1
|
Aboalroub AA, Al Azzam KM. Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities. Protein J 2024; 43:639-655. [PMID: 39068633 DOI: 10.1007/s10930-024-10223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S-NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S-NO proteins. This article briefly reviews the progress in S-NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S-NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.
Collapse
Affiliation(s)
- Adam A Aboalroub
- Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Khaldun M Al Azzam
- Department of Chemistry, School of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Funk F, Kronenbitter A, Isić M, Flocke V, Gorreßen S, Semmler D, Brinkmann M, Beck K, Steinhoff O, Srivastava T, Barbosa DM, Voigt K, Wang L, Bottermann K, Kötter S, Grandoch M, Flögel U, Krüger M, Schmitt JP. Diabetes disturbs functional adaptation of the remote myocardium after ischemia/reperfusion. J Mol Cell Cardiol 2022; 173:47-60. [PMID: 36150524 DOI: 10.1016/j.yjmcc.2022.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus type 2 is associated with adverse clinical outcome after myocardial infarction. To better understand the underlying causes we here investigated sarcomere protein function and its calcium-dependent regulation in the non-ischemic remote myocardium (RM) of diabetic mice (db/db) after transient occlusion of the left anterior descending coronary artery. Before and 24 h after surgery db/db and non-diabetic db/+ underwent magnetic resonance imaging followed by histological and biochemical analyses of heart tissue. Intracellular calcium transients and sarcomere function were measured in isolated cardiomyocytes. Active and passive force generation was assessed in skinned fibers and papillary muscle preparations. Before ischemia and reperfusion (I/R), beat-to-beat calcium cycling was depressed in diabetic cardiomyocytes. Nevertheless, contractile function was preserved owing to increased myofilament calcium sensitivity and higher responsiveness of myocardial force production to β-adrenergic stimulation in db/db compared to db/+. In addition, protein kinase C activity was elevated in db/db hearts leading to strong phosphorylation of the titin PEVK region and increased titin-based tension of myofilaments. I/R impaired the function of whole hearts and RM sarcomeres in db/db to a larger extent than in non-diabetic db/+, and we identified several reasons. First, the amplitude and the kinetics of cardiomyocyte calcium transients were further reduced in the RM of db/db. Underlying causes involved altered expression of calcium regulatory proteins. Diabetes and I/R additively reduced phospholamban S16-phosphorylation by 80% (P < 000.1) leading to strong inhibition of the calcium ATPase SERCA2a. Second, titin stiffening was only observed in the RM of db/+, but not in the RM of db/db. Finally, db/db myofilament calcium sensitivity and force generation upon β-adrenergic stimulation were no longer enhanced over db/+ in the RM. The findings demonstrate that impaired cardiomyocyte calcium cycling of db/db hearts is compensated by increased myofilament calcium sensitivity and increased titin-based stiffness prior to I/R. In contrast, sarcomere function of the RM 24 h after I/R is poor because both these compensatory mechanisms fail and myocyte calcium handling is further depressed.
Collapse
Affiliation(s)
- Florian Funk
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Annette Kronenbitter
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Malgorzata Isić
- Institute of Cardiovascular Physiology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vera Flocke
- Institute of Molecular Cardiology, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Simone Gorreßen
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Dominik Semmler
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Maximilian Brinkmann
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Katharina Beck
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Oliver Steinhoff
- Institute of Translational Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Tanu Srivastava
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - David Monteiro Barbosa
- Institute of Cardiovascular Physiology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katharina Voigt
- Institute of Cardiovascular Physiology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Luzhou Wang
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Katharina Bottermann
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Maria Grandoch
- Institute of Translational Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Ulrich Flögel
- Institute of Molecular Cardiology, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Martina Krüger
- Institute of Cardiovascular Physiology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Joachim P Schmitt
- Institute of Pharmacology, University Hospital Düsseldorf, and Cardiovascular Research Institute Düsseldorf (CARID), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Glaser M, Bruce NJ, Han SB, Wade RC. Simulation of the Positive Inotropic Peptide S100A1ct in Aqueous Environment by Gaussian Accelerated Molecular Dynamics. J Phys Chem B 2021; 125:4654-4666. [PMID: 33944558 DOI: 10.1021/acs.jpcb.1c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The S100A1ct peptide, consisting of the C-terminal 20 residues of the S100A1 protein fused to an N-terminal 6-residue hydrophilic tag, has been found to exert a positive inotropic effect, resulting in improved contractile performance of failing cardiac and skeletal muscle without arrhythmic side-effects. The S100A1ct peptide thus has high potential for the treatment of acute heart failure. As a step toward understanding its molecular mechanism of action, and to provide a basis for peptidomimetic design to optimize its properties, we here describe de novo structure predictions and molecular dynamics simulations to characterize the conformational landscape of S100A1ct in aqueous environment. In S100A1, the C-terminal 20 residues form an α-helix, but de novo peptide structure predictions indicate that other conformations are also possible. Conventional molecular dynamics simulations in implicit and explicit solvent corroborated this finding. To ensure adequate sampling, we performed simulations of a tagged 10-residue segment of S100A1ct, and we carried out Gaussian accelerated molecular dynamics simulations of the peptides. These simulations showed that although the helical conformation of S100A1ct was the most energetically stable, the peptide can adopt a range of kinked conformations, suggesting that its activity may be related to its ability to act as a conformational switch.
Collapse
Affiliation(s)
- Manuel Glaser
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Informatics for Life, Heidelberg, Germany
| | - Neil J Bruce
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Informatics for Life, Heidelberg, Germany
| | - Sungho Bosco Han
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rebecca C Wade
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Informatics for Life, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
ER Stress-Induced Secretion of Proteins and Their Extracellular Functions in the Heart. Cells 2020; 9:cells9092066. [PMID: 32927693 PMCID: PMC7563782 DOI: 10.3390/cells9092066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a result of conditions that imbalance protein homeostasis or proteostasis at the ER, for example ischemia, and is a common event in various human pathologies, including the diseased heart. Cardiac integrity and function depend on the active secretion of mature proteins from a variety of cell types in the heart, a process that requires an intact ER environment for efficient protein folding and trafficking to the secretory pathway. As a consequence of ER stress, most protein secretion by the ER secretory pathway is decreased. Strikingly, there is a select group of proteins that are secreted in greater quantities during ER stress. ER stress resulting from the dysregulation of ER Ca2+ levels, for instance, stimulates the secretion of Ca2+-binding ER chaperones, especially GRP78, GRP94, calreticulin, and mesencephalic astrocyte-derived neurotrophic factor (MANF), which play a multitude of roles outside the cell, strongly depending on the cell type and tissue. Here we review current insights in ER stress-induced secretion of proteins, particularly from the heart, and highlight the extracellular functions of these proteins, ranging from the augmentation of cardiac cell viability to the modulation of pro- and anti-apoptotic, oncogenic, and immune-stimulatory cell signaling, cell invasion, extracellular proteostasis, and more. Many of the roles of ER stress-induced protein secretion remain to be explored in the heart. This article is part of a special issue entitled “The Role of Proteostasis Derailment in Cardiac Diseases.”
Collapse
|
5
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
6
|
Li S, Chopra A, Keung W, Chan CWY, Costa KD, Kong CW, Hajjar RJ, Chen CS, Li RA. Sarco/endoplasmic reticulum Ca2+-ATPase is a more effective calcium remover than sodium-calcium exchanger in human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2019; 317:H1105-H1115. [DOI: 10.1152/ajpheart.00540.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human pluripotent stem cell (hPSCs)-derived ventricular (V) cardiomyocytes (CMs) display immature Ca2+–handing properties with smaller transient amplitudes and slower kinetics due to such differences in crucial Ca2+-handling proteins as the poor sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump but robust Na+-Ca2+ exchanger (NCX) activities in human embryonic stem cell (ESC)-derived VCMs compared with adult. Despite their fundamental importance in excitation-contraction coupling, the relative contribution of SERCA and NCX to Ca2+-handling of hPSC-VCMs remains unexplored. We systematically altered the activities of SERCA and NCX in human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) and their engineered microtissues, followed by examining the resultant phenotypic consequences. SERCA overexpression in hESC-VCMs shortened the decay of Ca2+ transient at low frequencies (0.5 Hz) without affecting the amplitude, SR Ca2+ content and Ca2+ baseline. Interestingly, short hairpin RNA-based NCX suppression did not prolong the transient decay, indicating a compensatory response for Ca2+ removal. Although hESC-VCMs and their derived microtissues exhibited negative frequency-transient/force responses, SERCA overexpression rendered them less negative at high frequencies (>2 Hz) by accelerating Ca2+ sequestration. We conclude that for hESC-VCMs and their microtissues, SERCA, rather than NCX, is the main Ca2+ remover during diastole; poor SERCA expression is the leading cause for immature negative-frequency/force responses, which can be partially reverted by forced expression. Combinatorial approach to mature calcium handling in hESC-VCMs may help shed further mechanistic insights. NEW & NOTEWORTHY In this study of human pluripotent stem cell-derived cardiomyocytes, we studied the role of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) in Ca2+ handling. Our data support the notion that SERCA is more effective in cytosolic calcium removal than the NCX.
