1
|
Ren X, Yang J, Wu Z, Ge W, Wang Y, Tian Z. FBLIM1 drives bile duct ligation-induced liver fibrosis by regulating the TGF-β signaling pathway through WTAP-mediated m6A modification. Int Immunopharmacol 2025; 157:114744. [PMID: 40334627 DOI: 10.1016/j.intimp.2025.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Liver fibrosis is one of the main severe pathological consequences of obstructive jaundice, and an effective treatment strategy is urgently needed. Filamin-binding LIM protein 1 (FBLIM1) is associated with fibrosis, however, there is no evidence to show the effect of FBLIM1 on obstructive jaundice. METHODS In our study, we investigated the function of FBLIM1 in bile duct ligation (BDL) rat models and human hepatic stellate cell (HSC) line LX-2. RESULTS Our findings confirmed that FBLIM1 was highly expressed in liver tissues of BDL rats. Liver histopathological injury, liver fibrosis, and inflammation response in BDL rats were attenuated by FBLIM1 knockdown. Moreover, FBLIM1 knockdown blocked the TGF-β signaling pathway in BDL rats. The results in TGF-β1-stimulation LX-2 cells further confirmed that FBLIM1 promoted LX-2 cell activation and fibrosis by regulating the TGF-β signaling pathway. FBLIM1 was further demonstrated to be modulated by Wilms's tumor 1-associating protein (WTAP), which was highly expressed in liver tissues of BDL rats. WTAP stabilized FBLIM1 mRNA and regulated FBLIM1 expression in an m6A-dependent manner. CONCLUSION Our findings provide evidence indicating that FBLIM1 promotes liver fibrosis via regulating the TGF-β signaling pathway through WTAP-mediated m6A modification. The WTAP/FBLIM1/TGF-β axis may be a potential therapeutic target against obstructive jaundice.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China; Department of Minimally Invasive Surgery, Fushun Central Hospital, Fushun, China
| | - Jiapeng Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wu
- Department of Radiology, Fushun Central Hospital, Fushun, China
| | - Wenjie Ge
- Department of Pediatric Gastrointestinal Surgery, Guoyao Dongfeng Hospital, Shiyan, China
| | - Yaohui Wang
- Department of Minimally Invasive Surgery, Fushun Central Hospital, Fushun, China.
| | - Zhong Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Borkúti P, Kristó I, Szabó A, Kovács Z, Vilmos P. FERM domain-containing proteins are active components of the cell nucleus. Life Sci Alliance 2024; 7:e202302489. [PMID: 38296350 PMCID: PMC10830384 DOI: 10.26508/lsa.202302489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
The FERM domain is a conserved and widespread protein module that appeared in the common ancestor of amoebae, fungi, and animals, and is therefore now found in a wide variety of species. The primary function of the FERM domain is localizing to the plasma membrane through binding lipids and proteins of the membrane; thus, for a long time, FERM domain-containing proteins (FDCPs) were considered exclusively cytoskeletal. Although their role in the cytoplasm has been extensively studied, the recent discovery of the presence and importance of cytoskeletal proteins in the nucleus suggests that FDCPs might also play an important role in nuclear function. In this review, we collected data on their nuclear localization, transport, and possible functions, which are still scattered throughout the literature, with special regard to the role of the FERM domain in these processes. With this, we would like to draw attention to the exciting, new dimension of the role of FDCPs, their nuclear activity, which could be an interesting novel direction for future research.
Collapse
Affiliation(s)
| | | | - Anikó Szabó
- HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Kovács
- HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Péter Vilmos
- HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
3
|
Wang S, Fan G, Li L, He Y, Lou N, Xie T, Dai L, Gao R, Yang M, Shi Y, Han X. Integrative analyses of bulk and single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a prognostic factor for immunotherapy in NSCLC. Cancer Immunol Immunother 2023; 72:2423-2442. [PMID: 37010552 PMCID: PMC10992286 DOI: 10.1007/s00262-023-03428-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
An emerging view regarding cancer-associated fibroblast (CAF) is that it plays a critical role in tumorigenesis and immunosuppression in the tumor microenvironment (TME), but the clinical significance and biological functions of CAFs in non-small cell lung cancer (NSCLC) are still poorly explored. Here, we aimed to identify the CAF-related signature for NSCLC through integrative analyses of bulk and single-cell genomics, transcriptomics, and proteomics profiling. Using CAF marker genes identified in weighted gene co-expression network analysis (WGCNA), we constructed and validated a CAF-based risk model that stratifies patients into two prognostic groups from four independent NSCLC cohorts. The high-score group exhibits a higher abundance of CAFs, decreased immune cell infiltration, increased epithelial-mesenchymal transition (EMT), activated transforming growth factor beta (TGFβ) signaling, and a limited survival rate compared with the low-score group. Considering the immunosuppressive feature in the high-score group, we speculated an inferior clinical response for immunotherapy in these patients, and this association was successfully verified in two NSCLC cohorts treated with immune checkpoint blockades (ICBs). Furthermore, single-cell RNA sequence datasets were used to clarify the molecular mechanisms underlying the aggressive and immunosuppressive phenotype in the high-score group. We found that one of the genes in the risk model, filamin binding LIM protein 1 (FBLIM1), is mainly expressed in fibroblasts and upregulated in CAFs compared to fibroblasts from normal tissue. FBLIM1-positive CAF subtype was correlated with increased TGFβ expression, higher mesenchymal marker level, and immunosuppressive tumor microenvironment. Finally, we demonstrated that FBLIM1 might serve as a poor prognostic marker for immunotherapy in clinical samples. In conclusion, we identified a novel CAF-based classifier with prognostic value in NSCLC patients and those treated with ICBs. Single-cell transcriptome profiling uncovered FBLIM1-positive CAFs as an aggressive subtype with a high abundance of TGFβ, EMT, and an immunosuppressive phenotype in NSCLC.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yajun He
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Ning Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Li Mow Chee F, Beernaert B, Griffith BGC, Loftus AEP, Kumar Y, Wills JC, Lee M, Valli J, Wheeler AP, Armstrong JD, Parsons M, Leigh IM, Proby CM, von Kriegsheim A, Bickmore WA, Frame MC, Byron A. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat Commun 2023; 14:1602. [PMID: 36959177 PMCID: PMC10036544 DOI: 10.1038/s41467-023-37021-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Bruno Beernaert
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, OX3 7DQ, UK
| | - Billie G C Griffith
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alexander E P Loftus
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Yatendra Kumar
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jimi C Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ann P Wheeler
- Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - J Douglas Armstrong
- Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Irene M Leigh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
6
|
Duan B, Qin Z, Gu X, Li Y. Migfilin: Cell Adhesion Effect and Comorbidities. Onco Targets Ther 2022; 15:411-422. [PMID: 35469339 PMCID: PMC9034862 DOI: 10.2147/ott.s357355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Cell adhesion manifests as cell linkages to neighboring cells and/or the extracellular matrix (ECM). Migfilin is a widely expressed adhesion protein. It comprises three LIM domains in the C-terminal region and one proline-rich sequence in the N-terminal region. Through interplay with its various binding partners, such as Kindlin-2, Filamin, vasodilator-stimulated phosphoprotein (VASP) protein and the transcription factor CSX, Migfilin facilitates the dynamic association of connecting actomyosin fibers, orchestrating cell morphogenetic movement and cell adhesion, proliferation, migration, invasion, differentiation and signal transduction. In this review, to further elucidate the functional contributions of and pathogenesis induced by Migfilin, we focused on the structure of Migfilin and the targets which it directly binds with. We also summarized the role of Migfilin and its binding partners in the progression of different diseases and malignancies. As a possible candidate for coordinating various cellular processes and because of its association with both the pathogenesis and progression of certain tumors, Migfilin likely has utility as a therapeutic target against multiple diseases in the clinic.
