1
|
Bush SJ, Goriely A. Can the male germline offer insight into mammalian brain size expansion? Andrology 2024. [PMID: 39291969 DOI: 10.1111/andr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Recent advances in single-cell transcriptomic data have greatly expanded our understanding of both spermatogenesis and the molecular mechanisms of male infertility. However, this growing wealth of data could also shed light on a seemingly unrelated biological problem: the genetic basis of mammalian brain size expansion throughout evolution. It is now increasingly recognized that the testis and brain share many cellular and molecular similarities including pivotal roles for the RAS/MAPK and PI3K/AKT/mTOR pathways, mutations in which are known to have a pronounced impact on cell proliferation. Most notably, in the stem cell lineages of both organs, new mutations have been shown to increase cellular output over time. These include 'selfish' mutations in spermatogonial stem cells, which disproportionately increase the proportion of mutant sperm, and-to draw a parallel-human-specific mutations in neural stem cells which, by increasing the number of neurons, have been implicated in neocortical expansion. Here we speculate that the origin for many 'expansion'-associated mutations is the male germline and that as such, a deeper understanding of the mechanisms controlling testicular turnover may yield fresh insight into the biology and evolution of the brain.
Collapse
Affiliation(s)
- Stephen J Bush
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
2
|
DeCasien AR, Trujillo AE, Janiak MC, Harshaw EP, Caes ZN, Galindo GA, Petersen RM, Higham JP. Equivocal evidence for a link between megalencephaly-related genes and primate brain size evolution. Sci Rep 2022; 12:10902. [PMID: 35764790 PMCID: PMC9239989 DOI: 10.1038/s41598-022-12953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
A large brain is a defining feature of modern humans, and much work has been dedicated to exploring the molecular underpinnings of this trait. Although numerous studies have focused on genes associated with human microcephaly, no studies have explicitly focused on genes associated with megalencephaly. Here, we investigate 16 candidate genes that have been linked to megalencephaly to determine if: (1) megalencephaly-associated genes evolved under positive selection across primates; and (2) selection pressure on megalencephaly-associated genes is linked to primate brain size. We found evidence for positive selection for only one gene, OFD1, with 1.8% of the sites estimated to have dN/dS values greater than 1; however, we did not detect a relationship between selection pressure on this gene and brain size across species, suggesting that selection for changes to non-brain size traits drove evolutionary changes to this gene. In fact, our primary analyses did not identify significant associations between selection pressure and brain size for any candidate genes. While we did detect positive associations for two genes (GPC3 and TBC1D7) when two phyletic dwarfs (i.e., species that underwent recent evolutionary decreases in brain size) were excluded, these associations did not withstand FDR correction. Overall, these results suggest that sequence alterations to megalencephaly-associated genes may have played little to no role in primate brain size evolution, possibly due to the highly pleiotropic effects of these genes. Future comparative studies of gene expression levels may provide further insights. This study enhances our understanding of the genetic underpinnings of brain size evolution in primates and identifies candidate genes that merit further exploration.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, USA.
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA.
- Section on Developmental Neurogenomics, National Institute of Mental Health (NIMH), Bethesda, USA.
| | - Amber E Trujillo
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| | - Mareike C Janiak
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- Department of Anthropology, Rutgers University, New Brunswick, USA
| | - Etta P Harshaw
- Department of Art History, University of Southern California, Los Angeles, USA
- Eleanor Roosevelt High School, New York, USA
| | - Zosia N Caes
- Department of Chemistry, Yale University, New Haven, USA
- Columbia Secondary School for Math, Science, and Engineering, New York, USA
| | | | - Rachel M Petersen
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| |
Collapse
|
3
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci 2021; 11:brainsci11050581. [PMID: 33946187 PMCID: PMC8145766 DOI: 10.3390/brainsci11050581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.
