1
|
Issa A, Schlotter F, Flayac J, Chen J, Wacheul L, Philippe M, Sardini L, Mostefa L, Vandermoere F, Bertrand E, Verheggen C, Lafontaine DL, Massenet S. The nucleolar phase of signal recognition particle assembly. Life Sci Alliance 2024; 7:e202402614. [PMID: 38858088 PMCID: PMC11165425 DOI: 10.26508/lsa.202402614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The signal recognition particle is essential for targeting transmembrane and secreted proteins to the endoplasmic reticulum. Remarkably, because they work together in the cytoplasm, the SRP and ribosomes are assembled in the same biomolecular condensate: the nucleolus. How important is the nucleolus for SRP assembly is not known. Using quantitative proteomics, we have investigated the interactomes of SRP components. We reveal that SRP proteins are associated with scores of nucleolar proteins important for ribosome biogenesis and nucleolar structure. Having monitored the subcellular distribution of SRP proteins upon controlled nucleolar disruption, we conclude that an intact organelle is required for their proper localization. Lastly, we have detected two SRP proteins in Cajal bodies, which indicates that previously undocumented steps of SRP assembly may occur in these bodies. This work highlights the importance of a structurally and functionally intact nucleolus for efficient SRP production and suggests that the biogenesis of SRP and ribosomes may be coordinated in the nucleolus by common assembly factors.
Collapse
Affiliation(s)
- Amani Issa
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | | | | | - Jing Chen
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | | | | | | | | | | | | | - Denis Lj Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | | |
Collapse
|
2
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Gussakovsky D, Booy EP, Brown MJF, McKenna SA. Nuclear SRP9/SRP14 heterodimer transcriptionally regulates 7SL and BC200 RNA expression. RNA (NEW YORK, N.Y.) 2023; 29:1185-1200. [PMID: 37156570 PMCID: PMC10351891 DOI: 10.1261/rna.079649.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
The SRP9/SRP14 heterodimer is a central component of signal recognition particle (SRP) RNA (7SL) processing and Alu retrotransposition. In this study, we sought to establish the role of nuclear SRP9/SRP14 in the transcriptional regulation of 7SL and BC200 RNA. 7SL and BC200 RNA steady-state levels, rate of decay, and transcriptional activity were evaluated under SRP9/SRP14 knockdown conditions. Immunofluorescent imaging, and subcellular fractionation of MCF-7 cells, revealed a distinct nuclear localization for SRP9/SRP14. The relationship between this localization and transcriptional activity at 7SL and BC200 genes was also examined. These findings demonstrate a novel nuclear function of SRP9/SRP14 establishing that this heterodimer transcriptionally regulates 7SL and BC200 RNA expression. We describe a model in which SRP9/SRP14 cotranscriptionally regulate 7SL and BC200 RNA expression. Our model is also a plausible pathway for regulating Alu RNA transcription and is consistent with the hypothesized roles of SRP9/SRP14 transporting 7SL RNA into the nucleolus for posttranscriptional processing, and trafficking of Alu RNA for retrotransposition.
Collapse
Affiliation(s)
- Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
4
|
Morgan GT. Immunochemical Detection of Modified Cytosine Species in Lampbrush Chromatin. Methods Mol Biol 2021; 2198:159-168. [PMID: 32822030 DOI: 10.1007/978-1-0716-0876-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lampbrush chromosomes found in the giant nucleus or germinal vesicle (GV) of amphibian oocytes provide unique opportunities for discrete closed and open chromatin structural domains to be directly observable by simple light microscopy. Moreover, the method described here for preparing spreads of lampbrush chromatin for immunostaining enables a straightforward approach to establishing the distributions of modified nucleotides within and between structurally and functionally distinctive chromatin domains.