Collapse
Affiliation(s)
- Baoyu Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Ziyao Qin
- Department of Research and Development, Shanghai Institute of Biological Products Co., Ltd., Shanghai, People’s Republic of China
| | - Xuefeng Gu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
- Xuefeng Gu, Department of Pharmacy, 279 Zhouzhu Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180, Email
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
- Correspondence: Yanfei Li, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180 Email
| |
Collapse
|
7
|
Godbout E, Son DO, Hume S, Boo S, Sarrazy V, Clément S, Kapus A, Wehrle-Haller B, Bruckner-Tuderman L, Has C, Hinz B. Kindlin-2 Mediates Mechanical Activation of Cardiac Myofibroblasts. Cells 2020; 9:cells9122702. [PMID: 33348602 PMCID: PMC7766948 DOI: 10.3390/cells9122702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
We identify the focal adhesion protein kindlin-2 as player in a novel mechanotransduction pathway that controls profibrotic cardiac fibroblast to myofibroblast activation. Kindlin-2 is co-upregulated with the myofibroblast marker α-smooth muscle actin (α-SMA) in fibrotic rat hearts and in human cardiac fibroblasts exposed to fibrosis-stiff culture substrates and pro-fibrotic TGF-β1. Stressing fibroblasts using ferromagnetic microbeads, stretchable silicone membranes, and cell contraction agonists all result in kindlin-2 translocation to the nucleus. Overexpression of full-length kindlin-2 but not of kindlin-2 missing a putative nuclear localization sequence (∆NLS kindlin-2) results in increased α-SMA promoter activity. Downregulating kindlin-2 with siRNA leads to decreased myofibroblast contraction and reduced α-SMA expression, which is dependent on CC(A/T)-rich GG(CArG) box elements in the α-SMA promoter. Lost myofibroblast features under kindlin-2 knockdown are rescued with wild-type but not ∆NLS kindlin-2, indicating that myofibroblast control by kindlin-2 requires its nuclear translocation. Because kindlin-2 can act as a mechanotransducer regulating the transcription of α-SMA, it is a potential target to interfere with myofibroblast activation in tissue fibrosis.
Collapse
Affiliation(s)
- Elena Godbout
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stephanie Hume
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Vincent Sarrazy
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, 1211 Geneva 4, Switzerland;
| | - Andras Kapus
- Keenan Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Leena Bruckner-Tuderman
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Cristina Has
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
- Correspondence: ; Tel.: +1-416-978-8728
| |
Collapse
|
8
|
Zhou Y, Hu M, Chen X, Wang S, Li J, Sa L, Li L, Huang J, Cheng H, Hu H. Migfilin supports hemostasis and thrombosis through regulating platelet αIIbβ3 outside-in signaling. Haematologica 2020; 105:2608-2618. [PMID: 33131250 PMCID: PMC7604612 DOI: 10.3324/haematol.2019.232488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/18/2019] [Indexed: 11/28/2022] Open
Abstract
Elucidating the regulation mechanism of integrin αIIbβ3 is key to understand platelet biology and thrombotic diseases. Previous in vitro studies have implicated a role of migfilin in the support of platelet αIIbβ3 activation, however, contribution of migfilin to thrombosis and hemostasis in vivo and a detailed mechanism of migfilin in platelets are not known. In this study, with migfilin deletion (migfilin-/-) mice, we report that migfilin is a pivotal positive regulator of hemostasis and thrombosis. Migfilin-/- mice showed a nearly doubled tail-bleeding time and a prolonged occlusion time in Fecl3-induced mesenteric arteriolar thrombosis. Migfilin deficiency impedes platelet thrombi formation on collagen surface and impairs platelet aggregation and dense-granule secretion. Supported by characteristic functional readings and phosphorylation status of distinctive signaling molecules in the bidirectional signaling processes of αIIbβ3, the functional defects of migfilin-/- platelets appear to be mechanistically associated with a compromised outside-in signaling, rather than inside-out signaling. A synthesized cell-permeable migfilin peptide harboring filamin A binding sequence rescued the defective function and phosphorylation of signaling molecules of migfilin-/- platelets. Finally, migfilin does not influence the binding of filamin A and β3 subunit of αIIbβ3 in resting platelets, but hampers the re-association of filamin A and β3 during the conduct of outside-in signaling, suggesting that migfilin functions through regulating the interaction dynamics of αIIbβ3 and filamin A in platelets. Our study enhances the current understanding of platelet integrin αIIbβ3-mediated outside-in signaling and proves that migfilin is an important regulator for platelet activation, hemostasis and thrombosis.
Collapse
Affiliation(s)
- Yangfan Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Mengjiao Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Xiaoyan Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Shuai Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Jingke Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Lina Sa
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Li Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, and Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Hu Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
d’Adamo AP, Bianco AM, Ferrara G, La Bianca M, Insalaco A, Tommasini A, Pardeo M, Cattalini M, La Torre F, Finetti M, Alizzi C, Simonini G, Messia V, Pastore S, Cimaz R, Gattorno M, Taddio A. High prevalence of rare FBLIM1 gene variants in an Italian cohort of patients with Chronic Non-bacterial Osteomyelitis (CNO). Pediatr Rheumatol Online J 2020; 18:55. [PMID: 32650789 PMCID: PMC7350626 DOI: 10.1186/s12969-020-00447-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND FBLIM1 gene has been recently demonstrated to be involved in the pathogenesis of bone sterile inflammation. The aim of the study is to evaluate the prevalence of FBLIM1 gene variants in a cohort of 80 Italian patients with Chronic Non-bacterial Osteomyelitis (CNO). METHODS The coding regions of FBLIM1 gene were sequenced in a cohort of 80 patients with CNO using DNA extracted from blood lymphocytes, and PCR products were sequenced. Only rare (global MAF < 2%), coding variants detected were considered. Clinical evaluation of patients with rare variants and those without was performed. Fisher's exact test was used to compare categorical and ordinal data, and Student's t-test was used to analyze continuous data. RESULTS Eighteen out of 80 patients (~ 22%) presented at least one rare coding variant in FBLIM1. Eight patients presented a variant never associated before with CNO. All patients presented classical features of CNO and no statistical difference between patients with presence of FBLMI1 variants and those without were found in terms of clinical manifestation, treatment, and outcome. CONCLUSION Considering the high frequency of rare variants in our CNO cohort, our data seem to confirm a possible role of FBLIM1 in the pathogenesis of CNO suggesting that CNO is a disorder of chronic inflammation and imbalanced bone remodeling.
Collapse
Affiliation(s)
- Adamo Pio d’Adamo
- grid.5133.40000 0001 1941 4308University of Trieste, Trieste, Italy ,grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34100 Trieste, Italy
| | - Anna Monica Bianco
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34100 Trieste, Italy
| | - Giovanna Ferrara
- grid.5133.40000 0001 1941 4308University of Trieste, Trieste, Italy
| | - Martina La Bianca
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34100 Trieste, Italy
| | - Antonella Insalaco
- grid.414125.70000 0001 0727 6809Department of Pediatric Medicine, Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alberto Tommasini
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34100 Trieste, Italy
| | - Manuela Pardeo
- grid.414125.70000 0001 0727 6809Department of Pediatric Medicine, Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Marco Cattalini
- grid.412725.7Pediatric Clinic University of Brescia and Spedali Civili of Brescia, Brescia, Italy
| | - Francesco La Torre
- Pediatric Rheumatology Center, Pediatric Unit, “Giovanni XXIII”, Pediatric Hospital, Bari, Puglia Italy
| | - Martina Finetti
- grid.419504.d0000 0004 1760 0109Centro Malattie Autoinfiammatorie e Immunodeficenze, IRCCS “G. Gaslini”, Genoa, Italy
| | | | - Gabriele Simonini
- grid.8404.80000 0004 1757 2304Pediatric Rheumatology Unit, AOU Meyer, University of Florence, Florence, Italy
| | - Virginia Messia
- grid.414125.70000 0001 0727 6809Department of Pediatric Medicine, Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Serena Pastore
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34100 Trieste, Italy
| | - Rolando Cimaz
- grid.4708.b0000 0004 1757 2822Azienda Socio Sanitaria Territoriale (ASST) G.Pini and University of Milan, Milan, Italy
| | - Marco Gattorno
- grid.419504.d0000 0004 1760 0109Centro Malattie Autoinfiammatorie e Immunodeficenze, IRCCS “G. Gaslini”, Genoa, Italy
| | - Andrea Taddio
- University of Trieste, Trieste, Italy. .,Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34100, Trieste, Italy.
| | | |
Collapse
|
10
|
|
11
|
Herviou L, Kassambara A, Boireau S, Robert N, Requirand G, Müller-Tidow C, Vincent L, Seckinger A, Goldschmidt H, Cartron G, Hose D, Cavalli G, Moreaux J. PRC2 targeting is a therapeutic strategy for EZ score defined high-risk multiple myeloma patients and overcome resistance to IMiDs. Clin Epigenetics 2018; 10:121. [PMID: 30285865 PMCID: PMC6171329 DOI: 10.1186/s13148-018-0554-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant plasma cell disease with a poor survival, characterized by the accumulation of myeloma cells (MMCs) within the bone marrow. Epigenetic modifications in MM are associated not only with cancer development and progression, but also with drug resistance. METHODS We identified a significant upregulation of the polycomb repressive complex 2 (PRC2) core genes in MM cells in association with proliferation. We used EPZ-6438, a specific small molecule inhibitor of EZH2 methyltransferase activity, to evaluate its effects on MM cells phenotype and gene expression prolile. RESULTS PRC2 targeting results in growth inhibition due to cell cycle arrest and apoptosis together with polycomb, DNA methylation, TP53, and RB1 target genes induction. Resistance to EZH2 inhibitor is mediated by DNA methylation of PRC2 target genes. We also demonstrate a synergistic effect of EPZ-6438 and lenalidomide, a conventional drug used for MM treatment, activating B cell transcription factors and tumor suppressor gene expression in concert with MYC repression. We establish a gene expression-based EZ score allowing to identify poor prognosis patients that could benefit from EZH2 inhibitor treatment. CONCLUSIONS These data suggest that PRC2 targeting in association with IMiDs could have a therapeutic interest in MM patients characterized by high EZ score values, reactivating B cell transcription factors, and tumor suppressor genes.
