the cell cycle. E2F3 degradation is mediated by the anaphase-promoting complex/cyclosome and its activator Cdh1 (APC/C (Cdh1) ). E2F3 interacts with Cdh1 but not Cdc20, the other APC/C activator. Enforced expression of Cdh1 results in proteasome-dependent degradation of E2F3, whereas the overexpression of Cdc20 has no effect on E2F3 turnover. Finally, silencing of Cdh1 by RNA interference stabilizes E2F3 in differentiating neuroblastoma cells. These findings indicate that the APC/C (Cdh1) ubiquitin ligase targets E2F3 for proteasome-dependent degradation during cell cycle exit and neuronal differentiation.
Collapse
Affiliation(s)
- Zhen Ping
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
von Klitzing C, Huss R, Illert AL, Fröschl A, Wötzel S, Peschel C, Bassermann F, Duyster J. APC/C(Cdh1)-mediated degradation of the F-box protein NIPA is regulated by its association with Skp1. PLoS One 2011; 6:e28998. [PMID: 22205987 PMCID: PMC3243670 DOI: 10.1371/journal.pone.0028998] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 11/19/2011] [Indexed: 01/06/2023] Open
Abstract
NIPA (Nuclear Interaction Partner of Alk kinase) is an F-box like protein
that targets nuclear Cyclin B1 for degradation. Integrity and therefore activity
of the SCFNIPA E3 ligase is regulated by cell-cycle-dependent phosphorylation
of NIPA, restricting substrate ubiquitination to interphase. Here we show
that phosphorylated NIPA is degraded in late mitosis in an APC/CCdh1-dependent
manner. Binding of the unphosphorylated form of NIPA to Skp1 interferes with
binding to the APC/C-adaptor protein Cdh1 and therefore protects unphosphorylated
NIPA from degradation in interphase. Our data thus define a novel mode of
regulating APC/C-mediated ubiquitination.
Collapse
Affiliation(s)
| | - Richard Huss
- Department of Internal Medicine ΙΙΙ,
Technical University of Munich, Munich, Germany
| | - Anna Lena Illert
- Department of Internal Medicine ΙΙΙ,
Technical University of Munich, Munich, Germany
| | - Astrid Fröschl
- Department of Internal Medicine ΙΙΙ,
Technical University of Munich, Munich, Germany
| | - Sabine Wötzel
- Department of Internal Medicine ΙΙΙ,
Technical University of Munich, Munich, Germany
| | - Christian Peschel
- Department of Internal Medicine ΙΙΙ,
Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Internal Medicine ΙΙΙ,
Technical University of Munich, Munich, Germany
| | - Justus Duyster
- Department of Internal Medicine ΙΙΙ,
Technical University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
28
|
Johnson EO, Chang KH, de Pablo Y, Ghosh S, Mehta R, Badve S, Shah K. PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer. J Cell Sci 2011; 124:2711-22. [PMID: 21807936 DOI: 10.1242/jcs.084970] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aurora A kinase is overexpressed in the majority of breast carcinomas. A chemical genetic approach was used to identify the malignant targets of Aurora A, which revealed pleckstrin-homology-like domain protein PHLDA1 as an Aurora A substrate. PHLDA1 downregulation is a powerful prognostic predictor for breast carcinoma, which was confirmed in our study. We further show that downregulation of PHLDA1 is associated with estrogen receptor (ER) expression in breast carcinoma. Aurora A directly phosphorylates PHLDA1 leading to its degradation. PHLDA1 also negatively regulates Aurora A, thereby triggering a feedback loop. We demonstrate the underlying mechanisms by which PHLDA1 upregulation strongly antagonizes Aurora-A-mediated oncogenic pathways, thereby revealing PHLDA1 degradation as a key mechanism by which Aurora A promotes breast malignancy. Thus, not surprisingly, PHLDA1 upregulation acts synergistically with Aurora A inhibition in promoting cell death. PHLDA1 overexpression might therefore be an alternative method to modulate Aurora A deregulation in breast carcinoma. Finally, this study led to the discovery of a mutation in the Aurora A active site that renders it amenable to the chemical genetic approach. Similar mutations are required for Aurora B, suggesting that this modified approach can be extended to other kinases that have hitherto not been amenable to this methodology.