Collapse
Affiliation(s)
- Garry T Morgan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
5
|
Massenet S. In vivo assembly of eukaryotic signal recognition particle: A still enigmatic process involving the SMN complex. Biochimie 2019; 164:99-104. [PMID: 30978374 DOI: 10.1016/j.biochi.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/07/2019] [Indexed: 12/29/2022]
Abstract
The signal recognition particle (SRP) is a universally conserved non-coding ribonucleoprotein complex that is essential for targeting transmembrane and secretory proteins to the endoplasmic reticulum. Its composition and size varied during evolution. In mammals, SRP contains one RNA molecule, 7SL RNA, and six proteins: SRP9, 14, 19, 54, 68 and 72. Despite a very good understanding of the SRP structure and of the SRP assembly in vitro, how SRP is assembled in vivo remains largely enigmatic. Here we review current knowledge on how the 7SL RNA is assembled with core proteins to form functional RNP particles in cells. SRP biogenesis is believed to take place both in the nucleolus and in the cytoplasm and to rely on the survival of motor neuron complex, whose defect leads to spinal muscular atrophy.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-University of Lorraine, Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
6
|
Genetic regulation of disease risk and endometrial gene expression highlights potential target genes for endometriosis and polycystic ovarian syndrome. Sci Rep 2018; 8:11424. [PMID: 30061686 PMCID: PMC6065421 DOI: 10.1038/s41598-018-29462-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Gene expression varies markedly across the menstrual cycle and expression levels for many genes are under genetic control. We analyzed gene expression and mapped expression quantitative trait loci (eQTLs) in endometrial tissue samples from 229 women and then analyzed the overlap of endometrial eQTL signals with genomic regions associated with endometriosis and other reproductive traits. We observed a total of 45,923 cis-eQTLs for 417 unique genes and 2,968 trans-eQTLs affecting 82 unique genes. Two eQTLs were located in known risk regions for endometriosis including LINC00339 on chromosome 1 and VEZT on chromosome 12 and there was evidence for eQTLs that may be target genes in genomic regions associated with other reproductive diseases. Dynamic changes in expression of individual genes across cycle include alterations in both mean expression and transcriptional silencing. Significant effects of cycle stage on mean expression levels were observed for (2,427/15,262) probes with detectable expression in at least 90% of samples and for (2,877/9,626) probes expressed in some, but not all samples. Pathway analysis supports similar biological control of both altered expression levels and transcriptional silencing. Taken together, these data identify strong genetic effects on genes with diverse functions in human endometrium and provide a platform for better understanding genetic effects on endometrial-related pathologies.
Collapse
|
7
|
Yuan F, Xu C, Li G, Tong T. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis. Cell Death Dis 2018; 9:518. [PMID: 29725012 PMCID: PMC5938709 DOI: 10.1038/s41419-018-0572-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023]
Abstract
The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.
Collapse
Affiliation(s)
- Fuwen Yuan
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chenzhong Xu
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Nucleolar and coiled-body phosphoprotein 1 (NOLC1) regulates the nucleolar retention of TRF2. Cell Death Discov 2017; 3:17043. [PMID: 28875039 PMCID: PMC5582526 DOI: 10.1038/cddiscovery.2017.43] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 01/24/2023] Open
Abstract
Telomeric repeat-binding factor 2 (TRF2) was reported to localize in the nucleolus of human cells in a cell cycle-dependent manner; however, the underlying mechanism remains unclear. Here, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1) interacted with TRF2 and mediated the shuttling of TRF2 between the nucleolus and nucleus in human 293T and HepG2 cells. Ablation of NOLC1 expression increased the number of nuclear TRF2 foci and decreased the nucleolar level of TRF2. Conversely, NOLC1 overexpression promoted the nucleolar accumulation of TRF2. NOLC1 overexpression also increased the number of 53BP1 foci and induced the DNA damage response. In addition, co-expression of TRF2 rescued NOLC1 overexpression-induced cell cycle arrest and apoptosis.