Collapse
Affiliation(s)
| | - Alboukadel Kassambara
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Stéphanie Boireau
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Carsten Müller-Tidow
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Anja Seckinger
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Guillaume Cartron
- UFR de Médecine, Univ Montpellier, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- UMR CNRS 5235, Univ Montpellier, Montpellier, France
| | - Dirk Hose
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | | | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.
- IGH, CNRS, Univ Montpellier, Montpellier, France.
- UFR de Médecine, Univ Montpellier, Montpellier, France.
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi-CHRU de Montpellier, 80, av. Augustin Fliche, 34295, Montpellier, Cedex 5, France.
| |
Collapse
|
12
|
Lee T, Lim US, Kang DH, Jung HD, Kim H, Choi BH, Kang JH, Yoon SM, Park CS. Near-Normalized Gene Expression Profiles in Bladder With Detrusor Overactivity in Rats With Bladder Outlet Obstruction After Deobstruction. Int Neurourol J 2017; 21:247-258. [PMID: 29298465 PMCID: PMC5756814 DOI: 10.5213/inj.1732774.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/09/2017] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The pathophysiological role of detrusor overactivity (DO) in the bladder, which is commonly observed in various bladder diseases, is not well understood. DO appears in bladder outlet obstruction (BOO), and may continue even after subsequent deobstruction. DO therefore provides an excellent opportunity to observe molecular biological changes. METHODS In this study, to understand the molecular effects of persistent DO after BOO induction and deobstruction, we performed awake cystometry on female Sprague-Dawley rats divided into 4 groups: a sham group, a BOO group, a deobstructed group with DO after BOO (DDO), and a deobstructed group without DO after BOO (non-DDO). Total RNA was extracted from the bladder samples, and gene expression profiles were compared between the sham and model groups. RESULTS DO was observed in 5 of the 6 rats (83%) in the BOO group, and in 6 of the 13 rats (46%) in the deobstructed group. The non-DDO group showed a significantly greater residual volume than the DDO group. Through a clustering analysis of gene expression profiles, we identified 7,532 common upregulated and downregulated genes, the expression of which changed by more than 2 fold. In the BOO group, 898 upregulated and 2,911 downregulated genes were identified. The non-DDO group showed 3,472 upregulated and 4,025 downregulated genes, whereas in the DDO group, only 145 and 72 genes were upregulated and downregulated, respectively. CONCLUSIONS Abnormal function and gene expression profiles in bladders after BOO were normalized in the BOO rats with DO after deobstruction, whereas in those without DO, abnormal function persisted and the gene expression profile became more abnormal. DO may play a protective role against the stress to the bladder induced by BOO and deobstruction as a form of adaptive neuroplasticity.
Collapse
Affiliation(s)
- Tack Lee
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - U-Sung Lim
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Dong Hyuk Kang
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Hae-Do Jung
- Department of Urology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hyunzu Kim
- Department of Anesthesiology and Pain Medicine, Inha University College of Medicine, Incheon, Korea
| | - Bo-Hwa Choi
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Sang-Min Yoon
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Chang-Shin Park
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
13
|
Ishizuka K, Tabata H, Ito H, Kushima I, Noda M, Yoshimi A, Usami M, Watanabe K, Morikawa M, Uno Y, Okada T, Mori D, Aleksic B, Ozaki N, Nagata KI. Possible involvement of a cell adhesion molecule, Migfilin, in brain development and pathogenesis of autism spectrum disorders. J Neurosci Res 2017; 96:789-802. [PMID: 29114925 DOI: 10.1002/jnr.24194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/07/2022]
Abstract
Migfilin, encoded by FBLIM1 at the 1p36 locus, is a multi-domain adaptor protein essential for various cellular processes such as cell morphology and migration. Small deletions and duplications at the 1p36 locus, monosomy of which results in neurodevelopmental disorders and multiple congenital anomalies, have also been identified in patients with autism spectrum disorder (ASD). However, the impact of FBLIM1, the gene within 1p36, on the pathogenesis of ASD is unknown. In this study, we performed morphological analyses of migfilin to elucidate its role in brain development. Migfilin was detected specifically in the embryonic and perinatal stages of the mouse brain. Either silencing or overexpression of migfilin in embryos following in utero electroporation disrupted Neocortical neuronal migration. Additionally, neurite elongation was impaired when migfilin was silenced in cultured mouse hippocampal neurons. We then screened FBLIM1 for rare exonic deletions/duplications in 549 Japanese ASD patients and 824 controls, detecting one case of ASD and intellectual delay that harbored a 26-kb deletion at 1p36.21 that solely included the C-terminal exon of FBLIM1. The FBLIM1 mRNA expression level in this case was reduced compared to levels in individuals without FBLIM1 deletion. Our findings indicate that tightly regulated expression of migfilin is essential for neuronal development and that FBLIM1 disruption may be related to the phenotypes associated with ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Akira Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
15
|
Cox AJ, Zhao Y, Ferguson PJ. Chronic Recurrent Multifocal Osteomyelitis and Related Diseases-Update on Pathogenesis. Curr Rheumatol Rep 2017; 19:18. [PMID: 28361334 PMCID: PMC5545929 DOI: 10.1007/s11926-017-0645-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We focus on recent advances in the understanding of the genetic, molecular, immunologic, and environmental factors implicated in the pathogenesis of autoinflammatory bone diseases including the syndromic and non-syndromic forms of chronic recurrent multifocal osteomyelitis (CRMO). RECENT FINDINGS Evidence implicating the IL-1 pathway in the pathogenesis of the Mendelian forms of CRMO is growing. LIPIN2 can regulate the NLRP3 inflammasome by affecting P2X7 receptor activation, and intracellular cholesterol can modulate P2X7R currents. Work in a mouse model of CRMO demonstrates that dietary manipulation can alter the microbiome and protect these mice from the development of sterile osteomyelitis in vivo. Although the genetic and immunologic basis of non-syndromic CRMO remains only partially understood, the IL-1 pathway is central to the pathogenesis in the syndromic autoinflammatory bone disorders. Recent work implicates lipids and the microbiome in sterile osteomyelitis.
Collapse
Affiliation(s)
- Allison J Cox
- Department of Pediatrics and the Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yongdong Zhao
- Pediatric Rheumatology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Polly J Ferguson
- Department of Pediatrics and the Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
16
|
Cox AJ, Darbro BW, Laxer RM, Velez G, Bing X, Finer AL, Erives A, Mahajan VB, Bassuk AG, Ferguson PJ. Recessive coding and regulatory mutations in FBLIM1 underlie the pathogenesis of chronic recurrent multifocal osteomyelitis (CRMO). PLoS One 2017; 12:e0169687. [PMID: 28301468 PMCID: PMC5354242 DOI: 10.1371/journal.pone.0169687] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic recurrent multifocal osteomyelitis (CRMO) is a rare, pediatric, autoinflammatory disease characterized by bone pain due to sterile osteomyelitis, and is often accompanied by psoriasis or inflammatory bowel disease. There are two syndromic forms of CRMO, Majeed syndrome and DIRA, for which the genetic cause is known. However, for the majority of cases of CRMO, the genetic basis is unknown. Via whole-exome sequencing, we detected a homozygous mutation in the filamin-binding domain of FBLIM1 in an affected child with consanguineous parents. Microarray analysis of bone marrow macrophages from the CRMO murine model (cmo) determined that the Fblim1 ortholog is the most differentially expressed gene, downregulated over 20-fold in the cmo mouse. We sequenced FBLIM1 in 96 CRMO subjects and found a second proband with a novel frameshift mutation in exon 6 and a rare regulatory variant. In SaOS2 cells, overexpressing the regulatory mutation showed the flanking region acts as an enhancer, and the mutation ablates enhancer activity. Our data implicate FBLIM1 in the pathogenesis of sterile bone inflammation and our findings suggest CRMO is a disorder of chronic inflammation and imbalanced bone remodeling.