Collapse
|
5
|
Mair B, Tomic J, Masud SN, Tonge P, Weiss A, Usaj M, Tong AHY, Kwan JJ, Brown KR, Titus E, Atkins M, Chan KSK, Munsie L, Habsid A, Han H, Kennedy M, Cohen B, Keller G, Moffat J. Essential Gene Profiles for Human Pluripotent Stem Cells Identify Uncharacterized Genes and Substrate Dependencies. Cell Rep 2020; 27:599-615.e12. [PMID: 30970261 DOI: 10.1016/j.celrep.2019.02.041] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) provide an invaluable tool for modeling diseases and hold promise for regenerative medicine. For understanding pluripotency and lineage differentiation mechanisms, a critical first step involves systematically cataloging essential genes (EGs) that are indispensable for hPSC fitness, defined as cell reproduction in this study. To map essential genetic determinants of hPSC fitness, we performed genome-scale loss-of-function screens in an inducible Cas9 H1 hPSC line cultured on feeder cells and laminin to identify EGs. Among these, we found FOXH1 and VENTX, genes that encode transcription factors previously implicated in stem cell biology, as well as an uncharacterized gene, C22orf43/DRICH1. hPSC EGs are substantially different from other human model cell lines, and EGs in hPSCs are highly context dependent with respect to different growth substrates. Our CRISPR screens establish parameters for genome-wide screens in hPSCs, which will facilitate the characterization of unappreciated genetic regulators of hPSC biology.
Collapse
Affiliation(s)
- Barbara Mair
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jelena Tomic
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sanna N Masud
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter Tonge
- Centre for Commercialization of Regenerative Medicine, Toronto, ON, Canada
| | | | - Matej Usaj
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Jamie J Kwan
- McEwen Stem Cell Institute, University Health Network, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Emily Titus
- Centre for Commercialization of Regenerative Medicine, Toronto, ON, Canada
| | - Michael Atkins
- McEwen Stem Cell Institute, University Health Network, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Lise Munsie
- Centre for Commercialization of Regenerative Medicine, Toronto, ON, Canada
| | - Andrea Habsid
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Marion Kennedy
- McEwen Stem Cell Institute, University Health Network, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brenda Cohen
- McEwen Stem Cell Institute, University Health Network, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Canadian Institute for Advanced Research, Toronto, ON, Canada; Institute for Biomaterials and BioMedical Engineering, University of Toronto, ON, Canada.
| |
Collapse
|
6
|
Wong PCM, Kang X, Wong KHY, So HC, Choy KW, Geng X. ASPM-lexical tone association in speakers of a tone language: Direct evidence for the genetic-biasing hypothesis of language evolution. SCIENCE ADVANCES 2020; 6:eaba5090. [PMID: 32537487 PMCID: PMC7253162 DOI: 10.1126/sciadv.aba5090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 05/12/2023]
Abstract
How language has evolved into more than 7000 varieties today remains a question that puzzles linguists, anthropologists, and evolutionary scientists. The genetic-biasing hypothesis of language evolution postulates that genes and language features coevolve, such that a population that is genetically predisposed to perceiving a particular linguistic feature would tend to adopt that feature in their language. Statistical studies that correlated a large number of genetic variants and linguistic features not only generated this hypothesis but also specifically pinpointed a linkage between ASPM and lexical tone. However, there is currently no direct evidence for this association and, therefore, the hypothesis. In an experimental study, we provide evidence to link ASPM with lexical tone perception in a sample of over 400 speakers of a tone language. In addition to providing the first direct evidence for the genetic-biasing hypothesis, our results have implications for further studies of linguistic anthropology and language disorders.