Collapse
Affiliation(s)
- Emmanuel O Johnson
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Yuan H, Wang Z, Zhang H, Roth M, Bhatia R, Chen WY. Overcoming CML acquired resistance by specific inhibition of Aurora A kinase in the KCL-22 cell model. Carcinogenesis 2011; 33:285-93. [PMID: 22116466 DOI: 10.1093/carcin/bgr278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serine/threonine kinase Aurora A is essential for regulating mammalian cell division and is overexpressed in many types of human cancer. However, the role of Aurora A in chemoresistance of chronic myelogenous leukemia (CML) is not well understood. Using the KCL-22 cell culture model we have recently developed for studying mechanisms of CML acquired resistance, we found that Aurora A expression was partially reduced in these cells upon treatment with the tyrosine kinase inhibitor imatinib, which accompanied the acquisition of BCR-ABL mutation for imatinib resistance. Gene knockdown of BCR-ABL also reduced Aurora A expression, and conversely, Aurora A expression increased in hematopoietic progenitor cells after BCR-ABL expression. Inhibition of Aurora A induced apoptosis of CML cells with or without T315I BCR-ABL mutation and suppressed CML cell growth. Inhibition of Aurora A by gene knockdown or a highly specific small molecule inhibitor sensitized CML cells to imatinib treatment and effectively blocked acquisition of BCR-ABL mutations and KCL-22 cell relapse on imatinib, nilotinib or dasatinib. Our results show that Aurora A plays an important role for facilitating acquisition of BCR-ABL mutation and acquired resistance to tyrosine kinase inhibitors in the culture model and suggest that inhibition of Aurora A may provide an alternative strategy to improve CML treatment to overcome resistance.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Aurora Kinases
- Benzamides
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Dasatinib
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Knockdown Techniques/methods
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mitosis/drug effects
- Mitosis/genetics
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Pyrimidines/pharmacology
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Hongfeng Yuan
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
30
|
Moghe S, Jiang F, Miura Y, Cerny RL, Tsai MY, Furukawa M. The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A. Biol Open 2011; 1:82-91. [PMID: 23213400 PMCID: PMC3507203 DOI: 10.1242/bio.2011018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cullin-RING family of ubiquitin ligases regulates diverse cellular functions, such as cell cycle control, via ubiquitylation of specific substrates. CUL3 targets its substrates through BTB proteins. Here we show that depletion of CUL3 and the BTB protein KLHL18 causes a delay in mitotic entry. Centrosomal activation of Aurora-A, a kinase whose activity is required for entry into mitosis, is also delayed in depleted cells. Moreover, we identify Aurora-A as a KLHL18-interacting partner. Overexpression of KLHL18 and CUL3 promotes Aurora-A ubiquitylation in vivo, and the CUL3-KLHL18-ROC1 ligase ubiquitylates Aurora-A in vitro. Our study reveals that the CUL3-KLHL18 ligase is required for timely entry into mitosis, as well as for the activation of Aurora-A at centrosomes. We propose that the CUL3-KLHL18 ligase regulates mitotic entry through an Aurora-A-dependent pathway.
Collapse
Affiliation(s)
- Saili Moghe
- Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, University of Nebraska Medical Center , Omaha, NE 68198-7696 , USA
| | | | | | | | | | | |
Collapse
|
31
|
Huh HC, Lee SY, Lee SK, Park NH, Han IS. Capsaicin Induces Apoptosis of Cisplatin-Resistant Stomach Cancer Cells by Causing Degradation of Cisplatin-Inducible Aurora-A Protein. Nutr Cancer 2011; 63:1095-103. [DOI: 10.1080/01635581.2011.607548] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Meyer HJ, Rape M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol 2011; 22:544-50. [PMID: 21477659 DOI: 10.1016/j.semcdb.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Progression through mitosis requires the sequential ubiquitination of cell cycle regulators by the anaphase-promoting complex, resulting in their proteasomal degradation. Although several mechanisms contribute to APC/C regulation during mitosis, the APC/C is able to discriminate between its many substrates by exploiting differences in the processivity of ubiquitin chain assembly. Here, we discuss how the APC/C achieves processive ubiquitin chain formation to trigger the sequential degradation of cell cycle regulators during mitosis.