Collapse
Affiliation(s)
- Allison J. Cox
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA, United States of America
| | - Benjamin W. Darbro
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA, United States of America
| | - Ronald M. Laxer
- Division of Pediatric Rheumatology, Departments of Pediatrics and Medicine, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Gabriel Velez
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, United States of America
- Omics Laboratory, University of Iowa, Iowa City, IA, United States of America
| | - Xinyu Bing
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Alexis L. Finer
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Albert Erives
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA, United States of America
- Department of Biology, The University of Iowa, Iowa City, IA, United States of America
| | - Vinit B. Mahajan
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, United States of America
- Omics Laboratory, University of Iowa, Iowa City, IA, United States of America
| | - Alexander G. Bassuk
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA, United States of America
| | - Polly J. Ferguson
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
17
|
Konze SA, Werneburg S, Oberbeck A, Olmer R, Kempf H, Jara-Avaca M, Pich A, Zweigerdt R, Buettner FFR. Proteomic Analysis of Human Pluripotent Stem Cell Cardiomyogenesis Revealed Altered Expression of Metabolic Enzymes and PDLIM5 Isoforms. J Proteome Res 2017; 16:1133-1149. [DOI: 10.1021/acs.jproteome.6b00534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sarah A. Konze
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian Werneburg
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Astrid Oberbeck
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Henning Kempf
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Monica Jara-Avaca
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pich
- Institute
of Toxicology, Core Facility Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz
Research Laboratories for Biotechnology and Artificial Organs, Department
of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Falk F. R. Buettner
- Institute
of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH
Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Arvaniti E, Moulos P, Vakrakou A, Chatziantoniou C, Chadjichristos C, Kavvadas P, Charonis A, Politis PK. Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci Rep 2016; 6:26235. [PMID: 27189340 PMCID: PMC4870569 DOI: 10.1038/srep26235] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
Transcriptome analysis by RNA-seq technology allows novel insights into gene expression and regulatory networks in health and disease. To better understand the molecular basis of renal fibrosis, we performed RNA-seq analysis in the Unilateral Ureteric Obstruction (UUO) mouse model. We analysed sham operated, 2- and 8-day post-ligation renal tissues. Thousands of genes with statistical significant changes in their expression were identified and classified into cellular processes and molecular pathways. Many novel protein-coding genes were identified, including critical transcription factors with important regulatory roles in other tissues and diseases. Emphasis was placed on long non-coding RNAs (lncRNAs), a class of molecular regulators of multiple and diverse cellular functions. Selected lncRNA genes were further studied and their transcriptional activity was confirmed. For three of them, their transcripts were also examined in other mouse models of nephropathies and their up- or down-regulation was found similar to the UUO model. In vitro experiments confirmed that one selected lncRNA is independent of TGFβ or IL1b stimulation but can influence the expression of fibrosis-related proteins and the cellular phenotype. These data provide new information about the involvement of protein-coding and lncRNA genes in nephropathies, which can become novel diagnostic and therapeutic targets in the near future.
Collapse
Affiliation(s)
- Eleni Arvaniti
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Athina Vakrakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | - Aristidis Charonis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
19
|
Haubner BJ, Moik D, Schuetz T, Reiner MF, Voelkl JG, Streil K, Bader K, Zhao L, Scheu C, Mair J, Pachinger O, Metzler B. In vivo cardiac role of migfilin during experimental pressure overload. Cardiovasc Res 2015; 106:398-407. [DOI: 10.1093/cvr/cvv125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/14/2015] [Indexed: 11/14/2022] Open
|
20
|
Qu H, Tu Y, Guan JL, Xiao G, Wu C. Kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch in the integrin outside-in signaling circuit. J Biol Chem 2014; 289:31001-13. [PMID: 25237194 DOI: 10.1074/jbc.m114.580811] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) adhesion is critical for control of intracellular signaling; however, the mechanisms underlying this "outside-in" signaling are incompletely understood. Here we show that depletion of kindlin-2 impairs integrin outside-in signaling. Kindlin-2 is tyrosine-phosphorylated upon cell-ECM adhesion. Furthermore, kindlin-2 binds Src in a cell-ECM adhesion-regulatable fashion. At the molecular level, the kindlin-2·Src interaction is mediated by the kindlin-2 F0 and the Src SH2 and SH3 domains. Src activation increases kindlin-2 tyrosine phosphorylation and the kindlin-2·Src interaction. Conversely, inhibition of Src reduces kindlin-2 tyrosine phosphorylation and diminishes the kindlin-2·Src interaction. Finally, disruption of the kindlin-2·Src interaction, unlike depletion of kindlin-2, impairs neither cell-ECM adhesion nor cell-ECM adhesion-induced focal adhesion kinase Tyr-397 phosphorylation. However, it markedly inhibits cell-ECM adhesion-induced paxillin tyrosine phosphorylation, cell migration, and proliferation. These results suggest that kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch downstream of focal adhesion kinase in the integrin outside-in signaling circuit, relaying signals from cell-ECM adhesion to paxillin that control cell migration and proliferation.
Collapse
Affiliation(s)
- Hong Qu
- From the Department of Pathology, University of Pittsburgh, Pittsburgh, Pittsburgh 15261
| | - Yizeng Tu
- From the Department of Pathology, University of Pittsburgh, Pittsburgh, Pittsburgh 15261
| | - Jun-Lin Guan
- the Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, and
| | - Guozhi Xiao
- the Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612
| | - Chuanyue Wu
- From the Department of Pathology, University of Pittsburgh, Pittsburgh, Pittsburgh 15261,
| |
Collapse
|
21
|
Willenbrock F, Zicha D, Hoppe A, Hogg N. Novel automated tracking analysis of particles subjected to shear flow: kindlin-3 role in B cells. Biophys J 2014; 105:1110-22. [PMID: 24010654 PMCID: PMC3762340 DOI: 10.1016/j.bpj.2013.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022] Open
Abstract
Shear flow assays are used to mimic the influence of physiological shear force in diverse situations such as leukocyte rolling and arrest on the vasculature, capture of nanoparticles, and bacterial adhesion. Analysis of such assays usually involves manual counting, is labor-intensive, and is subject to bias. We have developed the Leukotrack program that incorporates a novel (to our knowledge) segmentation routine capable of reliable detection of cells in phase contrast images. The program also automatically tracks rolling cells in addition to those that are more firmly attached and migrating in random directions. We demonstrate its use in the analysis of lymphocyte arrest mediated by one or more active conformations of the integrin LFA-1. Activation of LFA-1 is a multistep process that depends on several proteins including kindlin-3, the protein that is mutated in leukocyte adhesion deficiency-III patients. We find that the very first stage of LFA-1-mediated attaching is unable to proceed in the absence of kindlin-3. Our evidence indicates that kindlin-3-mediated high-affinity LFA-1 controls both the early transient integrin-dependent adhesions in addition to the final stable adhesions made under flow conditions.
Collapse
|
22
|
Abstract
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Hideshi Okada
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
23
|
Mohammed AES, Eguchi H, Wada S, Koyama N, Shimizu M, Otani K, Ohtaki M, Tanimoto K, Hiyama K, Gaber MS, Nishiyama M. TMEM158 and FBLP1 as novel marker genes of cisplatin sensitivity in non-small cell lung cancer cells. Exp Lung Res 2013; 38:463-74. [PMID: 23098063 DOI: 10.3109/01902148.2012.731625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Even after development of molecular targeting therapies, platinum-based chemotherapy is still a standard care for treatment of locally advanced non-small cell lung cancer (NSCLC). So far, critical molecular markers capable to predict the therapeutic response in NSCLC patients remain undetermined. We here attempted to identify novel biomarker genes for cisplatin (CDDP) for a tailored therapy. Initial screening to explorer association of IC(50) values of CDDP obtained by MTT assay and gene expression levels measured with oligonucleotide microarray and real-time RT-PCR provided 6 candidate genes, namely, NUBPL, C9orf30, ZNF12, TMEM158, GSK3B, and FBLP1 using 9 lung cancer cells consisting of 3 small and 6 NSCLC cells. These 6 genes together with 5 reported biomarkers, i.e., GSTP1, ERCC1, BRCA1, FRAP1, and RRM1, were subjected to a linear regression analysis using 12 NSCLC cell lines including 6 additional NSCLC cells: only FBLP1 and TMEM158 genes showed positive associations with statistical significances (P = .016 and .026, respectively). The biological significance of these genes was explored by in vitro experiments: Knockdown experiments in PC-9/CDDP cells revealed that the reduced expression of TMEM158 significantly decreased the chemo-resistance against CDDP (P <.0001), while 2 transformants of PC-6 cells stably over-expressing FBLP1 resulted in an enhanced resistance to CDDP (P = .004 and P = .001). Furthermore, a stepwise multiple regression analysis demonstrated the best prediction formula could be fixed when we used expression data of TMEM158 and FBLP1 (R(2) = 0.755, P = .0018). TMEM158 and FBLP1 may be powerful predictive biomarkers for CDDP therapy in NSCLC.