Collapse
|
9
|
Tsekrekou M, Stratigi K, Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int J Mol Sci 2017; 18:ijms18071411. [PMID: 28671574 PMCID: PMC5535903 DOI: 10.3390/ijms18071411] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
10
|
Nunes VS, Moretti NS. Nuclear subcompartments: an overview. Cell Biol Int 2016; 41:2-7. [DOI: 10.1002/cbin.10703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/05/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Vinícius Santana Nunes
- Departamento de Microbiologia; Imunologia e Parasitologia; Universidade Federal de Sao Paulo; Sao Paulo Brazil
- Departamento de Medicina; Faculdade Multivix; Vitória Espirito Santo Brazil
| | - Nilmar Silvio Moretti
- Departamento de Microbiologia; Imunologia e Parasitologia; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
11
|
Takeiwa T, Taniguchi I, Ohno M. Exportin-5 mediates nuclear export of SRP RNA in vertebrates. Genes Cells 2015; 20:281-91. [PMID: 25656399 PMCID: PMC4418401 DOI: 10.1111/gtc.12218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022]
Abstract
The signal recognition particle is a ribonucleoprotein complex that is essential for the translocation of nascent proteins into the endoplasmic reticulum. It has been shown that the RNA component (SRP RNA) is exported from the nucleus by CRM1 in the budding yeast. However, how SRP RNA is exported in higher species has been elusive. Here, we show that SRP RNA does not use the CRM1 pathway in Xenopus oocytes. Instead, SRP RNA uses the same export pathway as pre-miRNA and tRNA as showed by cross-competition experiments. Consistently, the recombinant Exportin-5 protein specifically stimulated export of SRP RNA as well as of pre-miRNA and tRNA, whereas an antibody raised against Exportin-5 specifically inhibited export of the same RNA species. Moreover, biotinylated SRP RNA can pull down Exportin-5 but not CRM1 from HeLa cell nuclear extracts in a RanGTP-dependent manner. These results, taken together, strongly suggest that the principal export receptor for SRP RNA in vertebrates is Exportin-5 unlike in the budding yeast.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Institute for Virus Research, Kyoto UniversityKyoto, 606-8507, Japan
| | - Ichiro Taniguchi
- Institute for Virus Research, Kyoto UniversityKyoto, 606-8507, Japan
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto UniversityKyoto, 606-8507, Japan
| |
Collapse
|
12
|
Abstract
HeLa cells engineered with the fluorescent ubiquitinylation-based cell cycle indicator are used to study the connection between nucleolar stress and cell cycle progression. The results demonstrate a feedforward mechanism that leads to G2 arrest and identify ATR and Chk1 as molecular agents of the requisite checkpoint. We report experiments on the connection between nucleolar stress and cell cycle progression, using HeLa cells engineered with the fluorescent ubiquitinylation-based cell cycle indicator. Nucleolar stress elicited by brief exposure of cells to a low concentration of actinomycin D that selectively inhibits rRNA synthesis had no effect on traverse of G1 or S, but stalled cells in very late interphase. Additional experiments revealed that a switch occurs during a specific temporal window during nucleolar stress and that the subsequent cell cycle arrest is not triggered simply by the stress-induced decline in the synthesis of rRNA or by a ribosome starvation phenomenon. Further experiments revealed that this nucleolus stress-induced cell cycle arrest involves the action of a G2 checkpoint mediated by the ataxia telangiectasia and Rad3-related protein (ATR)–checkpoint kinase 1 (Chk1) pathway. Based on analysis of the cell cycle stages at which this nucleolar stress effect is put into action, to become manifest later, our results demonstrate a feedforward mechanism that leads to G2 arrest and identify ATR and Chk1 as molecular agents of the requisite checkpoint.
Collapse
Affiliation(s)
- Hanhui Ma
- Department of Biochemistry and Molecular Pharmacology and Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
13
|
Abstract
As the most prominent sub-nuclear compartment in the interphase nucleus and the site of ribosome biogenesis, the nucleolus synthesizes and processes rRNA and also assembles ribosomal subunits. Though several lines of research in recent years have indicated that the nucleolus might have additional functions-such as the assembling of signal recognition particles, the processing of mRNA, tRNA and telomerase activities, and regulating the cell cycle-proteomic analyses of the nucleolus in three representative eukaryotic species has shown that a plethora of proteins either have no association with ribosome biogenesis or are of presently unknown function. This phenomenon further indicates that the composition and function of the nucleolus is far more complicated than previously thought. Meanwhile, the available nucleolar proteome databases has provided new approaches and led to remarkable progress in understanding the nucleolus. Here, we have summarized recent advances in the study of the nucleolus, including new discoveries of its structure, function, genomics/proteomics as well as its origin and evolution. Moreover, we highlight several of the important unresolved issues in this field.