Collapse
Affiliation(s)
- Sen Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Anant Chopra
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Camie W. Y. Chan
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Kevin D. Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Chi-Wing Kong
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Christopher S. Chen
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| |
Collapse
|
7
|
Kruse CPS, Cottrill DA, Kopchick JJ. Could calgranulins and advanced glycated end products potentiate acromegaly pathophysiology? Growth Horm IGF Res 2019; 46-47:1-4. [PMID: 31071497 DOI: 10.1016/j.ghir.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
Growth hormone (GH) exerts a diverse set of effects across many tissues including fat, muscle, bone, kidney, heart, and liver. GH is also a diabetogenic hormone in that it inhibits the actions of insulin. Acromegaly, a condition traditionally characterized by increased levels of growth hormone secretion as a result of pituitary adenoma, results in increased tissue growth, lipolysis, and can result in patients with hyperglycemia and hyperinsulinemia. While current treatment modalities have greatly improved prognoses for most patients, a significant number present clinical symptoms of acromegaly with elevated levels of IGF-1 in the absence of increased GH levels, a phenomenon known as micromegaly. This condition presents a challenge to most currently used treatments since the high circulating IGF-1 levels are independent of elevated levels of GH. It has been previously shown that advanced glycation end products (AGE) can stimulate IGF-1 secretion by human monocytes in vitro, demonstrating a possible mechanism for increased IGF-1 levels. To further investigate AGE/GH/IGF-1 interaction, we have reanalyzed a publicly available RNAseq dataset from subcutaneous adipose tissue of patients with acromegaly. S100A1, a member of the calgranulin family of proteins and ligand of the AGE receptor, was shown to be significantly upregulated in patients with acromegaly. These findings identify an important consideration that may help explain the counterintuitive nature of micromegaly, while simultaneously providing new insight into the role of GH in diabetic, inflammatory, and immune pathologies.
Collapse
Affiliation(s)
- Colin P S Kruse
- Edison Biotechnology Institute, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, United States of America; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, 317A Porter Hall, Athens, OH 45701, United States of America
| | - David A Cottrill
- Edison Biotechnology Institute, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, United States of America; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, 317A Porter Hall, Athens, OH 45701, United States of America; Department of Biological Sciences, Ohio University, 107 Irvine Hall, Athens, OH 45701, United States of America
| | - John J Kopchick
- Edison Biotechnology Institute, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, United States of America; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, 317A Porter Hall, Athens, OH 45701, United States of America; Department of Biological Sciences, Ohio University, 107 Irvine Hall, Athens, OH 45701, United States of America; Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 204 Ohio University, Grosvenor Hall, Athens, OH 45701, United States of America.
| |
Collapse
|
8
|
Affiliation(s)
- Jake M. Kieserman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Valerie D. Myers
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Praveen Dubey
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Joseph Y. Cheung
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Arthur M. Feldman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| |
Collapse
|
9
|
Fanter CE, Lin Z, Keenan SW, Janzen FJ, Mitchell TS, Warren DE. Development-specific transcriptomic profiling suggests new mechanisms for anoxic survival in the ventricle of overwintering turtles. J Exp Biol 2019; 223:jeb.213918. [DOI: 10.1242/jeb.213918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Oxygen deprivation swiftly damages tissues in most animals, yet some species show remarkable abilities to tolerate little or even no oxygen. Painted turtles exhibit a development-dependent tolerance that allows adults to survive anoxia ∼4x longer than hatchlings: adults survive ∼170 days and hatchlings survive ∼40 days at 3°C. We hypothesized this difference is related to development-dependent differences in ventricular gene expression. Using a comparative ontogenetic approach, we examined whole transcriptomic changes before, during, and five days after a 20-day bout of anoxic submergence at 3°C. Ontogeny accounted for more gene expression differences than treatment (anoxia or recovery): 1,175 vs. 237 genes, respectively. Of the 237 differences, 93 could confer protection against anoxia and reperfusion injury, 68 could be injurious, and 20 may be constitutively protective. Especially striking during anoxia was the expression pattern of all 76 annotated ribosomal protein (R-protein) mRNAs, which decreased in anoxia-tolerant adults, but increased in anoxia-sensitive hatchlings, suggesting adult-specific regulation of translational suppression. These genes, along with 60 others that decreased their levels in adults and either increased or remained unchanged in hatchlings, implicate antagonistic pleiotropy as a mechanism to resolve the long-standing question about why hatchling painted turtles overwinter in terrestrial nests, rather than emerge and overwinter in water during their first year. In sum, developmental differences in the transcriptome of the turtle ventricle revealed potentially protective mechanisms that contribute to extraordinary adult-specific anoxia tolerance, and provide a unique perspective on differences between the anoxia-induced molecular responses of anoxia-tolerant or anoxia-sensitive phenotypes within a species.
Collapse
Affiliation(s)
- Cornelia E. Fanter
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Zhenguo Lin
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Sarah W. Keenan
- South Dakota School of Mines & Technology, Department of Geology and Geological Engineering, 501 East St. Joseph St., Rapid City, South Dakota, 57701, USA
| | - Fredric J. Janzen
- Iowa State University, Department of Ecology, Evolution and Organismal Biology, 251 Bessey Hall, Ames, Iowa, 50011, USA
| | - Timothy S. Mitchell
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Ave. Saint Paul, MN, 55108, USA
| | - Daniel E. Warren
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| |
Collapse
|
10
|
Hernández‐Ochoa EO, Melville Z, Vanegas C, Varney KM, Wilder PT, Melzer W, Weber DJ, Schneider MF. Loss of S100A1 expression leads to Ca 2+ release potentiation in mutant mice with disrupted CaM and S100A1 binding to CaMBD2 of RyR1. Physiol Rep 2018; 6:e13822. [PMID: 30101473 PMCID: PMC6087734 DOI: 10.14814/phy2.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) and S100A1 fine-tune skeletal muscle Ca2+ release via opposite modulation of the ryanodine receptor type 1 (RyR1). Binding to and modulation of RyR1 by CaM and S100A1 occurs predominantly at the region ranging from amino acid residue 3614-3640 of RyR1 (here referred to as CaMBD2). Using synthetic peptides, it has been shown that CaM binds to two additional regions within the RyR1, specifically residues 1975-1999 and 4295-4325 (CaMBD1 and CaMBD3, respectively). Because S100A1 typically binds to similar motifs as CaM, we hypothesized that S100A1 could also bind to CaMBD1 and CaMBD3. Our goals were: (1) to establish whether S100A1 binds to synthetic peptides containing CaMBD1 and CaMBD3 using isothermal calorimetry (ITC), and (2) to identify whether S100A1 and CaM modulate RyR1 Ca2+ release activation via sites other than CaMBD2 in RyR1 in its native cellular context. We developed the mouse model (RyR1D-S100A1KO), which expresses point mutation RyR1-L3625D (RyR1D) that disrupts the modulation of RyR1 by CaM and S100A1 at CaMBD2 and also lacks S100A1 (S100A1KO). ITC assays revealed that S100A1 binds with different affinities to CaMBD1 and CaMBD3. Using high-speed Ca2+ imaging and a model for Ca2+ binding and transport, we show that the RyR1D-S100A1KO muscle fibers exhibit a modest but significant increase in myoplasmic Ca2+ transients and enhanced Ca2+ release flux following field stimulation when compared to fibers from RyR1D mice, which were used as controls to eliminate any effect of binding at CaMBD2, but with preserved S100A1 expression. Our results suggest that S100A1, similar to CaM, binds to CaMBD1 and CaMBD3 within the RyR1, but that CaMBD2 appears to be the primary site of RyR1 regulation by CaM and S100A1.
Collapse
Affiliation(s)
- Erick O. Hernández‐Ochoa
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Zephan Melville
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Camilo Vanegas
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Kristen M. Varney
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
- Center for Biomolecular Therapeutics (CBT)University of Maryland School of MedicineMaryland
| | - Paul T. Wilder
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
- Center for Biomolecular Therapeutics (CBT)University of Maryland School of MedicineMaryland
| | - Werner Melzer
- Institute of Applied PhysiologyUlm UniversityUlmGermany
| | - David J. Weber
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
- Center for Biomolecular Therapeutics (CBT)University of Maryland School of MedicineMaryland
| | - Martin F. Schneider
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| |
Collapse
|
11
|
Adeno-Associated Virus Gene Therapy: Translational Progress and Future Prospects in the Treatment of Heart Failure. Heart Lung Circ 2018; 27:1285-1300. [PMID: 29703647 DOI: 10.1016/j.hlc.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in treatment over the past decade, heart failure remains a significant public health burden and a leading cause of death in the developed world. Gene therapy provides a promising approach for preventing and reversing cardiac abnormalities, however, clinical application has shown limited success to date. A substantial effort is being invested into the development of recombinant adeno-associated viruses (AAVs) for cardiac gene therapy as AAV gene therapy offers a high safety profile and provides sustained and efficient transgene expression following a once-off administration. Due to the physiological, anatomical and genetic similarities between large animals and humans, preclinical studies using large animal models for AAV gene therapy are crucial stepping stones between the laboratory and the clinic. Many molecular targets selected to treat heart failure using AAV gene therapy have been chosen because of their potential to regulate and restore cardiac contractility. Other genes targeted with AAV are involved with regulating angiogenesis, beta-adrenergic sensitivity, inflammation, physiological signalling and metabolism. While significant progress continues to be made in the field of AAV cardiac gene therapy, challenges remain in overcoming host neutralising antibodies, improving AAV vector cardiac-transduction efficiency and selectivity, and optimising the dose, route and method of delivery.