Collapse
Affiliation(s)
- Patrick C. M. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kay H. Y. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong Wai Choy
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiujuan Geng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
7
|
Yu L, Li G, Deng J, Jiang X, Xue J, Zhu Y, Huang W, Tang B, Duan R. The UFM1 cascade times mitosis entry associated with microcephaly. FASEB J 2019; 34:1319-1330. [PMID: 31914610 DOI: 10.1096/fj.201901751r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023]
Abstract
Posttranslational modifications enhance the functional diversity of the proteome by modifying the substrates. The UFM1 cascade is a novel ubiquitin-like modification system. The mutations in UFM1, its E1 (UBA5) and E2 (UFC1), have been identified in patients with microcephaly. However, its pathological mechanisms remain unclear. Herein, we observed the disruption of the UFM1 cascade in Drosophila neuroblasts (NBs) decreased the number of NBs, leading to a smaller brain size. The lack of ufmylation in NBs resulted in an increased mitotic index and an extended G2/M phase, indicating a defect in mitotic progression. In addition, live imaging of the embryos revealed an impaired E3 ligase (Ufl1) function resulted in premature entry into mitosis and failed cellularization. Even worse, the embryonic lethality occurred as early as within the first few mitotic cycles following the depletion of Ufm1. Knockdown of ufmylation in the fixed embryos exhibited severe phenotypes, including detached centrosomes, defective microtubules, and DNA bridge. Furthermore, we observed that the UFM1 cascade could alter the level of phosphorylation on tyrosine-15 of CDK1 (pY15-CDK1), which is a negative regulator of the G2 to M transition. These findings yield unambiguous evidence suggesting that the UFM1 cascade is a microcephaly-causing factor that regulates the progression of the cell cycle at mitosis phase entry.
Collapse
Affiliation(s)
- Li Yu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Guangxu Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jing Deng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xuan Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yingbao Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
8
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
9
|
Maternal Proteins That Are Phosphoregulated upon Egg Activation Include Crucial Factors for Oogenesis, Egg Activation and Embryogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:3005-3018. [PMID: 30012668 PMCID: PMC6118307 DOI: 10.1534/g3.118.200578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Egg activation is essential for the successful transition from a mature oocyte to a developmentally competent egg. It consists of a series of events including the resumption and completion of meiosis, initiation of translation of some maternal mRNAs and destruction of others, and changes to the vitelline envelope. This major change of cell state is accompanied by large scale alteration in the oocyte’s phosphoproteome. We hypothesize that the cohort of proteins that are subject to phosphoregulation during egg activation are functionally important for processes before, during, or soon after this transition, potentially uniquely or as proteins carrying out essential cellular functions like those they do in other (somatic) cells. In this study, we used germline-specific RNAi to examine the function of 189 maternal proteins that are phosphoregulated during egg activation in Drosophila melanogaster. We identified 53 genes whose knockdown reduced or abolished egg production and caused a range of defects in ovarian morphology, as well as 51 genes whose knockdown led to significant impairment or abolishment of the egg hatchability. We observed different stages of developmental arrest in the embryos and various defects in spindle morphology and aberrant centrosome activities in the early arrested embryos. Our results, validated by the detection of multiple genes with previously-documented maternal effect phenotypes among the proteins we tested, revealed 15 genes with newly discovered roles in egg activation and early embryogenesis in Drosophila. Given that protein phosphoregulation is a conserved characteristic of this developmental transition, we suggest that the phosphoregulated proteins may provide a rich pool of candidates for the identification of important players in the egg-to-embryo transition.