Collapse
Affiliation(s)
- Hermann-Josef Meyer
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720-3202, United States
| | | |
Collapse
|
33
|
Mori N, Ishikawa C, Senba M, Kimura M, Okano Y. Effects of AZD1152, a selective Aurora B kinase inhibitor, on Burkitt's and Hodgkin's lymphomas. Biochem Pharmacol 2011; 81:1106-15. [PMID: 21371446 DOI: 10.1016/j.bcp.2011.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/13/2011] [Accepted: 02/16/2011] [Indexed: 01/19/2023]
Abstract
We studied the effects of AZD1152, an Aurora B kinase inhibitor, on Burkitt's lymphoma (BL) and Hodgkin's lymphoma (HL) in human tissues and cell cultures and in a murine xenograft model of lymphoma. Aurora kinase A and B levels were assessed by RT-PCR and immunohistochemistry. They were aberrantly expressed in BL and HL cell lines, and in lymph nodes from patients with BL and HL. Next, activation of the Aurora B promoter was detected by reporter gene assays. The promoter activity of Aurora B kinase was high in BL cell lines and the Aurora B promoter contained a positive regulatory region between -74 and -104 from the transcription initiation site. AZD1152-hQPA had antiproliferative effects in the BL and HL cell lines studied; inhibited the phosphorylation of histone H3 and retinoblastoma proteins, and resulted in cells with > 4N DNA content. AZD1152-hQPA induced caspase-dependent apoptosis of some cell lines, demonstrated by loss of mitochondrial membrane potential, activation of caspase-9, followed by activation of caspase-3. This effect was accompanied by the inhibition of survivin expression. In vivo efficacy was determined in NOD/SCID/γc(null) mice implanted with the Ramos human BL cell line. AZD1152 had anti-tumour effects in this murine xenograft model. There preclinical data suggest that the inhibition of Aurora B kinase is a potentially useful therapeutic strategy in BL and HL.
Collapse
Affiliation(s)
- Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | | | | | | | | |
Collapse
|
34
|
Horn SR, Thomenius MJ, Johnson ES, Freel CD, Wu JQ, Coloff JL, Yang CS, Tang W, An J, Ilkayeva OR, Rathmell JC, Newgard CB, Kornbluth S. Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell 2011; 22:1207-16. [PMID: 21325626 PMCID: PMC3078078 DOI: 10.1091/mbc.e10-07-0567] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitochondria form an interconnected network that undergoes dynamin-related protein 1 (Drp1)-dependent fission during mitosis. We demonstrate that changes in mitochondrial dynamics as cells exit mitosis are driven through ubiquitylation of Drp1 by the (anaphase- promoting complex/cyclosome and its coactivator Cdh1) APC/CCdh1 complex. Inhibition Drp1 degradation prevents the normal regrowth of mitochondrial networks during G1 phase. Homeostatic maintenance of cellular mitochondria requires a dynamic balance between fission and fusion, and controlled changes in morphology are important for processes such as apoptosis and cellular division. Interphase mitochondria have been described as an interconnected network that fragments as cells enter mitosis, and this mitotic mitochondrial fragmentation is known to be regulated by the dynamin-related GTPase Drp1 (dynamin-related protein 1), a key component of the mitochondrial division machinery. Loss of Drp1 function and the subsequent failure of mitochondrial division during mitosis lead to incomplete cytokinesis and the unequal distribution of mitochondria into daughter cells. During mitotic exit and interphase, the mitochondrial network reforms. Here we demonstrate that changes in mitochondrial dynamics as cells exit mitosis are driven in part through ubiquitylation of Drp1, catalyzed by the APC/CCdh1 (anaphase-promoting complex/cyclosome and its coactivator Cdh1) E3 ubiquitin ligase complex. Importantly, inhibition of Cdh1-mediated Drp1 ubiquitylation and proteasomal degradation during interphase prevents the normal G1 phase regrowth of mitochondrial networks following cell division.
Collapse
Affiliation(s)
- Sarah R Horn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
McLean JR, Chaix D, Ohi MD, Gould KL. State of the APC/C: organization, function, and structure. Crit Rev Biochem Mol Biol 2011; 46:118-36. [PMID: 21261459 DOI: 10.3109/10409238.2010.541420] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response. The anaphase-promoting complex/cyclosome (APC/C), an evolutionarily conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis.