Collapse
Affiliation(s)
- Ahmed El Sayed Mohammed
- Translational Research Center, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yates LA, Lumb CN, Brahme NN, Zalyte R, Bird LE, De Colibus L, Owens RJ, Calderwood DA, Sansom MSP, Gilbert RJC. Structural and functional characterization of the kindlin-1 pleckstrin homology domain. J Biol Chem 2012; 287:43246-61. [PMID: 23132860 PMCID: PMC3527912 DOI: 10.1074/jbc.m112.422089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/21/2012] [Indexed: 11/06/2022] Open
Abstract
Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin β-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P(3); K(D) ∼100 μM) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P(3) as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P(2) on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P(3) is affected by the presence of PO(4) ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species.
Collapse
Affiliation(s)
- Luke A. Yates
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Craig N. Lumb
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nina N. Brahme
- the Department of Cell Biology and
- the Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut 06520-8066, and
| | - Ruta Zalyte
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Louise E. Bird
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- the Oxford Protein Production Facility United Kingdom, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, United Kingdom
| | - Luigi De Colibus
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Raymond J. Owens
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- the Oxford Protein Production Facility United Kingdom, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, United Kingdom
| | - David A. Calderwood
- the Department of Cell Biology and
- the Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut 06520-8066, and
| | - Mark S. P. Sansom
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Robert J. C. Gilbert
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
25
|
Kjellqvist S, Maleki S, Olsson T, Chwastyniak M, Branca RMM, Lehtiö J, Pinet F, Franco-Cereceda A, Eriksson P. A combined proteomic and transcriptomic approach shows diverging molecular mechanisms in thoracic aortic aneurysm development in patients with tricuspid- and bicuspid aortic valve. Mol Cell Proteomics 2012. [PMID: 23184916 DOI: 10.1074/mcp.m112.021873] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thoracic aortic aneurysm is a pathological local dilatation of the aorta, potentially leading to aortic rupture or dissection. The disease is a common complication of patients with bicuspid aortic valve, a congenital disorder present in 1-2% of the population. Using two dimensional fluorescence difference gel electrophoresis proteomics followed by mRNA expression, and alternative splicing analysis of the identified proteins, differences in dilated and nondilated aorta tissues between 44 patients with bicuspid and tricuspid valves was examined. The pattern of protein expression was successfully validated with LC-MS/MS. A multivariate analysis of protein expression data revealed diverging protein expression fingerprints in patients with tricuspid compared with the patients with bicuspid aortic valves. From 302 protein spots included in the analysis, 69 and 38 spots were differentially expressed between dilated and nondilated aorta specifically in patients with tricuspid and bicuspid aortic valve, respectively. 92 protein spots were differentially expressed between dilated and nondilated aorta in both phenotypes. Similarly, mRNA expression together with alternative splicing analysis of the identified proteins also showed diverging fingerprints in the two patient groups. Differential splicing was abundant but the expression levels of differentially spliced mRNA transcripts were low compared with the wild type transcript and there was no correlation between splicing and the number of spots. Therefore, the different spots are likely to represent post-translational modifications. The identification of differentially expressed proteins suggests that dilatation in patients with a tricuspid aortic valve involves inflammatory processes whereas aortic aneurysm in patients with BAV may be the consequence of impaired repair capacity. The results imply that aortic aneurysm formation in patients with bicuspid and tricuspid aortic valves involve different biological pathways leading to the same phenotype.
Collapse
Affiliation(s)
- Sanela Kjellqvist
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davidson B, Holth A, Nguyen MTP, Tropé CG, Wu C. Migfilin, α-parvin and β-parvin are differentially expressed in ovarian serous carcinoma effusions, primary tumors and solid metastases. Gynecol Oncol 2012; 128:364-70. [PMID: 23099104 DOI: 10.1016/j.ygyno.2012.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study is to analyze the expression and clinical role of integrin-linked kinase (ILK), α-parvin, β-parvin and migfilin in advanced-stage serous ovarian carcinoma. METHODS Expression of these 4 proteins was investigated in 205 effusions and in 94 patient-matched solid lesions (33 primary tumors and 61 solid metastases) using immunohistochemistry. Protein expression was analyzed for association with clinicopathologic parameters and survival. RESULTS ILK, α-parvin, β-parvin and migfilin were expressed in tumor cells in 53%, 2%, 28% and 53% of effusions and 57%, 20%, 83% and 25% of solid lesions, respectively. Statistical analysis showed significantly higher α-parvin and β-parvin expression in primary carcinomas (p=0.02 and p=0.001, respectively) and solid metastases (p=0.001 and p<0.001, respectively), compared to effusions, with opposite findings for migfilin (p=0.006 and p=0.008 for primary carcinomas and solid metastases, respectively). ILK expression was comparable at all anatomic sites. β-Parvin expression in effusions was associated with better response to chemotherapy at diagnosis (p=0.014), with no other significant association with clinicopathologic parameters or survival. Expression in primary tumors and solid metastases was similarly unrelated to clinicopathologic parameters or survival. CONCLUSIONS This study provides further evidence to our previous observations that the adhesion profile of ovarian serous carcinoma cells in effusions differs from their counterparts in primary carcinomas and solid metastases. β-Parvin may be a novel marker of chemoresponse in metastatic ovarian carcinoma.
Collapse
Affiliation(s)
- Ben Davidson
- Division of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0424 Oslo, Norway.
| | | | | | | | | |
Collapse
|
27
|
Fan J, Ou YW, Wu CY, Yu CJ, Song YM, Zhan QM. Migfilin sensitizes cisplatin-induced apoptosis in human glioma cells in vitro. Acta Pharmacol Sin 2012; 33:1301-10. [PMID: 22983390 DOI: 10.1038/aps.2012.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM Filamin binding LIM protein 1, also known as migfilin, is a skeleton organization protein that binds to mitogen-inducible gene 2 at cell-extracellular matrix adhesions. The aim of this study was to investigate the role of migfilin in cisplatin-induced apoptosis in human glioma cells, to determine the functional domains of migfilin, and to elucidate the molecular mechanisms underlying the regulation of cisplatin-related chemosensitivity. METHODS The human glioma cell lines Hs683, H4, and U-87 MG were transfected with pEGFP-C2-migfilin to elevate the expression level of migfilin. RNA interference was used to reduce the expression of migfilin. To determine the functional domains of migfilin, U-87 MG cells were transfected with plasmids of migfilin deletion mutants. After treatment with cisplatin (40 μmol/L) for 24 h, the cell viability was assessed using the MTS assay, and the cell apoptotic was examined using the DAPI staining assay and TUNEL analysis. Expression levels of apoptosis-related proteins were detected by Western blot analysis. RESULTS Overexpression of migfilin significantly enhanced cisplatin-induced apoptosis in Hs683, H4, and U-87 MG cells, whereas downregulation of migfilin expression inhibited the chemosensitivity of these cell lines. The N-terminal region of migfilin alone was able to enhance the cisplatin-induced apoptosis. However, despite the existence of the N-terminal region, mutants of migfilin with any one of three LIM domains deleted led to a function loss. Furthermore, apoptotic proteins (PARP and caspase-3) and the anti-apoptotic protein Bcl-xL were modulated by the expression level of migfilin in combination with cisplatin. CONCLUSION The LIM1-3 domains of migfilin play a key role in sensitizing glioma cells to cisplatin-induced apoptosis through regulation of apoptosis-related proteins.