Collapse
|
10
|
Calpain A controls mitotic synchrony in the Drosophila blastoderm embryo. Mech Dev 2017; 144:141-149. [DOI: 10.1016/j.mod.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
|
11
|
Nano M, Basto R. Consequences of Centrosome Dysfunction During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:19-45. [PMID: 28600781 DOI: 10.1007/978-3-319-57127-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
12
|
The Deadbeat Paternal Effect of Uncapped Sperm Telomeres on Cell Cycle Progression and Chromosome Behavior in Drosophila melanogaster. Genetics 2016; 203:799-816. [PMID: 27029731 DOI: 10.1534/genetics.115.182436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/27/2016] [Indexed: 12/24/2022] Open
Abstract
Telomere-capping complexes (TCCs) protect the ends of linear chromosomes from illegitimate repair and end-to-end fusions and are required for genome stability. The identity and assembly of TCC components have been extensively studied, but whether TCCs require active maintenance in nondividing cells remains an open question. Here we show that Drosophila melanogaster requires Deadbeat (Ddbt), a sperm nuclear basic protein (SNBP) that is recruited to the telomere by the TCC and is required for TCC maintenance during genome-wide chromatin remodeling, which transforms spermatids to mature sperm. Ddbt-deficient males produce sperm lacking TCCs. Their offspring delay the initiation of anaphase as early as cycle 1 but progress through the first two cycles. Persistence of uncapped paternal chromosomes induces arrest at or around cycle 3. This early arrest can be rescued by selective elimination of paternal chromosomes and production of gynogenetic haploid or haploid mosaics. Progression past cycle 3 can also occur if embryos have reduced levels of the maternally provided checkpoint kinase Chk2. The findings provide insights into how telomere integrity affects the regulation of the earliest embryonic cell cycles. They also suggest that other SNBPs, including those in humans, may have analogous roles and manifest as paternal effects on embryo quality.
Collapse
|
13
|
Homem CCF, Repic M, Knoblich JA. Proliferation control in neural stem and progenitor cells. Nat Rev Neurosci 2015; 16:647-59. [PMID: 26420377 DOI: 10.1038/nrn4021] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number owing to disease. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and in mammalian neural stem and progenitor cells, these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly.
Collapse
Affiliation(s)
- Catarina C F Homem
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria.,Chronic Diseases Research Center, NOVA Medical School, Rua Camara Pestana, 6, 1150-082 Lisbon, Portugal
| | - Marko Repic
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
14
|
Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA, Ilyas AM, Pushparaj P, Ahmed F, Algahtani HA, Al-Qahtani MH, Saleh Jamal H. Molecular genetics of human primary microcephaly: an overview. BMC Med Genomics 2015; 8 Suppl 1:S4. [PMID: 25951892 PMCID: PMC4315316 DOI: 10.1186/1755-8794-8-s1-s4] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder that is characterised by microcephaly present at birth and non-progressive mental retardation. Microcephaly is the outcome of a smaller but architecturally normal brain; the cerebral cortex exhibits a significant decrease in size. MCPH is a neurogenic mitotic disorder, though affected patients demonstrate normal neuronal migration, neuronal apoptosis and neural function. Twelve MCPH loci (MCPH1-MCPH12) have been mapped to date from various populations around the world and contain the following genes: Microcephalin, WDR62, CDK5RAP2, CASC5, ASPM, CENPJ, STIL, CEP135, CEP152, ZNF335, PHC1 and CDK6. It is predicted that MCPH gene mutations may lead to the disease phenotype due to a disturbed mitotic spindle orientation, premature chromosomal condensation, signalling response as a result of damaged DNA, microtubule dynamics, transcriptional control or a few other hidden centrosomal mechanisms that can regulate the number of neurons produced by neuronal precursor cells. Additional findings have further elucidated the microcephaly aetiology and pathophysiology, which has informed the clinical management of families suffering from MCPH. The provision of molecular diagnosis and genetic counselling may help to decrease the frequency of this disorder.