Collapse
Affiliation(s)
- Janel R McLean
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
36
|
Song L, Rape M. Substrate-specific regulation of ubiquitination by the anaphase-promoting complex. Cell Cycle 2011; 10:52-6. [PMID: 21191176 DOI: 10.4161/cc.10.1.14387] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
By orchestrating the sequential degradation of a large number of cell cycle regulators, the ubiquitin ligase anaphase-promoting complex (APC/C) is essential for proliferation in all eukaryotes. The correct timing of APC/C-dependent substrate degradation, a critical feature of progression through mitosis, was long known to be controlled by mechanisms targeting the core APC/C-machinery. Recent experiments, however, have revealed an important contribution of substrate-specific regulation of the APC/C to achieve accurate cell division. In this perspective, we describe different mechanisms of substrate-specific APC/C-regulation and discuss their importance for cell division.
Collapse
Affiliation(s)
- Ling Song
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
37
|
Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discov Today 2010; 16:260-9. [PMID: 21147253 DOI: 10.1016/j.drudis.2010.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 09/17/2010] [Accepted: 12/07/2010] [Indexed: 01/08/2023]
Abstract
Aurora kinases (A-C) belong to the serine/threonine protein kinase family. In recent years, the constitutive or elevated expression of Aurora kinases has been found in cancer cells and oncogene transfected cells. In this review, we summarize the common binding modes of Aurora-A kinase inhibitors, the hot spot residues in the binding sites and the privileged inhibitor structures. Our review of the reported chemical scaffolds of Aurora-A kinase inhibitors and their binding modes could provide a useful framework from which new design strategies for inhibitors might be assessed or developed.
Collapse
|
38
|
Giubettini M, Asteriti IA, Scrofani J, De Luca M, Lindon C, Lavia P, Guarguaglini G. Control of Aurora-A stability through interaction with TPX2. J Cell Sci 2010; 124:113-22. [PMID: 21147853 DOI: 10.1242/jcs.075457] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Aurora-A kinase has well-established roles in spindle assembly and function and is frequently overexpressed in tumours. Its abundance is cell cycle regulated, with a peak in G2 and M phases, followed by regulated proteolysis at the end of mitosis. The microtubule-binding protein TPX2 plays a major role in regulating the activity and localisation of Aurora-A in mitotic cells. Here, we report a novel regulatory role of TPX2 and show that it protects Aurora-A from degradation both in interphase and in mitosis in human cells. Specifically, Aurora-A levels decrease in G2 and prometaphase cells silenced for TPX2, whereas degradation of Aurora-A is impaired in telophase cells overexpressing the Aurora-A-binding region of TPX2. The decrease in Aurora-A in TPX2-silenced prometaphases requires proteasome activity and the Cdh1 activator of the APC/C ubiquitin ligase. Reintroducing either full-length TPX2, or the Aurora-A-binding region of TPX2, but not a truncated TPX2 mutant lacking the Aurora-A-interaction domain, restores Aurora-A levels in TPX2-silenced prometaphases. The control by TPX2 of Aurora-A stability is independent of its ability to activate Aurora-A and to localise it to the spindle. These results highlight a novel regulatory level impinging on Aurora-A and provide further evidence for the central role of TPX2 in regulation of Aurora-A.
Collapse
Affiliation(s)
- Maria Giubettini
- Institute of Molecular Biology and Pathology, CNR, c/o Sapienza University of Rome, Via degli Apuli 4, 00185, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Lee J, Kim JA, Margolis RL, Fotedar R. Substrate degradation by the anaphase promoting complex occurs during mitotic slippage. Cell Cycle 2010; 9:1792-801. [PMID: 20436289 DOI: 10.4161/cc.9.9.11519] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microtubule targeting drugs are successful in chemotherapy because they indefinitely activate the spindle assembly checkpoint. The spindle assembly checkpoint monitors proper attachment of all kinetochores to microtubules and tension between the kinetochores of sister chromatids to prevent premature anaphase entry. To this end, the activated spindle assembly checkpoint suppresses the E3 ubiquitin ligase activity of the anaphase-promoting complex (APC). In the continued presence of conditions that activate the spindle assembly checkpoint, cells eventually escape from mitosis by "slippage". It has not been directly tested whether APC activation accompanies slippage. Using cells blocked in mitosis with the microtubule assembly inhibitor nocodazole, we show that mitotic APC substrates are degraded upon mitotic slippage. To confirm that APC is normally activated upon mitotic slippage we have found that knockdown of Cdc20 and Cdh1, two mitotic activators of APC, prevents the degradation of APC substrates during mitotic slippage. We provide the first direct demonstration that despite conditions that activate the spindle checkpoint, APC is indeed activated upon mitotic slippage of cells to interphase cells. Activation of the spindle checkpoint by microtubule targeting drugs used in chemotherapy may not indefinitely prevent APC activation.