Collapse
|
14
|
Piazzon N, Schlotter F, Lefebvre S, Dodré M, Méreau A, Soret J, Besse A, Barkats M, Bordonné R, Branlant C, Massenet S. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res 2012; 41:1255-72. [PMID: 23221635 PMCID: PMC3553995 DOI: 10.1093/nar/gks1224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy is a severe motor neuron disease caused by reduced levels of the ubiquitous Survival of MotoNeurons (SMN) protein. SMN is part of a complex that is essential for spliceosomal UsnRNP biogenesis. Signal recognition particle (SRP) is a ribonucleoprotein particle crucial for co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. SRP biogenesis is a nucleo-cytoplasmic multistep process in which the protein components, except SRP54, assemble with 7S RNA in the nucleolus. Then, SRP54 is incorporated after export of the pre-particle into the cytoplasm. The assembly factors necessary for SRP biogenesis remain to be identified. Here, we show that 7S RNA binds to purified SMN complexes in vitro and that SMN complexes associate with SRP in cellular extracts. We identified the RNA determinants required. Moreover, we report a specific reduction of 7S RNA levels in the spinal cord of SMN-deficient mice, and in a Schizosaccharomyces pombe strain carrying a temperature-degron allele of SMN. Additionally, microinjected antibodies directed against SMN or Gemin2 interfere with the association of SRP54 with 7S RNA in Xenopus laevis oocytes. Our data show that reduced levels of the SMN protein lead to defect in SRP steady-state level and describe the SMN complex as the first identified cellular factor required for SRP biogenesis.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Laboratoire ARN-RNP structure-fonction-maturation, Enzymologie Moléculaire et Structurale (AREMS), Nancy Université-CNRS, UMR 7214, FR 3209, Faculté de Médecine de Nancy, BP 184, 9 avenue de la forêt de Haye, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
When cells are observed by phase contrast microscopy, nucleoli are among the most conspicuous structures. The nucleolus was formally described between 1835 and 1839, but it was another century before it was discovered to be associated with a specific chromosomal locus, thus defining it as a cytogenetic entity. Nucleoli were first isolated in the 1950s, from starfish oocytes. Then, in the early 1960s, a boomlet of studies led to one of the epochal discoveries in the modern era of genetics and cell biology: that the nucleolus is the site of ribosomal RNA synthesis and nascent ribosome assembly. This epistemologically repositioned the nucleolus as not merely an aspect of nuclear anatomy but rather as a cytological manifestation of gene action-a major heuristic advance. Indeed, the finding that the nucleolus is the seat of ribosome production constitutes one of the most vivid confluences of form and function in the history of cell biology. This account presents the nucleolus in both historical and contemporary perspectives. The modern era has brought the unanticipated discovery that the nucleolus is plurifunctional, constituting a paradigm shift.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 01605, USA.