Collapse
|
15
|
Hainline SG, Rickmyre JL, Neitzel LR, Lee LA, Lee E. The Drosophila MCPH1-B isoform is a substrate of the APCCdh1 E3 ubiquitin ligase complex. Biol Open 2014; 3:669-76. [PMID: 24972868 PMCID: PMC4154303 DOI: 10.1242/bio.20148318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that coordinates progression through the cell cycle by temporally and spatially promoting the degradation of key proteins. Many of these targeted proteins have been shown to play important roles in regulating orderly progression through the cell cycle. Using a previously described Drosophila in vitro expression cloning approach, we screened for new substrates of the APC in Xenopus egg extract and identified Drosophila MCPH1 (dMCPH1), a protein encoded by the homolog of a causative gene for autosomal recessive primary microcephaly in humans. The dMCPH1-B splice form, but not the dMCPH1-C splice form, undergoes robust degradation in Xenopus interphase egg extract in a Cdh1-dependent manner. Degradation of dMCPH1-B is controlled by an N-terminal destruction box (D-box) motif as its deletion or mutation blocks dMCPH1-B degradation. dMCPH1 levels are increased in Drosophila morula (APC2) mutant embryos, consistent with dMCPH1 being an APC substrate in vivo. Using a purified, reconstituted system, we show that dMCPH1-B is ubiquitinated by APCCdh1, indicating that the effect of APC on dMCPH1-B ubiquitination and degradation is direct. Full-length human MCPH1 (hMCPH1) has been predicted to be an APC substrate based on its interaction with the APC subunit Cdc27. We were not able to detect changes in hMCPH1 levels during the cell cycle in cultured human cells. Overexpression of hMCPH1 (or dMCPH1-B) in developing Xenopus embryos, however, disrupts cell division, suggesting that proper regulation of hMCPH1 and dMCPH1-B activity plays a critical role in proper cell-cycle progression.
Collapse
Affiliation(s)
- Sarah G Hainline
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Jamie L Rickmyre
- Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Laura A Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA.
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA.
| |
Collapse
|
16
|
Luna, a Drosophila KLF6/KLF7, is maternally required for synchronized nuclear and centrosome cycles in the preblastoderm embryo. PLoS One 2014; 9:e96933. [PMID: 24915236 PMCID: PMC4051582 DOI: 10.1371/journal.pone.0096933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/11/2014] [Indexed: 11/20/2022] Open
Abstract
Krüppel like factors (KLFs) are conserved transcription factors that have been implicated in many developmental processes including differentiation, organ patterning, or regulation of stem cell pluripotency. We report the generation and analysis of loss-of-function mutants of Drosophila Klf6/7, the luna gene. We demonstrate that luna mutants are associated with very early embryonic defects prior to cellularization at the syncytial stage and cause DNA separation defects during the rapid mitotic cycles resulting in un-coupled DNA and centrosome cycles. These defects manifest themselves, both in animals that are maternally homozygous and heterozygous mutant. Surprisingly, luna is only required during the syncytial stages and not later in development, suggesting that the DNA segregation defect is linked to centrosomes, since centrosomes are dispensable for later cell divisions.
Collapse
|
17
|
Venkatesh T, Suresh PS. Emerging roles of MCPH1: expedition from primary microcephaly to cancer. Eur J Cell Biol 2014; 93:98-105. [PMID: 24560403 DOI: 10.1016/j.ejcb.2014.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 01/06/2023] Open
Abstract
Genetic mutations in microcephalin1 (MCPH1) cause primary autosomal recessive microcephaly which is characterized by a marked reduction in brain size. MCPH1 encodes a centrosomal protein with three BRCT (BRCA1 C-terminal) domains. Also, it is a key regulator of DNA repair pathway and cell cycle checkpoints. Interestingly, in the past few years, many research studies have explored the role of MCPH1, a neurodevelopmental gene in several cancers and its tumor suppressor functions have been elucidated. Given the diverse new emerging roles, it becomes critical to review and summarize the multiple roles of MCPH1 that is currently lacking in the literature. In this review after systematic analysis of literature, we summarise the multiple functional roles of MCPH1 in centrosomal, DNA repair and apoptotic pathways. Additionally, we discuss the considerable efforts taken to understand the implications of MCPH1 in diseases such as primary microcephaly and its other emerging association with cancer and otitis media. The promising view is that MCPH1 has distinct roles and its clinical associations in various diseases makes it an attractive therapeutic target.