Collapse
Affiliation(s)
- Jinho Lee
- Sidney Kimmel Cancer Center, San Diego, CA, USA
| | | | | | | |
Collapse
|
40
|
Carmena M, Ruchaud S, Earnshaw WC. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 2010; 21:796-805. [PMID: 19836940 PMCID: PMC2806521 DOI: 10.1016/j.ceb.2009.09.008] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 02/06/2023]
Abstract
The conserved Aurora family of protein kinases have emerged as crucial regulators of mitosis and cytokinesis. Despite their high degree of homology, Aurora A and B have very distinctive localisations and functions: Aurora A associates with the spindle poles to regulate entry into mitosis, centrosome maturation and spindle assembly; Aurora B is a member of the Chromosomal Passenger Complex (CPC) that transfers from the inner centromere in early mitosis to the spindle midzone, equatorial cortex and midbody in late mitosis and cytokinesis. Aurora B functions include regulation of chromosome–microtubule interactions, cohesion, spindle stability and cytokinesis. This review will focus on how interacting proteins make this functional diversity possible by targeting the kinases to different subcellular locations and regulating their activity.
Collapse
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh, Scotland, UK.
| | | | | |
Collapse
|
41
|
Lukasiewicz KB, Lingle WL. Aurora A, centrosome structure, and the centrosome cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:602-619. [PMID: 19774610 DOI: 10.1002/em.20533] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The centrosome, also known as the microtubule organizing center of the cell, is a membrane-less organelle composed of a pair of barrel-shaped centrioles surrounded by electron-dense pericentriolar material. The centrosome progresses through the centrosome cycle in step with the cell cycle such that centrosomes are duplicated in time to serve as the spindle poles during mitosis and that each resultant daughter cell contains a single centrosome. Regulation of the centrosome cycle with relation to the cell cycle is an essential process to maintain the ratio of one centrosome per new daughter cell. Numerous mitosis-specific kinases have been implicated in this regulation, and phosphorlyation plays an important role in coordinating the centrosome and cell cycles. Centrosome amplification can occur when the cycles are uncoupled, and this amplification is associated with cancer and with an increase in the levels of chromosomal instability. The aurora kinases A, B, and C are serine/threonine kinases that are active during mitosis. Aurora A is associated with centrosomes, being localized at the centrosome just prior to the onset of mitosis and for the duration of mitosis. Overexpression of aurora A leads to centrosome amplification and cellular transformation. The activity of aurora A is regulated by phosphorlyation and proteasomal degradation.
Collapse
Affiliation(s)
- Kara B Lukasiewicz
- Section on Cell Cycle Regulation, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
42
|
Tatsuka M, Sato S, Kanda A, Miki T, Kamata N, Kitajima S, Kudo Y, Takata T. Oncogenic role of nuclear accumulated Aurora-A. Mol Carcinog 2009; 48:810-20. [PMID: 19204928 DOI: 10.1002/mc.20525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aurora-A, also known as Aik, BTAK, or STK15, is a centrosomal serine/threonine protein kinase, which is proto-oncogenic and is overexpressed in a wide range of human cancers. Besides gene amplification and mRNA overexpression, proteolytic resistance mechanisms are thought to contribute to overexpression of Aurora-A. However, it is not yet clear how overexpressed Aurora-A affects the expression of transformed phenotype. Here, we found that nuclear accumulation of Aurora-A was critical for transformation activity. Cellular protein fractionation experiments and immunoblot analysis demonstrated a predominance of Aurora-A in the nuclear soluble fraction in head and neck cancer cells. Indirect immunofluorescence using confocal laser microscopy confirmed nuclear Aurora-A in head and neck cancer cells, while most oral keratinocytes exhibited only centrosomal localization. The expression of nuclear export signal-fused Aurora-A demonstrated that the oncogenic transformation activity was lost on disruption of the nuclear localization. Thus, the cytoplasmic localization of overexpressed Aurora-A previously demonstrated by immunohistochemical analysis is not likely to correspond to that in intact cancer cells. This study identifies an alternative mode of Aurora-A overexpression in cancer, through nuclear rather than cytoplasmic functions. We suggest that substrates of Aurora-A in the cell nuclear soluble fraction can represent a novel therapeutic target for cancer.