| |
Collapse
|
16
|
Politz JCR, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA (NEW YORK, N.Y.) 2009; 15:1705-15. [PMID: 19628621 PMCID: PMC2743059 DOI: 10.1261/rna.1470409] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 06/18/2009] [Indexed: 05/03/2023]
Abstract
There is increasing evidence that noncoding RNAs play a functional role in the nucleus. We previously reported that the microRNA (miRNA), miR-206, is concentrated in the nucleolus of rat myoblasts, as well as in the cytoplasm as expected. Here we have extended this finding. We show by cell/nuclear fractionation followed by microarray analysis that a number of miRNAs can be detected within the nucleolus of rat myoblasts, some of which are significantly concentrated there. Pronounced nucleolar localization is a specific phenomenon since other miRNAs are present at only very low levels in the nucleolus and occur at much higher levels in the nucleoplasm and/or the cytoplasm. We have further characterized a subset of these miRNAs using RT-qPCR and in situ hybridization, and the results suggest that some miRNAs are present in the nucleolus in precursor form while others are present as mature species. Furthermore, we have found that these miRNAs are clustered in specific sites within the nucleolus that correspond to the classical granular component. One of these miRNAs is completely homologous to a portion of a snoRNA, suggesting that it may be processed from it. In contrast, the other nucleolar-concentrated miRNAs do not show homology with any annotated rat snoRNAs and thus appear to be present in the nucleolus for other reasons, such as modification/processing, or to play roles in the late stages of ribosome biosynthesis or in nonribosomal functions that have recently been ascribed to the granular component of the nucleolus.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
17
|
Lee S, Lillehoj H, Park D, Jang S, Morales A, García D, Lucio E, Larios R, Victoria G, Marrufo D, Lillehoj E. Induction of passive immunity in broiler chickens against Eimeria acervulina by hyperimmune egg yolk immunoglobulin Y. Poult Sci 2009; 88:562-6. [DOI: 10.3382/ps.2008-00340] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Ma H, Pederson T. Nucleostemin: a multiplex regulator of cell-cycle progression. Trends Cell Biol 2008; 18:575-9. [PMID: 18951797 DOI: 10.1016/j.tcb.2008.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 11/15/2022]
Abstract
Nucleostemin (NS) is a protein concentrated in the nucleolus of most stem cells and also in many tumor cells, which has been implicated in cell-cycle progression owing to its ability to modulate p53. Depletion of NS causes G(1) cell-cycle arrest, but its overexpression does so as well. Recently, this paradox has been clarified. NS overexpression causes a sequestration of murine double minute 2 (MDM2), preventing the destruction of p53. A recent study has demonstrated that loss of NS promotes the interaction of L5 and L11 ribosomal proteins with MDM2 and, thus, also prevents p53 degradation. This new finding expands our understanding of the multiple modes of NS action and reinforces the concept that the nucleolus has key roles in cell-cycle progression.
Collapse
Affiliation(s)
- Hanhui Ma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01609, USA.
| | | |
Collapse
|
19
|
Morgan GT. Working with Oocyte Nuclei: Cytological Preparations of Active Chromatin and Nuclear Bodies from Amphibian Germinal Vesicles. Methods Mol Biol 2008; 463:55-66. [DOI: 10.1007/978-1-59745-406-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Meng L, Zhu Q, Tsai RYL. Nucleolar trafficking of nucleostemin family proteins: common versus protein-specific mechanisms. Mol Cell Biol 2007; 27:8670-82. [PMID: 17923687 PMCID: PMC2169394 DOI: 10.1128/mcb.00635-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/26/2007] [Accepted: 09/21/2007] [Indexed: 11/20/2022] Open
Abstract
The nucleolus has begun to emerge as a subnuclear organelle capable of modulating the activities of nuclear proteins in a dynamic and cell type-dependent manner. It remains unclear whether one can extrapolate a rule that predicts the nucleolar localization of multiple proteins based on protein sequence. Here, we address this issue by determining the shared and unique mechanisms that regulate the static and dynamic distributions of a family of nucleolar GTP-binding proteins, consisting of nucleostemin (NS), guanine nucleotide binding protein-like 3 (GNL3L), and Ngp1. The nucleolar residence of GNL3L is short and primarily controlled by its basic-coiled-coil domain, whereas the nucleolar residence of NS and Ngp1 is long and requires the basic and the GTP-binding domains, the latter of which functions as a retention signal. All three proteins contain a nucleoplasmic localization signal (NpLS) that prevents their nucleolar accumulation. Unlike that of the basic domain, the activity of NpLS is dynamically controlled by the GTP-binding domain. The nucleolar retention and the NpLS-regulating functions of the G domain involve specific residues that cannot be predicted by overall protein homology. This work reveals common and protein-specific mechanisms underlying the nucleolar movement of NS family proteins.