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Padmanaban S Suresh
- Centre for Biomedical Research, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| |
Collapse
|
18
|
Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, Sharp FR. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. Mol Autism 2013; 4:30. [PMID: 24007566 PMCID: PMC3846739 DOI: 10.1186/2040-2392-4-30] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022] Open
Abstract
Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). Conclusions These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Collapse
Affiliation(s)
- Boryana S Stamova
- MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gavvovidis I, Rost I, Trimborn M, Kaiser FJ, Purps J, Wiek C, Hanenberg H, Neitzel H, Schindler D. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells. PLoS One 2012; 7:e40387. [PMID: 22952573 PMCID: PMC3431399 DOI: 10.1371/journal.pone.0040387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Abstract
Biallelic mutations in MCPH1 cause primary microcephaly (MCPH) with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL) and a second transcript lacking the six 3′ exons (MCPH1Δe9–14). Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9–14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.
Collapse
Affiliation(s)
- Ioannis Gavvovidis
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Joyce EF, Williams BR, Xie T, Wu CT. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet 2012; 8:e1002667. [PMID: 22589731 PMCID: PMC3349724 DOI: 10.1371/journal.pgen.1002667] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/07/2012] [Indexed: 12/22/2022] Open
Abstract
The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.
Collapse
Affiliation(s)
- Eric F. Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin R. Williams
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tiao Xie
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Image and Data Analysis Core, Harvard Medical School, Boston, Massachusetts, United States of America
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 2011; 13:1325-34. [PMID: 21947081 DOI: 10.1038/ncb2342] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/11/2011] [Indexed: 12/13/2022]
Abstract
Primary microcephaly 1 is a neurodevelopmental disorder caused by mutations in the MCPH1 gene, whose product MCPH1 (also known as microcephalin and BRIT1) regulates DNA-damage response. Here we show that Mcph1 disruption in mice results in primary microcephaly, mimicking human MCPH1 symptoms, owing to a premature switching of neuroprogenitors from symmetric to asymmetric division. MCPH1-deficiency abrogates the localization of Chk1 to centrosomes, causing premature Cdk1 activation and early mitotic entry, which uncouples mitosis and the centrosome cycle. This misorients the mitotic spindle alignment and shifts the division plane of neuroprogenitors, to bias neurogenic cell fate. Silencing Cdc25b, a centrosome substrate of Chk1, corrects MCPH1-deficiency-induced spindle misalignment and rescues the premature neurogenic production in Mcph1-knockout neocortex. Thus, MCPH1, through its function in the Chk1-Cdc25-Cdk1 pathway to couple the centrosome cycle with mitosis, is required for precise mitotic spindle orientation and thereby regulates the progenitor division mode to maintain brain size.
Collapse
|
22
|
Mahmood S, Ahmad W, Hassan MJ. Autosomal Recessive Primary Microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 2011; 6:39. [PMID: 21668957 PMCID: PMC3123551 DOI: 10.1186/1750-1172-6-39] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 06/13/2011] [Indexed: 12/21/2022] Open
Abstract
Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage-response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity. Genetic counseling and clinical management through carrier detection/prenatal diagnosis in MCPH families can help reducing the incidence of this autosomal recessive disorder.
Collapse
Affiliation(s)
- Saqib Mahmood
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | | | | |
Collapse
|
23
|
Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol 2010; 28:625-38. [PMID: 20961963 DOI: 10.1093/molbev/msq237] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cis-regulatory regions play a dominant role in phenotypic evolution.