Collapse
Affiliation(s)
- Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hardwicke MA, Oleykowski CA, Plant R, Wang J, Liao Q, Moss K, Newlander K, Adams JL, Dhanak D, Yang J, Lai Z, Sutton D, Patrick D. GSK1070916, a potent Aurora B/C kinase inhibitor with broad antitumor activity in tissue culture cells and human tumor xenograft models. Mol Cancer Ther 2009; 8:1808-17. [PMID: 19567821 DOI: 10.1158/1535-7163.mct-09-0041] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinases, Aurora A, B, and C have critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. GSK1070916, is a novel ATP competitive inhibitor that is highly potent and selective for Aurora B/C kinases. Human tumor cells treated with GSK1070916 show dose-dependent inhibition of phosphorylation on serine 10 of Histone H3, a substrate specific for Aurora B kinase. Moreover, GSK1070916 inhibits the proliferation of tumor cells with EC(50) values of <10 nmol/L in over 100 cell lines spanning a broad range of tumor types. Although GSK1070916 has potent activity against proliferating cells, a dramatic shift in potency is observed in primary, nondividing, normal human vein endothelial cells, consistent with the proposed mechanism. We further determined that treated cells do not arrest in mitosis but instead fail to divide and become polyploid, ultimately leading to apoptosis. GSK1070916 shows dose-dependent inhibition of phosphorylation of an Aurora B-specific substrate in mice and consistent with its broad cellular activity, has antitumor effects in 10 human tumor xenograft models including breast, colon, lung, and two leukemia models. These results show that GSK1070916 is a potent Aurora B/C kinase inhibitor that has the potential for antitumor activity in a wide range of human cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Aurora Kinase A
- Aurora Kinase B
- Aurora Kinases
- Aza Compounds/therapeutic use
- Blotting, Western
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique
- Humans
- Immunoenzyme Techniques
- Indoles/therapeutic use
- Mice
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Umbilical Veins/cytology
- Umbilical Veins/drug effects
- Xenograft Model Antitumor Assays
Collapse
|
44
|
Floyd S, Pines J, Lindon C. APC/C Cdh1 targets aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr Biol 2008; 18:1649-58. [PMID: 18976910 DOI: 10.1016/j.cub.2008.09.058] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 01/27/2023]
Abstract
BACKGROUND Control of mitotic cell cycles by the anaphase-promoting complex or cyclosome (APC/C) ubiquitin ligase depends on its coactivators Cdc20 and Cdh1. APC/C(Cdc20) is active during mitosis and promotes anaphase onset by targeting mitotic cyclins and securin. APC/C(Cdh1) becomes active during mitotic exit and has essential targets in G1 phase. It is not known whether targeting of substrates by APC/C(Cdh1) plays any role in the final stages of mitosis. Here, we have investigated the role of APC/C(Cdh1) at this time in the cell cycle by using siRNA-mediated depletion of Cdh1 in human cells. RESULTS In contrast to the current view that Cdh1 takes over from Cdc20 at anaphase, we show that reduced Cdh1 levels have no effect on destruction of many APC/C substrates during mitotic exit but strongly and specifically stabilize Aurora kinases. We find that APC/C(Cdh1) is required for assembly of a robust spindle midzone at anaphase and for normal timings of spindle elongation and cytokinesis. The effect of Cdh1 siRNA on anaphase spindle dynamics requires Aurora A, and its effect can be mimicked by nondegradable Aurora kinase. CONCLUSIONS Targeting of Aurora kinases at anaphase by APC/C(Cdh1) participates in the control of mitotic exit and cytokinesis.