Collapse
|
12
|
Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front Immunol 2018; 8:1908. [PMID: 29379499 PMCID: PMC5770888 DOI: 10.3389/fimmu.2017.01908] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
The S100 proteins, a family of calcium-binding cytosolic proteins, have a broad range of intracellular and extracellular functions through regulating calcium balance, cell apoptosis, migration, proliferation, differentiation, energy metabolism, and inflammation. The intracellular functions of S100 proteins involve interaction with intracellular receptors, membrane protein recruitment/transportation, transcriptional regulation and integrating with enzymes or nucleic acids, and DNA repair. The S100 proteins could also be released from the cytoplasm, induced by tissue/cell damage and cellular stress. The extracellular S100 proteins, serving as a danger signal, are crucial in regulating immune homeostasis, post-traumatic injury, and inflammation. Extracellular S100 proteins are also considered biomarkers for some specific diseases. In this review, we will discuss the multi-functional roles of S100 proteins, especially their potential roles associated with cell migration, differentiation, tissue repair, and inflammation.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amelia C. Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Mofid A, Newman NS, Lee PJH, Abbasi C, Matkar PN, Rudenko D, Kuliszewski MA, Chen HH, Afrasiabi K, Tsoporis JN, Gramolini AO, Connelly KA, Parker TG, Leong-Poi H. Cardiac Overexpression of S100A6 Attenuates Cardiomyocyte Apoptosis and Reduces Infarct Size After Myocardial Ischemia-Reperfusion. J Am Heart Assoc 2017; 6:JAHA.116.004738. [PMID: 28174168 PMCID: PMC5523770 DOI: 10.1161/jaha.116.004738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Cardiomyocyte‐specific transgenic mice overexpressing S100A6, a member of the family of EF‐hand calcium‐binding proteins, develop less cardiac hypertrophy, interstitial fibrosis, and myocyte apoptosis after permanent coronary ligation, findings that support S100A6 as a potential therapeutic target after acute myocardial infarction. Our purpose was to investigate S100A6 gene therapy for acute myocardial ischemia‐reperfusion. Methods and Results We first performed in vitro studies to examine the effects of S100A6 overexpression and knockdown in rat neonatal cardiomyocytes. S100A6 overexpression improved calcium transients and protected against apoptosis induced by hypoxia‐reoxygenation via enhanced calcineurin activity, whereas knockdown of S100A6 had detrimental effects. For in vivo studies, human S100A6 plasmid or empty plasmid was delivered to the left ventricular myocardium by ultrasound‐targeted microbubble destruction in Fischer‐344 rats 2 days prior to a 30‐minute ligation of the left anterior descending coronary artery followed by reperfusion. Control animals received no therapy. Pretreatment with S100A6 gene therapy yielded a survival advantage compared to empty‐plasmid and nontreated controls. S100A6‐pretreated animals had reduced infarct size and improved left ventricular systolic function, with less myocyte apoptosis, attenuated cardiac hypertrophy, and less cardiac fibrosis. Conclusions S100A6 overexpression by ultrasound‐targeted microbubble destruction helps ameliorate myocardial ischemia‐reperfusion, resulting in lower mortality and improved left ventricular systolic function post–ischemia‐reperfusion via attenuation of apoptosis, reduction in cardiac hypertrophy, and reduced infarct size. Our results indicate that S100A6 is a potential therapeutic target for acute myocardial infarction.
Collapse
Affiliation(s)
- Azadeh Mofid
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Nadav S Newman
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Paul J H Lee
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Cynthia Abbasi
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Dmitriy Rudenko
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Michael A Kuliszewski
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Hao H Chen
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Kolsoom Afrasiabi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - James N Tsoporis
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | | | - Kim A Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Thomas G Parker
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario, Canada
| |
Collapse
|
14
|
Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front Immunol 2017. [PMID: 29379499 DOI: 10.3389/fimmu.2017.01908/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
The S100 proteins, a family of calcium-binding cytosolic proteins, have a broad range of intracellular and extracellular functions through regulating calcium balance, cell apoptosis, migration, proliferation, differentiation, energy metabolism, and inflammation. The intracellular functions of S100 proteins involve interaction with intracellular receptors, membrane protein recruitment/transportation, transcriptional regulation and integrating with enzymes or nucleic acids, and DNA repair. The S100 proteins could also be released from the cytoplasm, induced by tissue/cell damage and cellular stress. The extracellular S100 proteins, serving as a danger signal, are crucial in regulating immune homeostasis, post-traumatic injury, and inflammation. Extracellular S100 proteins are also considered biomarkers for some specific diseases. In this review, we will discuss the multi-functional roles of S100 proteins, especially their potential roles associated with cell migration, differentiation, tissue repair, and inflammation.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan, China.,Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amelia C Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Guo Y, Cui L, Jiang S, Wang D, Jiang S, Xie C, Jia Y. S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats. Mol Med Rep 2016; 14:1538-52. [PMID: 27357314 PMCID: PMC4940056 DOI: 10.3892/mmr.2016.5440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
S100 Ca2+-binding protein A1 (S100A1) is an important regulator of myocardial contractility. The aim of the present study was to identify the underlying mechanisms of S100A1 activity via profiling the protein expression in rats administered with an S100A1 adenovirus (Ad-S100A1-EGFP) following acute myocardial infarction (AMI). LTQ OrbiTrap mass spectrometry was used to profile the protein expression in the Ad-S100A1-EGFP and control groups post-AMI. Using Protein Analysis Through Evolutionary Relationships (PANTHER) analysis, 134 energy metabolism-associated proteins, which comprised 20 carbohydrate metabolism-associated and 27 lipid metabolism associated proteins, were identified as differentially expressed in the Ad-S100A1-EGFP hearts compared with controls. The majority of the differentially expressed proteins identified were important enzymes involved in energy metabolism. The present study identified 12 Ca2+-binding proteins and 22 cytoskeletal proteins. The majority of the proteins expressed in the Ad-S100A1-EGFP group were upregulated compared with the control group. These results were further validated using western blot analysis. Following AMI, Ca2+ is crucial for the recovery of myocardial function in S100A1 transgenic rats as indicated by the upregulation of proteins associated with energy metabolism and Ca2+-binding. Thus, the current study ascertained that energy production and contractile ability were enhanced after AMI in the ventricular myocardium of the Ad-S100A1-EGFP group.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shiliang Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongmei Wang
- Department of Radiology, Shandong Jiao Tong Hospital, Jinan, Shandong 250063, P.R. China
| | - Shu Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chen Xie
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yanping Jia
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
16
|
Vallmitjana A, Nolla C, Herraiz-Martínez A, Hove-Madsen L, Benítez R. Spatial localization of ryanodine receptors in human cardiac cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6297-300. [PMID: 26737732 DOI: 10.1109/embc.2015.7319832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a novel image processing method to determine the location of ryanodine receptors in cardiac cells. A semi-automatic manual validation by an expert has been used in order to establish the performance of the segmentation method. The approach provides high accuracy under different experimental conditions and it is robust to common sources of noise including experimental, molecular and biological fluctuations.
Collapse
|
17
|
Maxwell JT, Somasuntharam I, Gray WD, Shen M, Singer JM, Wang B, Saafir T, Crawford BH, Jiang R, Murthy N, Davis ME, Wagner MB. Bioactive nanoparticles improve calcium handling in failing cardiac myocytes. Nanomedicine (Lond) 2015. [PMID: 26223412 DOI: 10.2217/nnm.15.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS To evaluate the ability of N-acetylglucosamine (GlcNAc) decorated nanoparticles and their cargo to modulate calcium handling in failing cardiac myocytes (CMs). MATERIALS & METHODS Primary CMs isolated from normal and failing hearts were treated with GlcNAc nanoparticles in order to assess the ability of the nanoparticles and their cargo to correct dysfunctional calcium handling in failing myocytes. RESULTS & CONCLUSION GlcNAc particles reduced aberrant calcium release in failing CMs and restored sarcomere function. Additionally, encapsulation of a small calcium-modulating protein, S100A1, in GlcNAc nanoparticles also showed improved calcium regulation. Thus, the development of our bioactive nanoparticle allows for a 'two-hit' treatment, by which the cargo and also the nanoparticle itself can modulate intracellular protein activity.
Collapse
Affiliation(s)
- Joshua T Maxwell
- Wallace H Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Inthirai Somasuntharam
- Wallace H Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA
| | - Warren D Gray
- Wallace H Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA
| | - Ming Shen
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Jason M Singer
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Bo Wang
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Talib Saafir
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Brian H Crawford
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Rong Jiang
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Niren Murthy
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Michael E Davis
- Wallace H Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Mary B Wagner
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA 30307, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
S100A1 DNA-based Inotropic Therapy Protects Against Proarrhythmogenic Ryanodine Receptor 2 Dysfunction. Mol Ther 2015; 23:1320-1330. [PMID: 26005840 DOI: 10.1038/mt.2015.93] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/28/2015] [Indexed: 12/21/2022] Open
Abstract
Restoring expression levels of the EF-hand calcium (Ca(2+)) sensor protein S100A1 has emerged as a key factor in reconstituting normal Ca(2+) handling in failing myocardium. Improved sarcoplasmic reticulum (SR) function with enhanced Ca(2+) resequestration appears critical for S100A1's cyclic adenosine monophosphate-independent inotropic effects but raises concerns about potential diastolic SR Ca(2+) leakage that might trigger fatal arrhythmias. This study shows for the first time a diminished interaction between S100A1 and ryanodine receptors (RyR2s) in experimental HF. Restoring this link in failing cardiomyocytes, engineered heart tissue and mouse hearts, respectively, by means of adenoviral and adeno-associated viral S100A1 cDNA delivery normalizes diastolic RyR2 function and protects against Ca(2+)- and β-adrenergic receptor-triggered proarrhythmogenic SR Ca(2+) leakage in vitro and in vivo. S100A1 inhibits diastolic SR Ca(2+) leakage despite aberrant RyR2 phosphorylation via protein kinase A and calmodulin-dependent kinase II and stoichiometry with accessory modulators such as calmodulin, FKBP12.6 or sorcin. Our findings demonstrate that S100A1 is a regulator of diastolic RyR2 activity and beneficially modulates diastolic RyR2 dysfunction. S100A1 interaction with the RyR2 is sufficient to protect against basal and catecholamine-triggered arrhythmic SR Ca(2+) leak in HF, combining antiarrhythmic potency with chronic inotropic actions.