Collapse
Affiliation(s)
- Lingjun Meng
- Center for Cancer and Stem Cell Biology, Alkek Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W Holcombe Blvd., Houston, TX 77030, USA
| | | | | |
Collapse
|
21
|
Abstract
The nucleolus is the most prominent compartment in the nucleus and known as the site for ribosome biogenesis in eucaryotes. In contrast, there is no such equivalent structure for ribosome synthesis in procaryotes. This raises two concerns that how does the nucleolus evolve and that whether the nucleolus remains playing a single role in ribosome biogenesis along the evolution. Increasing data support new nucleolus functions, including signal recognition particle assembly, small RNA modification, telomerase maturation, cell-cycle and aging control, and cell stress sensor. Multiple functions of the nucleolus possibly result from the plurifunctionality of nucleolar proteins, such as nucleolin and Nopp140. Proteomic analyses of human and Arabidopsis nucleolus lead a remarkable progress in understanding the evolution and new functions of nucleoli. In this review, we present a brief history of nucleolus research and new concepts and unresolved questions. Also, we introduce hepatitis D virus for studying the communication between the nucleolus and other subnuclear compartments, and Caenorhabditis elegans for the role of nucleolus in the development and the epistatic control of nucleologenesis.
Collapse
Affiliation(s)
- Szecheng J Lo
- Department of Life Science, Graduate Institute of Basic Medical Science, 259, Wen-Hwa 1st Road, Chang Gung University, TaoYuan 333.
| | | | | |
Collapse
|
22
|
Stewart MD, Sommerville J, Wong J. Dynamic regulation of histone modifications in Xenopus oocytes through histone exchange. Mol Cell Biol 2006; 26:6890-901. [PMID: 16943430 PMCID: PMC1592870 DOI: 10.1128/mcb.00948-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation has broad roles in transcriptional repression, gene silencing, maintenance of heterochromatin, and epigenetic inheritance of heterochromatin. Using Xenopus laevis oocytes, we have previously shown that targeting G9a, an H3K9 histone methyltransferase, to chromatin increases H3K9 methylation and consequently represses transcription. Here we report that treatment with trichostatin A induces histone acetylation and is sufficient to activate transcription repressed by G9a, and this activation is accompanied by a reduction in dimethyl H3K9 (H3K9me2). We tested the possibility that the reduction in H3K9me2 was due to the replacement of methylated H3 with unmethylated H3.3. Surprisingly, we found that both free H3 and H3.3 are continually exchanged with chromatin-associated histones. This dynamic exchange of chromatin-associated H3 with free H3/H3.3 was not affected by alterations in transcriptional activity, elongation, acetylation, H3K9 methylation, or DNA replication. In support of this continual histone exchange model, we show that maintenance of H3K9 methylation at a specific site requires the continual presence of an H3K9 histone methyltransferase. Upon dissociation of the methyltransferase, H3K9 methylation decreases. Taken together, our data suggest that chromatin-associated and non-chromatin-associated histones are continually exchanged in the Xenopus oocyte, creating a highly dynamic chromatin environment.
Collapse
Affiliation(s)
- M David Stewart
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
23
|
Abstract
RNA polymerase III (pol III) transcribes many essential, small, noncoding RNAs, including the 5S rRNAs and tRNAs. While most pol III-transcribed genes are found scattered throughout the linear chromosome maps or in multiple linear clusters, there is increasing evidence that many of these genes prefer to be spatially clustered, often at or near the nucleolus. This association could create an environment that fosters the coregulation of transcription by pol III with transcription of the large ribosomal RNA repeats by RNA polymerase I (pol I) within the nucleolus. Given the high number of pol III-transcribed genes in all eukaryotic genomes, the spatial organization of these genes is likely to affect a large portion of the other genes in a genome. In this Survey and Summary we analyze the reports regarding the spatial organization of pol III genes and address the potential influence of this organization on transcriptional regulation.