Collapse
Affiliation(s)
- Suzanne Floyd
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
45
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
46
|
Vader G, Lens SMA. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:60-72. [PMID: 18662747 DOI: 10.1016/j.bbcan.2008.07.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 12/15/2022]
Abstract
The Aurora protein kinase family (consisting of Aurora-A, -B and -C) is an important group of enzymes that controls several aspects of cell division in mammalian cells. Dysfunction of these kinases has been associated with a failure to maintain a stable chromosome content, a state that can contribute to tumourigenesis. Additionally, Aurora-A is frequently found amplified in a variety of tumour types and displays oncogenic activity. On the other hand, therapeutic inhibition of these kinases has shown great promise as potential anti-cancer treatment, most likely because of their essential roles during cell division. This review will focus on our present understanding of the different roles played by these kinases, their regulation throughout cell division, their deregulation in human cancers and on the progress that is made in targeting these important regulators in the treatment of cancer.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, Stratenum 2.125, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
47
|
Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A, Washington K, Castells A, Pera M, El-Rifai W. Frequent overexpression of Aurora Kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 2008; 112:1688-98. [PMID: 18311783 DOI: 10.1002/cncr.23371] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Upper gastrointestinal adenocarcinomas are a common cause of cancer-related deaths. In this study, the authors investigated the prevalence and biological significance of Aurora Kinase A (AURKA) overexpression in upper gastrointestinal adenocarcinomas. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining on tumor tissue microarrays (TMA) were used to study the expression of AURKA in upper gastrointestinal adenocarcinomas. To investigate the biological and signaling impact of AURKA, the authors used multiple in vitro assays that included 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling), cytochrome C release, flow cytometry, luciferase reporter, and Western blot analysis. RESULTS Frequent overexpression of AURKA transcript in upper gastrointestinal adenocarcinomas was detected compared with normal samples (47%; P= .001). The immunohistochemical analysis of 130 tumors demonstrated moderate-to-strong immunostaining of AURKA in >50% of upper gastrointestinal adenocarcinomas. By using camptothecin as a drug-induced apoptosis in vitro model, the authors demonstrated that the expression of AURKA provided protection against apoptosis to gastrointestinal cancer cells (AGS and RKO) (P= .006) and RIE-1 primary intestinal epithelial cells (P= .001). The AURKA overexpression mediated an increase in phosphorylation of AKT(Ser473) with an increase in HDM2 level. The shRNA-knockdown of AKT in AURKA-overexpressing cells reversed this effect and showed a significant increase in the p53 protein level, indicating a possible nexus of AURKA/AKT/p53. Indeed, overexpression of AURKA led to a remarkable reduction in the transcription activity of p53, with subsequent reductions in transcript and protein levels of its downstream proapoptotic transcription targets (p21, BAX, NOXA, and PUMA). CONCLUSIONS Study results indicated that AURKA provides potent antiapoptotic properties to gastrointestinal cells by regulating levels of p53 through the AKT/HDM2 axis.
Collapse
Affiliation(s)
- Altaf A Dar
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saskova A, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J. Aurora kinase A controls meiosis I progression in mouse oocytes. Cell Cycle 2008; 7:2368-76. [PMID: 18677115 DOI: 10.4161/cc.6361] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aurora kinase A (AURKA), which is a centrosome-localized serine/threonine kinase crucial for cell cycle control, is critically involved in centrosome maturation and spindle assembly in somatic cells. Active T288 phosphorylated AURKA localizes to the centrosome in the late G(2) and also spreads to the minus ends of mitotic spindle microtubules. AURKA activates centrosomal CDC25B and recruits cyclin B1 to centrosomes. We report here functions for AURKA in meiotic maturation of mouse oocytes, which is a model system to study the G(2) to M transition. Whereas AURKA is present throughout the entire GV-stage oocyte with a clear accumulation on microtubule organizing centers (MTOC), active AURKA becomes entirely localized to MTOCs shortly before germinal vesicle breakdown. In contrast to somatic cells in which active AURKA is present at the centrosomes and minus ends of microtubules, active AURKA is mainly located on MTOCs at metaphase I (MI) in oocytes. Inhibitor studies using Roscovitine (CDK1 inhibitor), LY-294002 (PI3K inhibitor) and SH-6 (PKB inhibitor) reveal that activation of AURKA localized on MTOCs is independent on PI3K-PKB and CDK1 signaling pathways and MOTC amplification is observed in roscovitine- and SH-6-treated oocytes that fail to undergo nuclear envelope breakdown. Moreover, microinjection of Aurka mRNA into GV-stage oocytes cultured in 3-isobutyl-1-methyl xanthine (IBMX)-containing medium to prevent maturation also results in MOTC amplification in the absence of CDK1 activation. Overexpression of AURKA also leads to formation of an abnormal MI spindle, whereas RNAi-mediated reduction of AURKA interferes with resumption of meiosis and spindle assembly. Results of these experiments indicate that AURKA is a critical MTOC-associated component involved in resumption of meiosis, MTOC multiplication, proper spindle formation and the metaphase I-metaphase II transition.