Collapse
|
19
|
Rohde D, Busch M, Volkert A, Ritterhoff J, Katus HA, Peppel K, Most P. Cardiomyocytes, endothelial cells and cardiac fibroblasts: S100A1's triple action in cardiovascular pathophysiology. Future Cardiol 2015; 11:309-21. [PMID: 26021637 PMCID: PMC11544369 DOI: 10.2217/fca.15.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Over the past decade, basic and translational research delivered comprehensive evidence for the relevance of the Ca(2+)-binding protein S100A1 in cardiovascular diseases. Aberrant expression levels of S100A1 surfaced as molecular key defects, driving the pathogenesis of chronic heart failure, arterial and pulmonary hypertension, peripheral artery disease and disturbed myocardial infarction healing. Loss of intracellular S100A1 renders entire Ca(2+)-controlled networks dysfunctional, thereby leading to cardiomyocyte failure and endothelial dysfunction. Lack of S100A1 release in ischemic myocardium compromises cardiac fibroblast function, entailing impaired damage healing. This review focuses on molecular pathways and signaling cascades regulated by S100A1 in cardiomyocytes, endothelial cells and cardiac fibroblasts in order to provide an overview of our current mechanistic understanding of S100A1's action in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- David Rohde
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Martin Busch
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Anne Volkert
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Julia Ritterhoff
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Karsten Peppel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- uniQure GmbH, INF 410, 69120 Heidelberg, Germany
| | - Patrick Most
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- uniQure GmbH, INF 410, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Duarte-Costa S, Castro-Ferreira R, Neves JS, Leite-Moreira AF. S100A1: a major player in cardiovascular performance. Physiol Res 2014; 63:669-81. [PMID: 25157660 DOI: 10.33549/physiolres.932712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium cycling is a major determinant of cardiac function. S100A1 is the most abundant member of the calcium-binding S100 protein family in myocardial tissue. S100A1 interacts with a variety of calcium regulatory proteins such as SERCA2a, ryanodine receptors, L-type calcium channels and Na(+)/Ca(2+) exchangers, thus enhancing calcium cycling. Aside from this major function, S100A1 has an important role in energy balance, myofilament sliding, myofilament calcium sensibility, titin-actin interaction, apoptosis and cardiac remodeling. Apart from its properties regarding cardiomyocytes, S100A1 is also important in vessel relaxation and angiogenesis. S100A1 potentiates cardiac function thus increasing the cardiomyocytes' functional reserve; this is an important feature in heart failure. In fact, S100A1 seems to normalize cardiac function after myocardial infarction. Also, S100A1 is essential in the acute response to adrenergic stimulation. Gene therapy experiments show promising results, although further studies are still needed to reach clinical practice. In this review, we aim to describe the molecular basis and regulatory function of S100A1, exploring its interactions with a myriad of target proteins. We also explore its functional effects on systolic and diastolic function as well as its acute actions. Finally, we discuss S100A1 gene therapy and its progression so far.
Collapse
Affiliation(s)
- S Duarte-Costa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
21
|
Wang W, Asp ML, Guerrero-Serna G, Metzger JM. Differential effects of S100 proteins A2 and A6 on cardiac Ca(2+) cycling and contractile performance. J Mol Cell Cardiol 2014; 72:117-25. [PMID: 24631772 DOI: 10.1016/j.yjmcc.2014.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/07/2014] [Accepted: 03/02/2014] [Indexed: 11/16/2022]
Abstract
Defective intracellular calcium (Ca(2+)) handling is implicated in the pathogenesis of heart failure. Novel approaches targeting both cardiac Ca(2+) release and reuptake processes, such as S100A1, have the potential to rescue the function of failing cardiac myocytes. Here, we show that two members of the S100 Ca(2+) binding protein family, S100A2 and S100A6 that share high sequence homology, differentially influence cardiac Ca(2+) handling and contractility. Cardiac gene expression of S100A2 significantly enhanced both contractile and relaxation performance of rodent and canine cardiac myocytes, mimicking the functional effects of its cardiac homologue, S100A1. To interrogate mechanism, Ca(2+) spark frequency, a measure of the gating of the ryanodine receptor Ca(2+) release channel, was found to be significantly increased by S100A2. Therapeutic testing showed that S100A2 rescued the contractile defects of failing cardiac myocytes. In contrast, cardiac expression of S100A6 had no significant effects on contractility or Ca(2+) handling. These data reveal novel differential effects of S100 proteins on cardiac myocyte performance that may be useful in application to diseased cardiac muscle.
Collapse
Affiliation(s)
- Wang Wang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Michelle L Asp
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Guadalupe Guerrero-Serna
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 PMCID: PMC11848682 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T. Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Julia Ritterhoff
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Philip Raake
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University, Philadelphia, PA 19122, USA
| | - Hugo A. Katus
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrick Most
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Lenarčič Živković M, Zaręba-Kozioł M, Zhukova L, Poznański J, Zhukov I, Wysłouch-Cieszyńska A. Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein. J Biol Chem 2012; 287:40457-70. [PMID: 22989881 DOI: 10.1074/jbc.m112.418392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND S100A1 protein is a proposed target of molecule-guided therapy for heart failure. RESULTS S-Nitrosylation of S100A1 is present in cells, increases Ca(2+) binding, and tunes the overall protein conformation. CONCLUSION Thiol-aromatic molecular switch is responsible for NO-related modification of S100A1 properties. SIGNIFICANCE Post-translational S-nitrosylation may provide functional diversity and specificity to S100A1 and other S100 protein family members. S100A1 is a member of the Ca(2+)-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca(2+) homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys(85) S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca(2+)-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys(85) thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca(2+) signal transmitter sensitive to NO/redox equilibrium within cells.
Collapse
|
24
|
|
25
|
Raake PWJ, Tscheschner H, Reinkober J, Ritterhoff J, Katus HA, Koch WJ, Most P. Gene therapy targets in heart failure: the path to translation. Clin Pharmacol Ther 2011; 90:542-53. [PMID: 21866097 DOI: 10.1038/clpt.2011.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is the common end point of cardiac diseases. Despite the optimization of therapeutic strategies and the consequent overall reduction in HF-related mortality, the key underlying intracellular signal transduction abnormalities have not been addressed directly. In this regard, the gaps in modern HF therapy include derangement of β-adrenergic receptor (β-AR) signaling, Ca(2+) disbalances, cardiac myocyte death, diastolic dysfunction, and monogenetic cardiomyopathies. In this review we discuss the potential of gene therapy to fill these gaps and rectify abnormalities in intracellular signaling. We also examine current vector technology and currently available vector-delivery strategies, and we delineate promising gene therapy structures. Finally, we analyze potential limitations related to the transfer of successful preclinical gene therapy approaches to HF treatment in the clinic, as well as impending strategies aimed at overcoming these limitations.
Collapse
Affiliation(s)
- P W J Raake
- Division of Cardiology, Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Brinks H, Rohde D, Voelkers M, Qiu G, Pleger ST, Herzog N, Rabinowitz J, Ruhparwar A, Silvestry S, Lerchenmüller C, Mather PJ, Eckhart AD, Katus HA, Carrel T, Koch WJ, Most P. S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes. J Am Coll Cardiol 2011; 58:966-73. [PMID: 21851887 PMCID: PMC3919460 DOI: 10.1016/j.jacc.2011.03.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/07/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study investigated the hypothesis whether S100A1 gene therapy can improve pathological key features in human failing ventricular cardiomyocytes (HFCMs). BACKGROUND Depletion of the Ca²⁺-sensor protein S100A1 drives deterioration of cardiac performance toward heart failure (HF) in experimental animal models. Targeted repair of this molecular defect by cardiac-specific S100A1 gene therapy rescued cardiac performance, raising the immanent question of its effects in human failing myocardium. METHODS Enzymatically isolated HFCMs from hearts with severe systolic HF were subjected to S100A1 and control adenoviral gene transfer and contractile performance, calcium handling, signaling, and energy homeostasis were analyzed by video-edge-detection, FURA2-based epifluorescent microscopy, phosphorylation site-specific antibodies, and mitochondrial assays, respectively. RESULTS Genetically targeted therapy employing the human S100A1 cDNA normalized decreased S100A1 protein levels in HFCMs, reversed both contractile dysfunction and negative force-frequency relationship, and improved contractile reserve under beta-adrenergic receptor (β-AR) stimulation independent of cAMP-dependent (PKA) and calmodulin-dependent (CaMKII) kinase activity. S100A1 reversed underlying Ca²⁺ handling abnormalities basally and under β-AR stimulation shown by improved SR Ca²⁺ handling, intracellular Ca²⁺ transients, diastolic Ca²⁺ overload, and diminished susceptibility to arrhythmogenic SR Ca²⁺ leak, respectively. Moreover, S100A1 ameliorated compromised mitochondrial function and restored the phosphocreatine/adenosine-triphosphate ratio. CONCLUSIONS Our results demonstrate for the first time the therapeutic efficacy of genetically reconstituted S100A1 protein levels in HFCMs by reversing pathophysiological features that characterize human failing myocardium. Our findings close a gap in our understanding of S100A1's effects in human cardiomyocytes and strengthen the rationale for future molecular-guided therapy of human HF.