Collapse
|
24
|
|
25
|
Trimborn M, Ghani M, Walther DJ, Dopatka M, Dutrannoy V, Busche A, Meyer F, Nowak S, Nowak J, Zabel C, Klose J, Esquitino V, Garshasbi M, Kuss AW, Ropers HH, Mueller S, Poehlmann C, Gavvovidis I, Schindler D, Sperling K, Neitzel H. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function. PLoS One 2010; 5:e9242. [PMID: 20169082 PMCID: PMC2821930 DOI: 10.1371/journal.pone.0009242] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 01/23/2010] [Indexed: 12/29/2022] Open
Abstract
Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1gt/gt mice, the overall survival rates of the Mcph1gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Brain/pathology
- Cell Cycle Proteins
- Cell Proliferation
- Cells, Cultured
- Chromosomal Proteins, Non-Histone/deficiency
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/physiology
- Chromosome Breakage
- Chromosomes, Mammalian/genetics
- Cytoskeletal Proteins
- DNA Damage
- Electrophoresis, Gel, Two-Dimensional
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Profiling
- Humans
- Magnetic Resonance Imaging
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Models, Animal
- Oligonucleotide Array Sequence Analysis
- Proteomics
- Survival Analysis
Collapse
Affiliation(s)
- Marc Trimborn
- Institute for Medical Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mahdi Ghani
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Monika Dopatka
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Véronique Dutrannoy
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Busche
- Institute for Medical Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Meyer
- Institute for Medical Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Nowak
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jean Nowak
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Claus Zabel
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Klose
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Veronica Esquitino
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Andreas W. Kuss
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Susanne Mueller
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Charlotte Poehlmann
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Detlev Schindler
- Institute of Human Genetics, University Wuerzburg, Wuerzburg, Germany
| | - Karl Sperling
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Heidemarie Neitzel
- Institute of Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
26
|
Abstract
Centrioles are barrel-shaped structures that are essential for the formation of centrosomes, cilia, and flagella. Here we review recent advances in our understanding of the function and biogenesis of these organelles, and we emphasize their connection to human disease. Deregulation of centrosome numbers has long been proposed to contribute to genome instability and tumor formation, whereas mutations in centrosomal proteins have recently been genetically linked to microcephaly and dwarfism. Finally, structural or functional centriole aberrations contribute to ciliopathies, a variety of complex diseases that stem from the absence or dysfunction of cilia.
Collapse
Affiliation(s)
- Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
27
|
Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 2009; 90:363-83. [PMID: 19931588 DOI: 10.1016/j.pneurobio.2009.11.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 12/24/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH), historically referred to as Microcephalia vera, is a genetically and clinically heterogeneous disease. Patients with MCPH typically exhibit congenital microcephaly as well as mental retardation, but usually no further neurological findings or malformations. Their microcephaly with grossly preserved macroscopic organization of the brain is a consequence of a reduced brain volume, which is evident particularly within the cerebral cortex and thus results to a large part from a reduction of grey matter. Some patients with MCPH further provide evidence of neuronal heterotopias, polymicrogyria or cortical dysplasia suggesting an associated neuronal migration defect. Genetic causes of MCPH subtypes 1-7 include mutations in genes encoding microcephalin, cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), abnormal spindle-like, microcephaly associated protein (ASPM), centromeric protein J (CENPJ), and SCL/TAL1-interrupting locus (STIL) as well as linkage to the two loci 19q13.1-13.2 and 15q15-q21. Here, we provide a timely overview of current knowledge on mechanisms leading to microcephaly in humans with MCPH and abnormalities in cell division/cell survival in corresponding animal models. Understanding the pathomechanisms leading to MCPH is of high importance not only for our understanding of physiologic brain development (particularly of cortex formation), but also for that of trends in mammalian evolution with a massive increase in size of the cerebral cortex in primates, of microcephalies of other etiologies including environmentally induced microcephalies, and of cancer formation.