Collapse
|
28
|
Ou Y, Ma L, Dong L, Ma L, Zhao Z, Ma L, Zhou W, Fan J, Wu C, Yu C, Zhan Q, Song Y. Migfilin protein promotes migration and invasion in human glioma through epidermal growth factor receptor-mediated phospholipase C-γ and STAT3 protein signaling pathways. J Biol Chem 2012; 287:32394-405. [PMID: 22843679 PMCID: PMC3463316 DOI: 10.1074/jbc.m112.393900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Migfilin is critical for cell shape and motile regulation. However, its pathological role in glioma is unknown. Using an immunohistochemical staining assay, we demonstrate that there is a significant correlation between expression of Migfilin and pathological tumor grade in 217 clinical glioma samples. High Migfilin expression is associated with poor prognosis for patients with glioma. Investigation of the molecular mechanism shows that Migfilin promotes migration and invasion in glioma cells. Moreover, Migfilin positively modulates the expression and activity of epidermal growth factor receptor, and Migfilin-mediated migration and invasion depend on epidermal growth factor receptor-induced PLC-γ and STAT3-signaling pathways. Our results may provide significant clinical application, including use of Migfilin as a molecular marker in glioma for early diagnosis and as an indicator of prognosis.
Collapse
Affiliation(s)
- Yunwei Ou
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xiao G, Cheng H, Cao H, Chen K, Tu Y, Yu S, Jiao H, Yang S, Im HJ, Chen D, Chen J, Wu C. Critical role of filamin-binding LIM protein 1 (FBLP-1)/migfilin in regulation of bone remodeling. J Biol Chem 2012; 287:21450-60. [PMID: 22556421 DOI: 10.1074/jbc.m111.331249] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone remodeling is a complex process that must be precisely controlled to maintain a healthy life. We show here that filamin-binding LIM protein 1 (FBLP-1, also known as migfilin), a kindlin- and filamin-binding focal adhesion protein, is essential for proper control of bone remodeling. Genetic inactivation of FBLIM1 (the gene encoding FBLP-1) in mice resulted in a severe osteopenic phenotype. Primary FBLP-1 null bone marrow stromal cells (BMSCs) exhibited significantly reduced extracellular matrix adhesion and migration compared with wild type BMSCs. Loss of FBLP-1 significantly impaired the growth and survival of BMSCs in vitro and decreased the number of osteoblast (OB) progenitors in bone marrow and OB differentiation in vivo. Furthermore, the loss of FBLP-1 caused a dramatic increase of osteoclast (OCL) differentiation in vivo. The level of receptor activator of nuclear factor κB ligand (RANKL), a key regulator of OCL differentiation, was markedly increased in FBLP-1 null BMSCs. The capacity of FBLP-1 null bone marrow monocytes (BMMs) to differentiate into multinucleated OCLs in response to exogenously supplied RANKL, however, was not different from that of WT BMMs. Finally, we show that a loss of FBLP-1 promotes activating phosphorylation of ERK1/2. Inhibition of ERK1/2 activation substantially suppressed the increase of RANKL induced by the loss of FBLP-1. Our results identify FBLP-1 as a key regulator of bone homeostasis and suggest that FBLP-1 functions in this process through modulating both the intrinsic properties of OB/BMSCs (i.e., BMSC-extracellular matrix adhesion and migration, cell growth, survival, and differentiation) and the communication between OB/BMSCs and BMMs (i.e., RANKL expression) that controls osteoclastogenesis.
Collapse
Affiliation(s)
- Guozhi Xiao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization. PLoS One 2012; 7:e33261. [PMID: 22438907 PMCID: PMC3305314 DOI: 10.1371/journal.pone.0033261] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/07/2012] [Indexed: 01/15/2023] Open
Abstract
Background Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results We have identified and characterized all known LIM domain-containing proteins in six metazoans and three non-metazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineage-specific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity.
Collapse
|
31
|
Abstract
Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.
Collapse
|
32
|
He H, Ding F, Li Y, Luo A, Chen H, Wu C, Liu Z. Migfilin Regulates Esophageal Cancer Cell Motility through Promoting GSK-3β–Mediated Degradation of β-Catenin. Mol Cancer Res 2012; 10:273-81. [DOI: 10.1158/1541-7786.mcr-11-0419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Li A, Ponten F, dos Remedios CG. The interactome of LIM domain proteins: The contributions of LIM domain proteins to heart failure and heart development. Proteomics 2012; 12:203-25. [DOI: 10.1002/pmic.201100492] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022]
|
34
|
Desiniotis A, Kyprianou N. Significance of talin in cancer progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:117-47. [PMID: 21749900 DOI: 10.1016/b978-0-12-386039-2.00004-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Upon detachment from the extracellular matrix, tumor epithelial cells and tumor-associated endothelial cells are capable of overcoming anoikis, gain survival benefits, and hence contribute to the process of metastasis. The focal-adhesion complex formation recruits the association of key adaptor proteins such as FAK (focal-adhesion kinase). Vimentin, paxillin, and talin are responsible for mediating the interaction between the actin cytoskeleton and integrins. Talin is an early-recruited focal-adhesion player that is of structural and functional significance in mediating interactions with integrin cytoplasmic tails leading to destabilization of the transmembrane complex and resulting in rearrangements in the extracellular integrin compartments that mediate integrin activation. Talin-mediated integrin activation plays a definitive role in integrin-mediated signaling and induction of downstream survival pathways leading to protection from anoikis and consequently resulting in cancer progression to metastasis. We recently reported that talin expression is significantly increased in prostate cancer compared with benign and normal prostate tissue and that this overexpression correlates with progression to metastatic disease implicating a prognostic value for talin during tumor progression. At the molecular level, talin is functionally associated with enhanced survival and proliferation pathways and confers anoikis resistance and metastatic spread of primary tumor cells via activation of the Akt survival pathway. In this review, we discuss the growing evidence surrounding the value of talin as a prognostic marker of cancer progression to metastasis and as therapeutic target in advanced prostate cancer, as well as the current understanding of mechanisms regulating its signaling activity in cancer.
Collapse
Affiliation(s)
- Andreas Desiniotis
- Department of Surgery/Urology, and Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, USA
| | | |
Collapse
|
35
|
Abstract
Focal adhesion kinase (FAK) is a scaffold and tyrosine kinase protein that binds to itself and cellular partners through its four-point-one, ezrin, radixin, moesin (FERM) domain. Recent structural work reveals that regulatory protein partners convert auto-inhibited FAK into its active state by binding to its FERM domain. Further, the identity of FAK FERM domain-interacting proteins yields clues as to how FAK coordinates diverse cellular responses, including cell adhesion, polarization, migration, survival and death, and suggests that FERM domains might mediate information transfer between the cell cortex and nucleus. Importantly, the FAK FERM domain might act as a paradigm for the actions of other FERM domain-containing proteins.
Collapse
|
36
|
An Z, Dobra K, Lock JG, Strömblad S, Hjerpe A, Zhang H. Kindlin-2 is expressed in malignant mesothelioma and is required for tumor cell adhesion and migration. Int J Cancer 2010; 127:1999-2008. [PMID: 20127858 DOI: 10.1002/ijc.25223] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Kindlin-2 is a novel integrin-interacting focal adhesion protein that belongs to the Kindlin family. Focal adhesion proteins control cytoskeleton dynamics and promote cancer cell growth, survival, migration and metastasis. Little is known, however, about expression of Kindlin-2 in association with human cancer. We now reveal high Kindlin-2 expression in malignant mesothelioma (MM) cell lines using an affinity-purified anti-Kindlin-2 antibody. Furthermore, we show by immunohistochemistry that Kindlin-2 is highly expressed in 92 of 102 (90%) MMs with epitheliod; sarcomatoid, biphasic and poorly differentiated morphologies. In addition, Kindlin-2 expression correlates to cell proliferation, suggesting a role for Kindlin-2 in tumor growth. We also detect increased expression of Kindlin-2 at the invasion front of tumors concurrent with increased expression of integrin-linked kinase, a Kindlin-binding protein. Besides the high expression of Kindlin-2 in pleural MMs, pleural metastases of lung adenocarcinoma also express large amounts of Kindlin-2, but not Kindlin-1. Notably, in vitro, when endogenous Kindlin-2 was knocked down with RNAi in MM cells, this impaired cell spreading, adhesion and migration. Overall, our study suggests that heightened expression of Kindlin-2 might contribute to tumor progression in MM.