Collapse
Affiliation(s)
- Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Berne, Bern, Switzerland
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David Rohde
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Mirko Voelkers
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Gang Qiu
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell & Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sven T. Pleger
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Nicole Herzog
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Joseph Rabinowitz
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arjang Ruhparwar
- Division of Cardiac Surgery, Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Scott Silvestry
- Division of Cardiothoracic Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carolin Lerchenmüller
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell & Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Paul J. Mather
- Advanced Heart Failure and Cardiac Transplant Center, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrea D. Eckhart
- Eugene Feiner Laboratory for Vascular Biology and Thrombosis, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hugo A. Katus
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Thierry Carrel
- Department of Cardiac and Vascular Surgery, University Hospital Berne, Bern, Switzerland
| | - Walter J. Koch
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrick Most
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell & Gene Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
- Institute for Molecular and Translational Cardiology, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Prosser BL, Hernández-Ochoa EO, Schneider MF. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium 2011; 50:323-31. [PMID: 21784520 DOI: 10.1016/j.ceca.2011.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/05/2011] [Indexed: 11/16/2022]
Abstract
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation-contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation-contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation-contraction coupling.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology (BioMET), Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
28
|
Doroudgar S, Glembotski CC. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol Med 2011; 17:207-14. [PMID: 21277256 DOI: 10.1016/j.molmed.2010.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/22/2022]
Abstract
Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, stresses such as ischemia can impair the folding of secreted proteins. Paradoxically, cells rely on secreted proteins to mount a response designed to resist stress-induced damage. This review examines this paradox using proteins secreted from the heart, cardiokines, as examples, and focuses on how the ischemic heart maintains or even increases the release of select cardiokines that regulate important cellular processes in the heart, including excitation-contraction coupling, hypertrophic growth, myocardial remodeling and stem cell function, in ways that moderate ischemic damage and enhance cardiac repair.
Collapse
Affiliation(s)
- Shirin Doroudgar
- SDSU Heart Institute and the Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | |
Collapse
|
29
|
Brinks H, Boucher M, Gao E, Chuprun JK, Pesant S, Raake PW, Huang ZM, Wang X, Qiu G, Gumpert A, Harris DM, Eckhart AD, Most P, Koch WJ. Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ Res 2010; 107:1140-9. [PMID: 20814022 DOI: 10.1161/circresaha.110.221010] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function. OBJECTIVE A loss of cardiac GRK2 activity is known to arrest progression of heart failure (HF), at least in part by normalization of cardiac β-adrenergic receptor (βAR) signaling. Chronic HF studies have been performed with GRK2 knockout mice, as well as expression of the βARKct, a peptide inhibitor of GRK2 activity. This study was conducted to examine the role of GRK2 and its activity during acute myocardial ischemic injury using an I/R model. METHODS AND RESULTS We demonstrate, using cardiac-specific GRK2 and βARKct-expressing transgenic mice, a deleterious effect of GRK2 on in vivo myocardial I/R injury with βARKct imparting cardioprotection. Post-I/R infarct size was greater in GRK2-overexpressing mice (45.0±2.8% versus 31.3±2.3% in controls) and significantly smaller in βARKct mice (16.8±1.3%, P<0.05). Importantly, in vivo apoptosis was found to be consistent with these reciprocal effects on post-I/R myocardial injury when levels of GRK2 activity were altered. Moreover, these results were reflected by higher Akt activation and induction of NO production via βARKct, and these antiapoptotic/survival effects could be recapitulated in vitro. Interestingly, selective antagonism of β(2)ARs abolished βARKct-mediated cardioprotection, suggesting that enhanced GRK2 activity on this GPCR is deleterious to cardiac myocyte survival. CONCLUSION The novel effect of reducing acute ischemic myocardial injury via increased Akt activity and NO production adds significantly to the therapeutic potential of GRK2 inhibition with the βARKct not only in chronic HF but also potentially in acute ischemic injury conditions.
Collapse
Affiliation(s)
- Henriette Brinks
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials. J Mol Cell Cardiol 2010; 50:777-84. [PMID: 20732326 DOI: 10.1016/j.yjmcc.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/23/2022]
Abstract
Representing the common endpoint of various cardiovascular disorders, heart failure (HF) shows a dramatically growing prevalence. As currently available therapeutic strategies are not capable of terminating the progress of the disease, HF is still associated with a poor clinical prognosis. Among the underlying molecular mechanisms, the loss of cardiomyocyte Ca(2+) cycling integrity plays a key role in the pathophysiological development and progression of the disease. The cardiomyocyte EF-hand Ca(2+) sensor protein S100A1 emerged as a regulator both of sarcoplasmic reticulum (SR), sarcomere and mitochondrial function implicating a significant role in cardiac physiology and dysfunction. In this review, we aim to recapitulate the translation of S100A1-based investigation from first clinical observations over basic research experiments back to a near-clinical setting on the verge of clinical trials today. We also address needs for further developments towards "second-generation" gene therapy and discuss the therapeutic potential of S100A1 gene therapy for HF as a promising novel strategy for future cardiologists. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
|
31
|
Degeorge BR, Rosenberg M, Eckstein V, Gao E, Herzog N, Katus HA, Koch WJ, Frey N, Most P. BMP-2 and FGF-2 synergistically facilitate adoption of a cardiac phenotype in somatic bone marrow c-kit+/Sca-1+ stem cells. Clin Transl Sci 2010; 1:116-25. [PMID: 20443832 DOI: 10.1111/j.1752-8062.2008.00034.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to explore the effect of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2)- paracrine factors implicated in both cardiac embryogenesis and cardiac repair following myocardial infarction (MI)-on murine bone marrow stem cell (mBMSC) differentiation in an ex vivo cardiac microenvironment. For this purpose, green fluorescent protein (GFP) expressing hematopoietic lineage negative (lin-) c-kit ligand (c-kit) and stem cell antigen-1 (Sca-1) positive (GFP-lin-/c-kit+/sca+) mBMSC were co-cultured with neonatal rat ventricular cardiomyocytes (NVCMs). GFP+ mBMSC significantly induced the expression of BMP-2 and FGF-2 in NVCMs, and approximately 4% GFP+ mBMSCs could be recovered from the co-culture at day 10. The addition of BMP-2 in concert with FGF-2 significantly enhanced the amount of integrated GFP+ mBMSCs by 5-fold ( approximately 20%), whereas the addition of anti-BMP-2 and/or anti-FGF-2 antibodies completely abolished this effect. An analysis of calcium cycling revealed robust calcium transients in GFP+ mBMSCs treated with BMP-2/FGF-2 compared to untreated co-cultures. BMP-2 and FGF-2 addition led to a significant induction of early (NK2 transcription factor related, locus 5; Nkx2.5, GATA binding protein 4; GATA-4) and late (myosin light chain kinase [MLC-2v], connexin 43 [Cx43]) cardiac marker mRNA expression in mBMSCs following co-culture. In addition, re-cultured fluorescence-activated cell sorting (FACS)-purified BMP-2/FGF-2-treated mBMSCs revealed robust calcium transients in response to electrical field stimulation which were inhibited by the L-type calcium channel (LTCC) inhibitor, nifedipine, and displayed caffeine-sensitive intracellular calcium stores. In summary, our results show that mBMSCs can adopt a functional cardiac phenotype through treatment with factors essential to embryonic cardiogenesis that are induced after cardiac ischemia. This study provides the first evidence that mBMSCs with long-term self-renewal potential possess the capability to serve as a functional cardiomyocyte precursor through the appropriate paracrine input and cross-talk within an appropriate cardiac microenvironment.
Collapse
Affiliation(s)
- Brent R Degeorge
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P. S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res 2010; 3:525-37. [PMID: 20645037 PMCID: PMC2933808 DOI: 10.1007/s12265-010-9211-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/02/2010] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca(2+) binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interact with both the sarcoplasmic reticulum ATPase (SERCA2a) and the ryanodine receptor 2 (RyR2), resulting in substantially improved Ca(2+) handling and contractile performance. Additionally, S100A1 has been described to target the cardiac sarcomere and mitochondria, leading to reduced pre-contractile passive tension as well as enhanced oxidative energy generation. In endothelial cells, molecular analyses revealed a stimulatory effect of S100A1 on endothelial NO production by increasing endothelial nitric oxide synthase activity. Emphasizing the pathophysiological relevance of S100A1, myocardial infarction in S100A1 knockout mice resulted in accelerated transition towards heart failure and excessive mortality in comparison with wild-type controls. Mice lacking S100A1 furthermore displayed significantly elevated blood pressure values with abrogated responsiveness to bradykinin. On the other hand, numerous studies in small and large animal heart failure models showed that S100A1 overexpression results in reversed maladaptive myocardial remodeling, long-term rescue of contractile performance, and superior survival in response to myocardial infarction, indicating the potential of S100A1-based therapeutic interventions. In summary, elaborate basic and translational research established S100A1 as a multifaceted therapeutic target in cardiovascular disease, providing a promising novel therapeutic strategy to future cardiologists.