Collapse
|
28
|
Thornton GK, Woods CG. Primary microcephaly: do all roads lead to Rome? Trends Genet 2009; 25:501-10. [PMID: 19850369 PMCID: PMC2816178 DOI: 10.1016/j.tig.2009.09.011] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 02/06/2023]
Abstract
The relatively large brain and expanded cerebral cortex of humans is unusual in the animal kingdom and is thought to have promoted our adaptability and success as a species. One approach for investigating neurogenesis is the study of autosomal recessive primary microcephaly (MCPH), in which prenatal brain growth is significantly reduced without an effect on brain structure. To date, eight MCPH loci and five genes have been identified. Unexpectedly, all MCPH proteins are ubiquitous and localise to centrosomes for at least part of the cell cycle. Here, we focus on recent functional studies of MCPH proteins that reveal the centrosome as a final integration point for many regulatory pathways affecting prenatal neurogenesis in mammals.
Collapse
Affiliation(s)
- Gemma K Thornton
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrookes Hospital, Cambridge, UK
| | | |
Collapse
|
29
|
Peng G, Lin SY. The linkage of chromatin remodeling to genome maintenance: contribution from a human disease gene BRIT1/MCPH1. Epigenetics 2009; 4:457-61. [PMID: 19829069 DOI: 10.4161/epi.4.7.10032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genomic DNA is packed into a highly condensed chromatin structure, which acts as natural barrier preventing accessibility of DNA. In various processes to maintain genomic integrity such as DNA replication, DNA repair, telomere regulation, proteins need to overcome the barrier of condensed chromatin to gain access to DNA. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin. However, the chromatin remodeling complex does not contain intrinsic specificity for particular nuclear process, and the mechanism mediating its recruitment to DNA lesions remains to be an outstanding question. To address this question, in this review, we will discuss our current findings and future perspectives about how BRIT1/MCPH1, a human disease gene, specifies the function of chromatin remodelers and links chromatin remodeling to genome maintenance.
Collapse
Affiliation(s)
- Guang Peng
- Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
30
|
Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B, Rauch A, Ho AD, Bartek J, Krämer A. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. ACTA ACUST UNITED AC 2009; 185:1149-57. [PMID: 19546241 PMCID: PMC2712957 DOI: 10.1083/jcb.200810159] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary microcephaly, Seckel syndrome, and microcephalic osteodysplastic primordial dwarfism type II (MOPD II) are disorders exhibiting marked microcephaly, with small brain sizes reflecting reduced neuron production during fetal life. Although primary microcephaly can be caused by mutations in microcephalin (MCPH1), cells from patients with Seckel syndrome and MOPD II harbor mutations in ataxia telangiectasia and Rad3 related (ATR) or pericentrin (PCNT), leading to disturbed ATR signaling. In this study, we show that a lack of MCPH1 or PCNT results in a loss of Chk1 from centrosomes with subsequently deregulated activation of centrosomal cyclin B–Cdk1.
Collapse
Affiliation(s)
- Alexandra Tibelius
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wood JL, Liang Y, Li K, Chen J. Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J Biol Chem 2008; 283:29586-92. [PMID: 18718915 DOI: 10.1074/jbc.m804080200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microcephalin/MCPH1 is one of the causative genes responsible for the autosomal recessive disorder primary microcephaly. Patients with this disease present with mental retardation and dramatic reduction in head size, and cells derived from these patients contain abnormally condensed chromosomes. MCPH1 contains an N-terminal BRCT and tandem C-terminal BRCT domains. More recently, MCPH1 has been implicated in the cellular response to DNA damage; however, the exact mechanism remains unclear. Here, we report the identification Condensin II as a major MCPH1-interacting protein. MCPH1 and Condensin II interact in vivo, mediated by the CAPG2 subunit of Condensin II binding to a middle domain (residues 376-485) of MCPH1. Interestingly, while Condensin II is not required for the IR-induced G2/M checkpoint, Condensin II-depleted cells have a defect in HR repair, which is also present in MCPH1(-/-)MEFs. Moreover, the Condensin II binding region of MCPH1 is also required for HR function. Collectively, we have identified a novel function of MCPH1 to modulate HR repair through Condensin II, and thereby maintain genome integrity.
Collapse
Affiliation(s)
- Jamie L Wood
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06473, USA
| | | | | | | |
Collapse
|