Collapse
Affiliation(s)
- Zhengwen An
- Unit for Clinical Molecular Biology, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-14183, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Recent advances in the understanding of the molecular mechanisms regulating platelet integrin αIIbβ3 activation. Protein Cell 2010; 1:627-37. [PMID: 21203935 DOI: 10.1007/s13238-010-0089-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 06/24/2010] [Indexed: 12/26/2022] Open
Abstract
Integrins are allosteric cell adhesion receptors that cycle from a low to a high affinity ligand binding state, a complex process of receptor activation that is of particular importance in blood cells such as platelets or leukocytes. Here we highlight recent progress in the understanding of the molecular pathways that regulate integrin activation in platelets and leukocytes, with a special focus on the structural changes in platelet integrin αIIbβ3 brought about by key intracellular proteins, namely talin and kindlins, that are of crucial importance in the regulation of integrin function. Evidence that the small GTPase Rap1 and its guanine exchange factor CalDAG-GEF1, together with RIAM, a Rap1GTP adaptor protein, promote the interaction of talin with the integrin β subunit, has greatly contributed to fill the gap in our understanding of the signaling pathway from G-coupled agonist receptors and their phospholipase C-dependant second messengers, to integrin activation. Studies of patients with the rare blood cell disorder LAD-III have contributed to the identification of kindlins as new co-regulators of the talin-dependent integrin activation process in platelets and leukocytes, underlining the relevance for the in-depth investigation of patients with rare genetic blood cell disorders.
Collapse
|
38
|
Zhao J, Zhang Y, Ithychanda SS, Tu Y, Chen K, Qin J, Wu C. Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. J Biol Chem 2009; 284:34308-20. [PMID: 19833732 DOI: 10.1074/jbc.m109.045021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) adhesion is essential for protection of epithelial cells against apoptosis, but the underlying mechanism is incompletely understood. Here we show that migfilin, an integrin-proximal adaptor protein, interacts with Src and contributes to cell-ECM-mediated survival signaling. Loss of cell-ECM adhesion markedly reduces the migfilin level in untransformed epithelial cells and concomitantly induces apoptosis. Overexpression of migfilin substantially desensitizes cell detachment-induced apoptosis. Conversely, depletion of migfilin promotes apoptosis despite the presence of cell-ECM adhesion. At the molecular level migfilin directly interacts with Src, and the migfilin binding surface overlaps with the inhibitory intramolecular interaction sites in Src. Consequently, the binding of migfilin activates Src, resulting in suppression of apoptosis. Our results reveal a novel mechanism by which cell-ECM adhesion regulates Src activation and survival signaling. This migfilin-mediated signaling pathway is dysfunctional in multiple types of carcinoma cells, which likely contributes to aberrant Src activation and anoikis resistance in the cancerous cells.
Collapse
Affiliation(s)
- Jianping Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol 2009; 19:504-13. [DOI: 10.1016/j.tcb.2009.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/04/2009] [Accepted: 07/08/2009] [Indexed: 11/19/2022]
|
40
|
Ithychanda SS, Das M, Ma YQ, Ding K, Wang X, Gupta S, Wu C, Plow EF, Qin J. Migfilin, a molecular switch in regulation of integrin activation. J Biol Chem 2009; 284:4713-22. [PMID: 19074766 PMCID: PMC2640964 DOI: 10.1074/jbc.m807719200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/01/2008] [Indexed: 01/08/2023] Open
Abstract
The linkage of heterodimeric (alpha/beta) integrin receptors with their extracellular matrix ligands and intracellular actin cytoskeleton is a fundamental step for controlling cell adhesion and migration. Binding of the actin-linking protein, talin, to integrin beta cytoplasmic tails (CTs) induces high affinity ligand binding (integrin activation), whereas binding of another actin-linking protein, filamin, to the integrin beta CTs negatively regulates this process by blocking the talin-integrin interaction. Here we show structurally that migfilin, a novel cytoskeletal adaptor highly enriched in the integrin adhesion sites, strongly interacts with the same region in filamin where integrin beta CTs bind. We further demonstrate that the migfilin interaction dissociates filamin from integrin and promotes the talin/integrin binding and integrin activation. Migfilin thus acts as a molecular switch to disconnect filamin from integrin for regulating integrin activation and dynamics of extracellular matrix-actin linkage.
Collapse
Affiliation(s)
- Sujay Subbayya Ithychanda
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep 2008; 9:1203-8. [PMID: 18997731 DOI: 10.1038/embor.2008.202] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/08/2008] [Indexed: 11/08/2022] Open
Abstract
Integrin-mediated cell-ECM (extracellular matrix) adhesion is a fundamental process that controls cell behaviour. For correct cell-ECM adhesion, both the ligand-binding affinity and the spatial organization of integrins must be precisely controlled; how integrins are regulated, however, is not completely understood. Kindlins constitute a family of evolutionarily conserved cytoplasmic components of cell-ECM adhesions that bind to beta-integrin cytoplasmic tails directly and cooperate with talin in integrin activation. In addition, kindlins interact with many components of cell-ECM adhesions--such as migfilin and integrin-linked kinase--to promote cytoskeletal reorganization. Loss of kindlins causes severe defects in integrin signalling, cell-ECM adhesion and cytoskeletal organization, resulting in early embryonic lethality (kindlin-2), postnatal lethality (kindlin-3) and Kindler syndrome (kindlin-1). It is therefore clear that kindlins, together with several other integrin-proximal proteins, are essential for integrin signalling and cell-ECM adhesion regulation.
Collapse
|
42
|
Lad Y, Jiang P, Ruskamo S, Harburger DS, Ylänne J, Campbell ID, Calderwood DA. Structural basis of the migfilin-filamin interaction and competition with integrin beta tails. J Biol Chem 2008; 283:35154-63. [PMID: 18829455 DOI: 10.1074/jbc.m802592200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A link between sites of cell adhesion and the cytoskeleton is essential for regulation of cell shape, motility, and signaling. Migfilin is a recently identified adaptor protein that localizes at cell-cell and cell-extracellular matrix adhesion sites, where it is thought to provide a link to the cytoskeleton by interacting with the actin cross-linking protein filamin. Here we have used x-ray crystallography, NMR spectroscopy, and protein-protein interaction studies to investigate the molecular basis of migfilin binding to filamin. We report that the N-terminal portion of migfilin can bind all three human filamins (FLNa, -b, or -c) and that there are multiple migfilin-binding sites in FLNa. Human filamins are composed of an N-terminal actin-binding domain followed by 24 immunoglobulin-like (IgFLN) domains and we find that migfilin binds preferentially to IgFLNa21 and more weakly to IgFLNa19 and -22. The filamin-binding site in migfilin is localized between Pro(5) and Pro(19) and binds to the CD face of the IgFLNa21 beta-sandwich. This interaction is similar to the previously characterized beta 7 integrin-IgFLNa21 interaction and migfilin and integrin beta tails can compete with one another for binding to IgFLNa21. This suggests that competition between filamin ligands for common binding sites on IgFLN domains may provide a general means of modulating filamin interactions and signaling. In this specific case, displacement of integrin tails from filamin by migfilin may provide a mechanism for switching between different integrin-cytoskeleton linkages.
Collapse
Affiliation(s)
- Yatish Lad
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Shi X, Wu C. A suppressive role of mitogen inducible gene-2 in mesenchymal cancer cell invasion. Mol Cancer Res 2008; 6:715-24. [PMID: 18505917 DOI: 10.1158/1541-7786.mcr-07-2026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cell invasion of extracellular matrix (ECM) is essential for dissemination of cancer cells and metastasis. In this study, we have investigated the role of mitogen inducible gene-2 (Mig-2, also known as kindlin-2), a focal adhesion protein whose expression is altered in several types of human cancers, in mesenchymal cancer cell invasion. Mig-2 is abundantly expressed in SK-LMS-1 leiomyosarcoma cells. The level of Mig-2, however, is considerably lower in more invasive HT-1080 fibrosarcoma cells. Overexpression of Mig-2 in HT-1080 and SK-LMS-1 cells substantially reduced their ability to invade ECM in an in vitro Matrigel invasion assay. Conversely, knockdown of Mig-2 markedly increased the invasiveness of these cells. Consistent with a suppressive role in mesenchymal cancer cell invasion, Mig-2 inhibits urokinase-type plasminogen activator (uPA) secretion and pericellular proteolysis. Overexpression of Mig-2 increased uPA accumulation at the intracellular face of cell-ECM adhesions and reduced the level of secreted uPA. Conversely, knockdown of Mig-2 reduced uPA accumulation at the intracellular face of cell-ECM adhesions and increased uPA secretion. Our results reveal an important role of Mig-2 in suppression of mesenchymal cancer cell invasion and shed new light on how altered Mig-2 expression could influence cancer cell invasion.