Collapse
Affiliation(s)
- David Rohde
- Laboratory for Molecular and Translational Cardiology, Division of Cardiology, Department of Internal Medicine III, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
S100A1, a small EF-hand Ca(2+)-binding protein with intracellular and extracellular functions, is predominantly expressed in cardiac muscle where it plays a crucial role as a modulator of Ca(2+) homeostasis, energy metabolism and contractile performance. Essentially, its beneficial effects on heart function have been attributed to its direct interaction with, and effects on, sarcoplasmic reticulum calcium handling proteins sarco(endo) plasmic reticulum Ca(2+) ATPase and the ryanodine receptor. Downregulated levels of S100A1 in cardiomyocytes postmyocardial infarction have been linked to diminished cardiac reserve and contribute to the development of heart failure. Interestingly, S100A1 expression has recently been described in endothelial cells where it is downregulated in heart failure and has been shown to modulate intracellular Ca(2+) levels and nitric oxide production. Absence of the Ca(2+) sensor protein in endothelial cells is associated with endothelial dysfunction and hypertension. Thus, S100A1 is emerging as a potential therapeutic target for diverse cardiovascular conditions.
Collapse
|
34
|
S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function. J Biomed Biotechnol 2010; 2010:178614. [PMID: 20368797 PMCID: PMC2846685 DOI: 10.1155/2010/178614] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/12/2010] [Indexed: 12/04/2022] Open
Abstract
Calcium (Ca2+) signaling plays a key role in a wide range of physiological functions including control of cardiac and skeletal muscle performance. To assure a precise coordination of both temporally and spatially transduction of intracellular Ca2+ oscillations to downstream signaling networks and target operations, Ca2+ cycling regulation in muscle tissue is conducted by a plethora of diverse molecules. Ca2+ S100A1 is a member of the Ca2+-binding S100 protein family and represents the most abundant S100 isoform in cardiac and skeletal muscle. Early studies revealed distinct expression patterns of S100A1 in healthy and diseased cardiac tissue from animal models and humans. Further elaborate investigations uncovered S100A1 protein as a basic requirement for striated muscle Ca2+ handling integrity. S100A1 is a critical regulator of cardiomyocyte Ca2+ cycling and contractile performance. S100A1-mediated inotropy unfolds independent and on top of βAR-stimulated contractility with unchanged βAR downstream signaling.
S100A1 has further been detected at different sites within the cardiac sarcomere indicating potential roles in myofilament function. More recently, a study reported a mitochondrial location of S100A1 in cardiomyocytes. Additionally, normalizing the level of S100A1 protein by means of viral cardiac gene transfer in animal heart failure models resulted in a disrupted progression towards cardiac failure and enhanced survival. This brief review is confined to the physiological and pathophysiological relevance of S100A1 in cardiac and skeletal muscle Ca2+ handling with a particular focus on its potential as a molecular target for future therapeutic interventions.
Collapse
|
35
|
Liman N, Alan E, Beyaz F. Immunohistochemical Demonstration of S-100 Protein in the Chicken Uropygial Gland During the Post-Hatching Period. Zoolog Sci 2009; 26:600-7. [DOI: 10.2108/zsj.26.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P. S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 2009; 47:445-55. [PMID: 19538970 DOI: 10.1016/j.yjmcc.2009.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 11/26/2022]
Abstract
Calcium (Ca(2+)) signaling plays a major role in a wide range of physiological functions including control and regulation of cardiac and skeletal muscle performance and vascular tone. As all Ca(2+) signals require proteins to relay intracellular Ca(2+) oscillations downstream to different signaling networks, a specific toolkit of Ca(2+)-sensor proteins involving members of the EF-hand S100 Ca(2+) binding protein superfamily maintains the integrity of the Ca(2+) signaling in a variety of cardiac and vascular cells, transmitting the message with great precision and in a temporally and spatially coordinated manner. Indeed, the possibility that S100 proteins might contribute to heart and vascular diseases was first suggested by the discovery of distinctive patterns of S100 expression in healthy and diseased hearts and vasculature from humans and animal heart failure (HF) models. Based on more elaborate genetic studies in mice and strategies to manipulate S100 protein expression in human cardiac, skeletal muscle and vascular cells, it is now apparent that the integrity of distinct S100 protein isoforms in striated muscle and vascular cells such as S100A1, S100A4, S100A6, S100A8/A9 or S100B is a basic requirement for normal cardiovascular and muscular development and function; loss of integrity would naturally lead to profound deregulation of the implicated Ca(2+) signaling systems with detrimental consequences to cardiac, skeletal muscle, and vascular function. The brief debate and discussion here are confined by design to the biological actions and pathophysiological relevance of the EF-hand Ca(2+)-sensor protein S100A1 in the heart, vasculature and skeletal muscle with a particular focus on current translational therapeutic strategies. By virtue of its ability to modulate the activity of numerous key effector proteins that are essentially involved in the control of Ca(2+) and NO homeostasis in cardiac, skeletal muscle and vascular cells, S100A1 has been proven to play a critical role both in cardiac performance, blood pressure regulation and skeletal muscle function. Given that deregulated S100A1 expression in cardiomyocytes and endothelial cells has recently been linked to heart failure and hypertension, it is arguably a molecular target of considerable clinical interest as S100A1 targeted therapies have already been successfully investigated in preclinical translational studies.
Collapse
Affiliation(s)
- Carolin Kraus
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell and Gene Therapy Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wright NT, Cannon BR, Zimmer DB, Weber DJ. S100A1: Structure, Function, and Therapeutic Potential. ACTA ACUST UNITED AC 2009; 3:138-145. [PMID: 19890475 DOI: 10.2174/187231309788166460] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100A1 is a member of the S100 family of calcium-binding proteins. As with most S100 proteins, S100A1 undergoes a large conformational change upon binding calcium as necessary to interact with numerous protein targets. Targets of S100A1 include proteins involved in calcium signaling (ryanidine receptors 1 & 2, Serca2a, phopholamban), neurotransmitter release (synapsins I & II), cytoskeletal and filament associated proteins (CapZ, microtubules, intermediate filaments, tau, mocrofilaments, desmin, tubulin, F-actin, titin, and the glial fibrillary acidic protein GFAP), transcription factors and their regulators (e.g. myoD, p53), enzymes (e.g. aldolase, phosphoglucomutase, malate dehydrogenase, glycogen phosphorylase, photoreceptor guanyl cyclases, adenylate cyclases, glyceraldehydes-3-phosphate dehydrogenase, twitchin kinase, Ndr kinase, and F1 ATP synthase), and other Ca2+-activated proteins (annexins V & VI, S100B, S100A4, S100P, and other S100 proteins). There is also a growing interest in developing inhibitors of S100A1 since they may be beneficial for treating a variety of human diseases including neurological diseases, diabetes mellitus, heart failure, and several types of cancer. The absence of significant phenotypes in S100A1 knockout mice provides some early indication that an S100A1 antagonist could have minimal side effects in normal tissues. However, development of S100A1-mediated therapies is complicated by S100A1's unusual ability to function as both an intracellular signaling molecule and as a secreted protein. Additionally, many S100A1 protein targets have only recently been identified, and so fully characterizing both these S100A1-target complexes and their resulting functions is a necessary prerequisite.
Collapse
Affiliation(s)
- Nathan T Wright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, Maryland, 21201
| | | | | | | |
Collapse
|
38
|
Desjardins JF, Pourdjabbar A, Quan A, Leong-Poi H, Teichert-Kuliszewska K, Verma S, Parker TG. Lack of S100A1 in mice confers a gender-dependent hypertensive phenotype and increased mortality after myocardial infarction. Am J Physiol Heart Circ Physiol 2009; 296:H1457-65. [PMID: 19286962 DOI: 10.1152/ajpheart.00088.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100A1 is a small Ca(2+)-binding protein expressed in the myocardium and blood vessels that is downregulated in the diseased heart and plays a role in the regulation of cardiac muscle Ca(2+) homeostasis and contractility. To understand its physiological role under basal conditions and after myocardial infarction (MI), we used a mouse strain with targeted deletion of the S100A1 gene [S100A1 knockout (KO) mice]. We compared 49 wild-type (WT) and 56 S100A1 KO mice (6-8 wk old) over 28 days after MI with sham-operated controls. We also examined the effect of S100A1 deficiency on vascular function of isolated blood vessels. S100A1 KO mice demonstrated worse survival compared with WT mice (21% vs. 69%, respectively, P < 0.001). Hemodynamic evaluation revealed a higher mean arterial pressure (MAP) in sham-operated KO animals compared with WT animals (99 +/- 4 vs. 77 +/- 3 mmHg, respectively, P < 0.001) that persisted in both groups after MI (86 +/- 2 vs. 66 +/- 4 mmHg, respectively, P < 0.001). Sham-operated male S100A1 KO mice had higher MAP than female KO mice (122 +/- 5 vs. 93 +/- 3 mmHg, respectively P < 0.05) and reduced survival after MI (4% vs. 27%, respectively, P < 0.05). In isolated aortas and mesenteric arteries, ACh-evoked vasodilatation in KO mice was significantly reduced compared with WT mice (P < 0.05). Nitric oxide production was reduced in endothelial cells isolated from KO mice. Thus, absence of S100A1 results in acute functional impairment and high mortality after MI associated with a gender-specific hypertensive phenotype. S100A1 appears to play a role in the endothelium-dependent regulation of blood pressure.
Collapse
Affiliation(s)
- Jean-Francois Desjardins
- Division of Cardiology, St. Michael's Hospital, University of Toronto, 30 Bond St., Rm. 6-044, Queen Wing, Toronto, ON, Canada M5B 1W8
| | | | | | | | | | | | | |
Collapse
|
39
|
Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:993-1007. [PMID: 19121341 DOI: 10.1016/j.bbamcr.2008.11.016] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The Receptor for Advanced Glycation Endproducts (RAGE) is a multi-ligand receptor of the immunoglobulin family. RAGE interacts with structurally different ligands probably through the oligomerization of the receptor on the cell surface. However, the exact mechanism is unknown. Among RAGE ligands are members of the S100 protein family. S100 proteins are small calcium binding proteins with high structural homology. Several members of the family have been shown to interact with RAGE in vitro or in cell-based assays. Interestingly, many RAGE ligands appear to interact with distinct domains of the extracellular portion of RAGE and to trigger various cellular effects. In this review, we summarize the modes of S100 protein-RAGE interaction with regard to their cellular functions.