Collapse
Affiliation(s)
| | - David R. Engelke
- To whom correspondence should be addressed. Tel: +1 734 763 0641; Fax:+1 734 763 7799;
| |
Collapse
|
24
|
Raska I, Shaw PJ, Cmarko D. Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 2006; 18:325-34. [PMID: 16687244 DOI: 10.1016/j.ceb.2006.04.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear sub-compartment. It is where ribosome biogenesis takes place, but it is becoming clear that the nucleolus also has non-ribosomal functions. In this review we discuss recent progress in our understanding of how both ribosome biosynthesis and some non-ribosomal functions relate to observable nucleolar structure. We still do not have detailed enough information about the in situ organization of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy techniques means that a description of the organization of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | | | | |
Collapse
|
25
|
Lustig Y, Goldshmidt H, Uliel S, Michaeli S. The Trypanosoma brucei signal recognition particle lacks the Alu-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi. J Cell Sci 2006; 118:4551-62. [PMID: 16179612 DOI: 10.1242/jcs.02578] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosomes are protozoan parasites that have a major impact on human health and that of livestock. These parasites represent a very early branch in the eukaryotic lineage, and possess unique RNA processing mechanisms. The trypanosome signal recognition particle (SRP) is also unusual in being the first signal recognition particle described in nature to be comprised of two RNA molecules, the 7SL RNA and a tRNA-like molecule. In this study, we further elucidated the unique properties of this particle. The genes encoding three SRP proteins (SRP19, SRP72 and SRP68) were identified by bioinformatics analysis. Silencing of these genes by RNAi suggests that the SRP-mediated protein translocation pathway is essential for growth. The depletion of SRP72 and SRP68 induced sudden death, most probably as a result of toxicity due to the accumulation of the pre-SRP in the nucleolus. Purification of the trypanosome particle to homogeneity, by TAP-tagging, identified four SRP proteins (SRP72, SRP68, SRP54 and SRP19), but no Alu-domain-binding protein homologs. This study highlights the unique features of the trypanosome SRP complex and further supports the hypothesis that the tRNA-like molecule present in this particle may replace the function of the Alu-domain-binding proteins present in many eukaryotic SRP complexes.
Collapse
Affiliation(s)
- Yaniv Lustig
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
26
|
Handwerger KE, Gall JG. Subnuclear organelles: new insights into form and function. Trends Cell Biol 2006; 16:19-26. [PMID: 16325406 DOI: 10.1016/j.tcb.2005.11.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/15/2005] [Accepted: 11/21/2005] [Indexed: 11/30/2022]
Abstract
The cell nucleus is a complex and highly dynamic environment with many functionally specialized regions of substructure that form and maintain themselves in the absence of membranes. Relatively little is known about the basic physical properties of the nuclear interior or how domains within the nucleus are structurally and functionally organized and interrelated. Here, we summarize recent data that shed light on the structural and functional properties of three prominent subnuclear organelles--nucleoli, Cajal bodies (CBs) and speckles. We discuss how these findings impact our understanding of the guiding principles of nuclear organization and various types of human disease.
Collapse
Affiliation(s)
- Korie E Handwerger
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
27
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
28
|
Politz JCR, Polena I, Trask I, Bazett-Jones DP, Pederson T. A nonribosomal landscape in the nucleolus revealed by the stem cell protein nucleostemin. Mol Biol Cell 2005; 16:3401-10. [PMID: 15857956 PMCID: PMC1165421 DOI: 10.1091/mbc.e05-02-0106] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nucleostemin is a p53-interactive cell cycle progression factor that shuttles between the nucleolus and nucleoplasm, but it has no known involvement in ribosome synthesis. We found the dynamic properties of nucleostemin differed strikingly from fibrillarin (a protein directly involved in rRNA processing) both in response to rRNA transcription inhibition and in the schedule of reentry into daughter nuclei and the nucleolus during late telophase/early G1. Furthermore, nucleostemin was excluded from the nucleolar domains in which ribosomes are born--the fibrillar centers and dense fibrillar component. Instead it was concentrated in rRNA-deficient sites within the nucleolar granular component. This finding suggests that the nucleolus may be more subcompartmentalized than previously thought. In support of this concept, electron spectroscopic imaging studies of the nitrogen and phosphorus distribution in the nucleolar granular component revealed regions that are very rich in protein and yet devoid of nucleic acid. Together, these results suggest that the ultrastructural texture of the nucleolar granular component represents not only ribosomal particles but also RNA-free zones populated by proteins or protein complexes that likely serve other functions.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|