Collapse
Affiliation(s)
- Xiaohua Shi
- 707B Scaife Hall, Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
44
|
Wiebe CB, Petricca G, Häkkinen L, Jiang G, Wu C, Larjava HS. Kindler syndrome and periodontal disease: review of the literature and a 12-year follow-up case. J Periodontol 2008; 79:961-6. [PMID: 18454678 DOI: 10.1902/jop.2008.070167] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The association of aggressive periodontitis with Kindler syndrome was based on a single case in 1996 and later confirmed with a larger population. Since then, significant research has greatly increased our understanding of the molecular pathology of this disorder. We review recent advances in the molecular mechanisms of the syndrome and present a maintenance case report of a patient who has been followed in our clinic. METHODS A female patient who was diagnosed with Kindler syndrome and aggressive periodontitis at the age of 16 years has been followed and treated in our clinic for 12 years. Her main treatment has been maintenance therapy following her initial treatment and restorative work previously documented. Gingival biopsies obtained during the recent extraction of hopeless maxillary molars were used for histologic assessment of gingival tissue attachment apparatus and to isolate gingival fibroblasts. Reverse transcription-polymerase chain reaction (RT-PCR) was performed using these cells to confirm the lack of expression of kindlin-1. RESULTS RT-PCR showed the total loss of kindlin-1 mRNA in cultured gingival fibroblasts, supporting the clinical diagnosis of Kindler syndrome. Tissue biopsies revealed atypical pocket epithelium. Maintenance therapy has been moderately successful. Teeth that were recently lost had a poor prognosis at the initial assessment. The patient's gingiva and oral mucosa continue to be fragile with episodes of sloughing and inflammation. CONCLUSIONS Periodontitis in Kindler syndrome responds to maintenance therapy, but the gingiva and oral mucosa continue to display an abnormal appearance with white patches. Histologic findings suggest that the junctional epithelium in Kindler syndrome may be abnormal and could explain why these patients have periodontal disease. Attachment loss progressed around teeth with an initial guarded or poor prognosis. Teeth that started with a good or fair prognosis continue to have a fair prognosis. Limited dental implant treatment is being considered.
Collapse
Affiliation(s)
- Colin B Wiebe
- Division of Periodontics and Dental Hygiene, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Lai-Cheong JE, Ussar S, Arita K, Hart IR, McGrath JA. Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome. J Invest Dermatol 2008; 128:2156-65. [PMID: 18528435 PMCID: PMC2628768 DOI: 10.1038/jid.2008.58] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kindler syndrome (KS) results from pathogenic loss-of-function mutations in the KIND1 gene, which encodes kindlin-1, a focal adhesion and actin cytoskeleton-related protein. How and why abnormalities in kindlin-1 disrupt keratinocyte cell biology in KS, however, is not yet known. In this study, we identified two previously unreported binding proteins of kindlin-1: kindlin-2 and migfilin. Co-immunoprecipitation and confocal microscopy studies show that these three proteins bind to each other and colocalize at focal adhesion in HaCaT cells and normal human keratinocytes. Moreover, loss-of-function mutations in KIND1 result in marked variability in kindlin-1 immunolabeling in KS skin, which is mirrored by similar changes in kindlin-2 and migfilin immunoreactivity. Kindlin-1, however, may function independently of kindlin-2 and migfilin, as loss of kindlin-1 expression in HaCaT keratinocytes by RNA interference and in KS keratinocytes does not affect KIND2 or FBLIM1 (migfilin) gene expression or kindlin-2 and migfilin protein localization. In addition to identifying protein-binding partners for kindlin-1, this study also highlights that KIND1 gene expression and kindlin-1 protein labeling are not always reduced in KS, findings that are relevant to the accurate laboratory diagnosis of this genodermatosis by skin immunohistochemistry.
Collapse
Affiliation(s)
- J E Lai-Cheong
- Genetic Skin Disease Group, St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Cathy J Hatcher
- Cardiovascular Research, Center for Molecular Cardiology, Greenberg Division of Cardiology, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA.
| | | |
Collapse
|
47
|
Dowling JJ, Gibbs E, Russell M, Goldman D, Minarcik J, Golden JA, Feldman EL. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function. Circ Res 2008; 102:423-31. [PMID: 18174465 DOI: 10.1161/circresaha.107.161489] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrins and proteins that associate with integrins are implicated in normal cardiac muscle function and development. Unc-112 is a cytoplasmic adaptor protein required for the proper establishment of integrin junctions in Caenorhabditis elegans muscle. A vertebrate homolog of unc-112, kindlin-2, is an integrin-binding protein that is expressed in cardiac muscle, but its function is unknown. We sought to understand the role of kindlin-2 in the development and function of the mouse and zebrafish heart. In the mouse, we found that kindlin-2 is highly expressed in the heart and is enriched at intercalated discs and costameres. Targeted disruption of the murine kindlin-2 gene resulted in embryonic lethality before cardiogenesis. To better assess the role of kindlin-2 in cardiac muscle development, we used morpholinos to knockdown the kindlin-2 homolog in zebrafish (z-kindlin-2), which resulted in severe abnormalities of heart development. Morphant hearts were hypoplastic and dysmorphic and exhibited significantly reduced ventricular contractility. Ultrastructural analysis of these hearts revealed disrupted intercalated disc formation and a failure in the attachment of myofibrils to membrane complexes. We conclude that kindlin-2 is an essential component of the intercalated disc, is necessary for cytoskeletal organization at sites of membrane attachment, and is required for vertebrate myocardial formation and function. These findings provide the first characterization of the in vivo functions of this novel and critical regulator of cardiogenesis.
Collapse
Affiliation(s)
- James J Dowling
- Division of Pediatric Neurology, L3215 Women's Hospital, Ann Arbor, MI 48109-0203, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.
Collapse
Affiliation(s)
- G Pula
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | |
Collapse
|
49
|
Lock JG, Wehrle-Haller B, Strömblad S. Cell-matrix adhesion complexes: master control machinery of cell migration. Semin Cancer Biol 2007; 18:65-76. [PMID: 18023204 DOI: 10.1016/j.semcancer.2007.10.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/26/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Cell-matrix adhesion complexes (CMACs) are foci of cellular attachment to the extracellular matrix (ECM). This attachment, mediated by integrins and adaptor proteins, provides both physical and regulatory links between the ECM and the cellular microfilament system. Through continual regulation and rearrangement of both ECM adhesion and actin structures, CMACs constitute core machineries of cell migration. To fulfill this role, CMACs are exceptionally flexible and dynamic complexes, and their components undergo rapid and regulated turn-over to maintain delicately balanced streams of mechanical and chemical information. Besides the critical role of CMACs in cell migration, signaling through these complexes provides influence over virtually every major cellular function, including for example cell survival, cell differentiation and cell proliferation. This review depicts the roles of CMACs in cell migration and discusses how CMACs integrate with other sub-cellular systems involved in cell motility. Importantly, we also present a rationalized view of CMACs as information handling machines, and suggest strategies that may facilitate better understanding of the complex cell migration phenomenon as a whole, through quantitative and integrative (systems biology) approaches.
Collapse
Affiliation(s)
- John G Lock
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Huddinge, Sweden
| | | | | |
Collapse
|
50
|
Papachristou DJ, Gkretsi V, Tu Y, Shi X, Chen K, Larjava H, Rao UNM, Wu C. Increased cytoplasmic level of migfilin is associated with higher grades of human leiomyosarcoma. Histopathology 2007; 51:499-508. [PMID: 17711449 PMCID: PMC2768333 DOI: 10.1111/j.1365-2559.2007.02791.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIMS Leiomyosarcomas (LMS) are malignant neoplasms composed of cells that exhibit distinct smooth muscle differentiation. The molecular and cytogenetic features of LMS are complex and no consistent aberrations have been reported to date. Mitogen inducible gene-2 (Mig-2), kindlin and migfilin are recently identified cell-matrix adhesion proteins. The aim was to determine the expression and distribution of these proteins in human smooth muscle tumours of somatic soft tissue. METHODS AND RESULTS Immunohistochemistry was performed on a human LMS tissue microarray and on sections of human leiomyomas (LM) and normal smooth muscle. Migfilin was barely detectable in normal smooth muscle cells, whereas increased levels of migfilin were observed in the majority of LM and LMS. Furthermore, the cytoplasmic level of migfilin was strongly associated with higher tumour grades. Additionally, the cytoplasmic levels of migfilin and Mig-2 were correlated with each other, suggesting an association between the two in the cytoplasm. Kindlin was expressed in normal smooth muscle, LM and LMS, and its level did not correlate with tumour grade. CONCLUSIONS Our results suggest a role for cytoplasmic migfilin in the progression of LMS and identify cytoplasmic migfilin as a potentially important biological marker for human LMS progression.
Collapse
Affiliation(s)
- D J Papachristou
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|