Collapse
Affiliation(s)
- Estelle Leclerc
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Fl 33431, USA
| | | | | | | |
Collapse
|
40
|
Boyd JH, Kan B, Roberts H, Wang Y, Walley KR. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res 2008; 102:1239-46. [PMID: 18403730 DOI: 10.1161/circresaha.107.167544] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiovascular dysfunction as a result of sepsis is the leading cause of death in the critically ill. Cardiomyocytes respond to infectious pathogens with a Toll-like receptor-initiated proinflammatory response in conjunction with a decrease in contractility, although the downstream events linking Toll-like receptor activation and reduced cardiac contractility remain to be elucidated. Using microarray analysis of cardiac tissue exposed to systemic lipopolysaccharide (LPS), we discovered that 2 small calcium-regulating proteins (S100A8 and S100A9) are highly upregulated. HL-1 cardiomyocytes, isolated primary cardiomyocytes, and live mice were exposed to LPS, whereas beating HL-1 cells had S100A8 and S100A9 overexpressed and their calcium flux quantified. Using in vivo microbubble technology, we delivered S100A8 and S100A9 to normal mouse hearts; using the same technology, we inhibited S100A9 production in mouse hearts and subsequently exposed them to LPS. Coimmunoprecipitation of S100A8 and S100A9 identified interaction with RAGE (the receptor for advanced glycation end products), the cardiac function and postreceptor signaling of which were investigated. HL-1 cardiomyocytes, isolated primary cardiomyocytes, and whole hearts exposed to LPS have large increases in S100A8 and S100A9. Cardiac overexpression of S100A8 and S100A9 led to a RAGE-dependent decrease in calcium flux and, in the intact mouse, to a decreased cardiac ejection fraction, whereas knockdown of S100A9 attenuated LPS-induced cardiac dysfunction. Cardiomyocytes exposed to LPS express S100A8 and S100A9, leading to a RAGE-mediated decrease in cardiomyocyte contractility. This finding provides a novel mechanistic link between circulating pathogen-associated molecular products and subsequent cardiac dysfunction.
Collapse
Affiliation(s)
- John H Boyd
- Critical Care Research Laboratories, St. Paul' Hospital, University of British Columbia, Vancouver, Canada.
| | | | | | | | | |
Collapse
|
41
|
Most P, Remppis A, Pleger ST, Katus HA, Koch WJ. S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am J Physiol Regul Integr Comp Physiol 2007; 293:R568-77. [PMID: 17459908 DOI: 10.1152/ajpregu.00075.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we review the considerable body of evidence that has accumulated to support the notion of S100A1, a cardiac-specific Ca2+-sensor protein of the EF-hand type, as a physiological regulator of excitation-contraction coupling and inotropic reserve mechanisms in the mammalian heart. In particular, molecular mechanisms will be discussed conveying the Ca2+-dependent inotropic actions of S100A1 protein in cardiomyocytes occurring independently of β-adrenergic signaling. Moreover, we will shed light on the molecular structure-function relationship of S100A1 with its cardiac target proteins at the sarcoplasmic reticulum, the sarcomere, and the mitochondria. Furthermore, pathophysiological consequences of disturbed S100A1 protein expression on altered Ca2+handling and intertwined systems in failing myocardium will be highlighted. Subsequently, therapeutic options by means of genetic manipulation of cardiac S100A1 expression will be discussed, aiming to complete our current understanding of the role of S100A1 in diseased myocardium.
Collapse
Affiliation(s)
- Patrick Most
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell and Gene Therapy, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
42
|
Pleger ST, Boucher M, Most P, Koch WJ. Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J Card Fail 2007; 13:401-14. [PMID: 17602988 DOI: 10.1016/j.cardfail.2007.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality in Western countries and projections reveal that HF incidence in the coming years will rise significantly because of an aging population. Pharmacologic therapy has considerably improved HF treatment during the last 2 decades, but fails to rescue failing myocardium and to increase global cardiac function. Therefore, novel therapeutic approaches to target the underlying molecular defects of ventricular dysfunction and to increase the outcome of patients in HF are needed. Failing myocardium generally exhibits distinct changes in beta-adrenergic receptor (betaAR) signaling and intracellular Ca2+-handling providing opportunities for research. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies to alter myocardial function and to target both betaAR signaling and Ca2+-cycling. In this review, we will discuss functional alterations of the betaAR system and Ca2+-handling in HF as well as corresponding therapeutic strategies. We will then focus on recent in vivo gene therapy strategies using the targeted inhibition of the betaAR kinase (betaARK1 or GRK2) and the restoration of S100A1 protein expression to support the injured heart and to reverse or prevent HF.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/physiology
- Cardiomyopathy, Hypertrophic/physiopathology
- Cardiomyopathy, Hypertrophic/therapy
- Disease Models, Animal
- G-Protein-Coupled Receptor Kinase 1/blood
- G-Protein-Coupled Receptor Kinase 1/physiology
- G-Protein-Coupled Receptor Kinase 2
- GTP-Binding Protein alpha Subunits/metabolism
- Genetic Therapy
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/therapy
- Humans
- Myocardial Contraction/physiology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- S100 Proteins/metabolism
- beta-Adrenergic Receptor Kinases/metabolism
- beta-Adrenergic Receptor Kinases/physiology
Collapse
Affiliation(s)
- Sven T Pleger
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
43
|
Guan K, Wagner S, Unsöld B, Maier LS, Kaiser D, Hemmerlein B, Nayernia K, Engel W, Hasenfuss G. Generation of Functional Cardiomyocytes From Adult Mouse Spermatogonial Stem Cells. Circ Res 2007; 100:1615-25. [PMID: 17478732 DOI: 10.1161/01.res.0000269182.22798.d9] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cell–based therapy is a promising approach for the treatment of heart failure. Adult stem cells with the pluripotency of embryonic stem cells (ESCs) would be an ideal cell source. Recently, we reported the successful establishment of multipotent adult germline stem cells (maGSCs) from mouse testis. These cultured maGSCs show phenotypic characteristics similar to ESCs and can spontaneously differentiate into cells from all 3 germ layers. In the present study, we used the hanging drop method to differentiate maGSCs into cardiomyocytes and analyzed their functional properties. Differentiation efficiency of beating cardiomyocytes from maGSCs was similar to that from ESCs. The maGSC-derived cardiomyocytes expressed cardiac-specific L-type Ca
2+
channels and responded to Ca
2+
channel–modulating drugs. Cx43 was expressed at cell-to-cell contacts in cardiac clusters, and fluorescence recovery after photobleaching assay showed the presence of functional gap junctions among cardiomyocytes. Action potential analyses demonstrated the presence of pacemaker-, ventricle-, atrial-, and Purkinje-like cardiomyocytes. Stimulation with isoproterenol resulted in a significant increase in beating frequency, whereas the addition of cadmium chloride abolished spontaneous electrical activity. Confocal microscopy analysis of intracellular Ca
2+
in maGSC-derived cardiomyocytes showed that calcium increased periodically throughout the cell in a homogenous fashion, pointing to a fine regulated Ca
2+
release from intracellular Ca
2+
stores. By using line-scan mode, we found rhythmic Ca
2+
transients. Furthermore, we transplanted maGSCs into normal hearts of mice and found that maGSCs were able to proliferate and differentiate. No tumor formation was found up to 1 month after cell transplantation. Taken together, we believe that maGSCs provide a new source of distinct types of cardiomyocytes for basic research and potential therapeutic application.
Collapse
Affiliation(s)
- Kaomei Guan
- Department of Cardiology and Pneumology, Georg-August-University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Reppel M, Fleischmann BK, Reuter H, Pillekamp F, Schunkert H, Hescheler J. Regulation of Na+/Ca2+ exchange current in the normal and failing heart. Ann N Y Acad Sci 2007; 1099:361-72. [PMID: 17446476 DOI: 10.1196/annals.1387.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cardiac NCX is modulated by diverse regulatory elements. Although there is consensus about the regulatory function of Na+ and Ca2+ and other elements, for example, ATP, there is still a controversial debate about the functional role of cyclic nucleotides and protein kinases. Future studies should focus on that topic since disturbances of cAMP/cGMP concentration and kinase activity may lead to severe functional disorders in the diseased heart. S100A1 is presumably a novel regulator of NCX.
Collapse
Affiliation(s)
- Michael Reppel
- Institute of Neurophysiology, University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W, Gao E, Dasgupta A, Rengo G, Remppis A, Katus HA, Eckhart AD, Rabinowitz JE, Koch WJ. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 2007; 115:2506-15. [PMID: 17470693 DOI: 10.1161/circulationaha.106.671701] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The incidence of heart failure is ever-growing, and it is urgent to develop improved treatments. An attractive approach is gene therapy; however, the clinical barrier has yet to be broken because of several issues, including the lack of an ideal vector supporting safe and long-term myocardial transgene expression. METHODS AND RESULTS Here, we show that the use of a recombinant adeno-associated viral (rAAV6) vector containing a novel cardiac-selective enhancer/promoter element can direct stable cardiac expression of a therapeutic transgene, the calcium (Ca2+)-sensing S100A1, in a rat model of heart failure. The chronic heart failure-rescuing properties of myocardial S100A1 expression, the result of improved sarcoplasmic reticulum Ca2+ handling, included improved contractile function and left ventricular remodeling. Adding to the clinical relevance, long-term S100A1 therapy had unique and additive beneficial effects over beta-adrenergic receptor blockade, a current pharmacological heart failure treatment. CONCLUSIONS These findings demonstrate that stable increased expression of S100A1 in the failing heart can be used for long-term reversal of LV dysfunction and remodeling. Thus, long-term, cardiac-targeted rAAV6-S100A1 gene therapy may be of potential clinical utility in human heart failure.