Collapse
Affiliation(s)
- Adela Saskova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | | | | | |
Collapse
|
49
|
Wang X, Di K, Zhang X, Han HY, Wong YC, Leung SCL, Ling MT. Id-1 promotes chromosomal instability through modification of APC/C activity during mitosis in response to microtubule disruption. Oncogene 2008; 27:4456-66. [PMID: 18372912 DOI: 10.1038/onc.2008.87] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Id-1 (Inhibitor of DNA binding/differential-1) plays a positive role in tumorigenesis through regulation of multiple signaling pathways. Recently, it is suggested that upregulation of Id-1 in cancer cells promotes chromosomal instability. However, the underlying molecular mechanism is not known. In this study, we report a novel function of Id-1 in regulation of mitosis through physical interaction with Cdc20 (cell division cycle protein 20) and Cdh1 (Cdc20 homolog 1). During early mitosis, Id-1 interacts with Cdc20 and RASSF1A (Ras association domain family 1A), leading to enhanced APC(Cdc20) activity, which in turn promotes cyclin B1/securin degradation and premature mitosis. During late mitosis, Id-1 binds to Cdh1 and disrupts the interaction between Cdh1 and APC, resulting in suppression of APC(Cdh1) activity. On the other hand, overexpression of Cdh1 leads to Id-1 protein degradation, suggesting that Id-1 may also act as a substrate of APC(Cdh1). The negative effect of Id-1 on APC(Cdh1) results in suppression of APC(Cdh1)-induced Aurora A and Cdc20 degradation, leading to failure in cytokinesis. As a result, overexpression of Id-1 in human prostate epithelial cells leads to polyploidy in response to microtubule disruption, and this effect is abolished when Id-1 expression is suppressed using antisense technology. These results demonstrate a novel function of Id-1 in promoting chromosomal instability through modification of APC/C activity during mitosis and provide a novel molecular mechanism accounted for the function of Id-1 as an oncogene.
Collapse
Affiliation(s)
- X Wang
- Cancer Biology Group, Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Man C, Rosa J, Yip YL, Cheung ALM, Kwong YL, Doxsey SJ, Tsao SW. Id1 overexpression induces tetraploidization and multiple abnormal mitotic phenotypes by modulating aurora A. Mol Biol Cell 2008; 19:2389-401. [PMID: 18353975 DOI: 10.1091/mbc.e07-09-0875] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The basic helix-loop-helix transcription factor, Id1, was shown to induce tetraploidy in telomerase-immortalized nasopharyngeal epithelial cells in this study. Using both transient and stable Id1-expressing cell models, multiple mitotic aberrations were detected, including centrosome amplification, binucleation, spindle defects, and microtubule perturbation. Many of these abnormal phenotypes have previously been reported in cells overexpressing Aurora A. Further experiments showed that Id1 could stabilize Aurora A, whereas knocking down Aurora A expression in Id1-expressing cells could rescue some of the mitotic defects. The mechanisms by which Aurora A could be modulated by Id1 were explored. DNA amplification of the Aurora A locus was not involved. Id1 could only weakly activate the transcriptional activity of the Aurora A promoter. We found that Id1 overexpression could affect Aurora A degradation, leading to its stabilization. Aurora A is normally degraded from mitosis exit by the APC/C(Cdh1)-mediated proteasomal proteolysis pathway. Our results revealed that Id1 and Cdh1 are binding partners. The association of Id1 and Cdh1 was found to be dependent on the canonical destruction box motif of Id1, the increased binding of which may compete with the interaction between Cdh1 and Aurora A, leading to stabilization of Aurora A in Id1-overexpressing cells.
Collapse
Affiliation(s)
- Cornelia Man
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|