Collapse
Affiliation(s)
- Sven T Pleger
- Center for Translational Medicine and George Zallie and Family Laboratory of Cardiovascular Gene Therapy, Thomas Jefferson University, 1025 Walnut St, Room 317, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ, Aebi U, Schoenenberger CA. Ca2+ -dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol Cell Biol 2007; 27:4365-73. [PMID: 17438143 PMCID: PMC1900044 DOI: 10.1128/mcb.02045-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
S100A1, a Ca(2+)-sensing protein of the EF-hand family that is expressed predominantly in cardiac muscle, plays a pivotal role in cardiac contractility in vitro and in vivo. It has recently been demonstrated that by restoring Ca(2+) homeostasis, S100A1 was able to rescue contractile dysfunction in failing rat hearts. Myocardial contractility is regulated not only by Ca(2+) homeostasis but also by energy metabolism, in particular the production of ATP. Here, we report a novel interaction of S100A1 with mitochondrial F(1)-ATPase, which affects F(1)-ATPase activity and cellular ATP production. In particular, cardiomyocytes that overexpress S100A1 exhibited a higher ATP content than control cells, whereas knockdown of S100A1 expression decreased ATP levels. In pull-down experiments, we identified the alpha- and beta-chain of F(1)-ATPase to interact with S100A1 in a Ca(2+)-dependent manner. The interaction was confirmed by colocalization studies of S100A1 and F(1)-ATPase and the analysis of the S100A1-F(1)-ATPase complex by gel filtration chromatography. The functional impact of this association is highlighted by an S100A1-mediated increase of F(1)-ATPase activity. Consistently, ATP synthase activity is reduced in cardiomyocytes from S100A1 knockout mice. Our data indicate that S100A1 might play a key role in cardiac energy metabolism.
Collapse
MESH Headings
- Adenosine Triphosphate/analysis
- Adenoviridae/genetics
- Animals
- Calcium/metabolism
- Cells, Cultured
- Fluorescent Antibody Technique, Indirect
- Genes, Reporter
- Glutathione Transferase/metabolism
- Green Fluorescent Proteins/metabolism
- Heart Ventricles/cytology
- Luciferases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Myocytes, Cardiac/chemistry
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Proton-Translocating ATPases/genetics
- Proton-Translocating ATPases/isolation & purification
- Proton-Translocating ATPases/metabolism
- Proton-Translocating ATPases/ultrastructure
- RNA Interference
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- S100 Proteins/genetics
- S100 Proteins/isolation & purification
- S100 Proteins/metabolism
- S100 Proteins/ultrastructure
Collapse
Affiliation(s)
- Melanie Boerries
- Maurice E Mueller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Völkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR, Wegner FV, Friedrich O, Fink RHA, Koch WJ, Smith GL, Most P. S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium 2007; 41:135-43. [PMID: 16919727 DOI: 10.1016/j.ceca.2006.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
S100A1, a Ca2+-sensor protein of the EF-hand type, exerts positive inotropic effects in the heart via enhanced cardiac ryanodine receptor (RyR2) activity. Here we report that S100A1 protein (0.1microM) interacts with the RyR2 in resting permeabilized cardiomyocytes at free Ca2+-levels comparable to diastolic Ca2+-concentrations ( approximately 150nM). Alterations of RyR2 function due to S100A1 binding was assessed via analysis of Ca2+-spark characteristics. Ca2+-spark frequency, amplitude and duration were all reduced upon perfusion with 0.1microM S100A1 protein by 38%, 14% and 18%, respectively. Most likely, these effects were conveyed through the S100A1 C-terminus (S100A1-ct; amino acids 75-94) as the corresponding S100A1-ct peptide (0.1microM) inhibited S100A1 protein binding to the RyR2 and similarly attenuated frequency, amplitude and duration of Ca2+-sparks by 52%, 8% and 26%, respectively. Accordingly, the sarcoplasmic reticulum (SR) Ca2+-content was slightly increased but the stoichiometry of other accessory RyR2 modulators (sorcin/FKBP12.6) remained unaltered by S100A1. Hence, we propose S100A1 as a novel inhibitory modulator of RyR2 function at diastolic Ca2+-concentrations in rabbit ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Internal Medicine III, Laboratory for Cardiac Stem Cell and Gene Therapy, Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The S100 proteins are exclusively expressed in vertebrates and are the largest subgroup within the superfamily of EF-hand Ca2(+)-binding proteins Generally, S100 proteins are organized as tight homodimers (some as heterodimers). Each subunit is composed of a C-terminal, 'canonical' EF-hand, common to all EF-hand proteins, and a N-terminal, 'pseudo' EF-hand, characteristic of S100 proteins. Upon Ca2(+)-binding, the C-terminal EF-hand undergoes a large conformational change resulting in the exposure of a hydrophobic surface responsible for target binding A unique feature of this protein family is that some members are secreted from cells upon stimulation, exerting cytokine- and chemokine-like extracellular activities via the Receptor for Advanced Glycation Endproducts, RAGE. Recently, larger assemblies of some S100 proteins (hexamers, tetramers, octamers) have been also observed and are suggested to be the active extracellular species required for receptor binding and activation through receptor multimerization Most S100 genes are located in a gene cluster on human chromosome 1q21, a region frequently rearranged in human cancer The functional diversification of S100 proteins is achieved by their specific cell- and tissue-expression patterns, structural variations, different metal ion binding properties (Ca2+, Zn2+ and Cu2+) as well as their ability to form homo-, hetero- and oligomeric assemblies Here, we review the most recent developments focussing on the biological functions of the S100 proteins and we discuss the presently available S100-specific mouse models and their possible use as human disease models In addition, the S100-RAGE interaction and the activation of various cellular pathways will be discussed. Finally, the close association of S100 proteins with cardiomyopathy, cancer, inflammation and brain diseases is summarized as well as their use in diagnosis and their potential as drug targets to improve therapies in the future.
Collapse
Affiliation(s)
- C W Heizmann
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Switzerland.
| | | | | |
Collapse
|
49
|
Most P, Koch WJ. S100A1: a calcium-modulating inotropic prototype for future clinical heart failure therapy. Future Cardiol 2007; 3:5-11. [DOI: 10.2217/14796678.3.1.5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Patrick Most
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| |
Collapse
|
50
|
Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR, Eckhart AD, Feldman AM, Koch WJ. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 2006; 114:1258-68. [PMID: 16952982 DOI: 10.1161/circulationaha.106.622415] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diminished cardiac S100A1 protein levels are characteristic of ischemic and dilated human cardiomyopathy. Because S100A1 has recently been identified as a Ca2+-dependent inotropic factor in the heart, this study sought to explore the pathophysiological relevance of S100A1 levels in development and progression of postischemic heart failure (HF). METHODS AND RESULTS S100A1-transgenic (STG) and S100A1-knockout (SKO) mice were subjected to myocardial infarction (MI) by surgical left anterior descending coronary artery ligation, and survival, cardiac function, and remodeling were compared with nontransgenic littermate control (NLC) and wild-type (WT) animals up to 4 weeks. Although MI size was similar in all groups, infarcted S100A1-deficient hearts (SKO-MI) responded with acute contractile decompensation and accelerated transition to HF, rapid onset of cardiac remodeling with augmented apoptosis, and excessive mortality. NLC/WT-MI mice, displaying a progressive decrease in cardiac S100A1 expression, showed a later onset of cardiac remodeling and progression to HF. Infarcted S100A1-overexpressing hearts (STG-MI), however, showed preserved global contractile performance, abrogated apoptosis, and prevention from cardiac hypertrophy and HF with superior survival compared with NLC/WT-MI and SKO-MI. Both Gq-protein-dependent signaling and protein kinase C activation resulted in decreased cardiac S100A1 mRNA and protein levels, whereas Gs-protein-related signaling exerted opposite effects on cardiac S100A1 abundance. Mechanistically, sarcoplasmic reticulum Ca2+ cycling and beta-adrenergic signaling were severely impaired in SKO-MI myocardium but preserved in STG-MI. CONCLUSIONS Our novel proof-of-concept study provides evidence that downregulation of S100A1 protein critically contributes to contractile dysfunction of the diseased heart, which is potentially responsible for driving the progressive downhill clinical course of patients with HF.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Calcium-Transporting ATPases/genetics
- Calcium-Transporting ATPases/metabolism
- Cardiac Output, Low/etiology
- Cardiac Output, Low/physiopathology
- Cardiac Output, Low/prevention & control
- Cyclic AMP/physiology
- Disease Progression
- Down-Regulation
- GTP-Binding Protein alpha Subunits, Gs/physiology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Myocardial Contraction/genetics
- Myocardial Contraction/physiology
- Myocardial Infarction/complications
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardium/metabolism
- Myocardium/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta/physiology
- S100 Proteins/genetics
- S100 Proteins/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Ventricular Remodeling/physiology
Collapse
Affiliation(s)
- Patrick Most
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|