1
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
2
|
Hall A, Fontelonga T, Wright A, Bugda Gwilt K, Widrick J, Pasut A, Villa F, Miranti CK, Gibbs D, Jiang E, Meng H, Lawlor MW, Gussoni E. Tetraspanin CD82 is necessary for muscle stem cell activation and supports dystrophic muscle function. Skelet Muscle 2020; 10:34. [PMID: 33243288 PMCID: PMC7693590 DOI: 10.1186/s13395-020-00252-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tetraspanins are a family of proteins known to assemble protein complexes at the cell membrane. They are thought to play diverse cellular functions in tissues by modifying protein-binding partners, thus bringing complexity and diversity in their regulatory networks. Previously, we identified the tetraspanin KAI/CD82 as a prospective marker for human muscle stem cells. CD82 expression appeared decreased in human Duchenne muscular dystrophy (DMD) muscle, suggesting a functional link to muscular dystrophy, yet whether this decrease is a consequence of dystrophic pathology or a compensatory mechanism in an attempt to rescue muscle from degeneration is currently unknown. Methods We studied the consequences of loss of CD82 expression in normal and dystrophic skeletal muscle and examined the dysregulation of downstream functions in mice aged up to 1 year. Results Expression of CD82 is important to sustain satellite cell activation, as in its absence there is decreased cell proliferation and less efficient repair of injured muscle. Loss of CD82 in dystrophic muscle leads to a worsened phenotype compared to control dystrophic mice, with decreased pulmonary function, myofiber size, and muscle strength. Mechanistically, decreased myofiber size in CD82−/− dystrophic mice is not due to altered PTEN/AKT signaling, although increased phosphorylation of mTOR at Ser2448 was observed. Conclusion Basal CD82 expression is important to dystrophic muscle, as its loss leads to significantly weakened myofibers and impaired muscle function, accompanied by decreased satellite cell activity that is unable to protect and repair myofiber damage. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-020-00252-3.
Collapse
Affiliation(s)
- Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alessandra Pasut
- Laboratory of Angiogenesis and Vascular metabolism, Center for Cancer Biology, VIB and KU Leuven, 3000, Leuven, Belgium
| | - Francesco Villa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Devin Gibbs
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Evan Jiang
- The University of Pennsylvania, College of Arts and Sciences, Philadelphia, PA, 19104, USA
| | - Hui Meng
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA. .,The Stem Cell Program at Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Wei ZT, Yu XW, He JX, Liu Y, Zhang SL. Characteristics of primary side population cervical cancer cells. Oncol Lett 2017; 14:3536-3544. [PMID: 28927110 PMCID: PMC5588017 DOI: 10.3892/ol.2017.6606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/09/2017] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to identify and characterize side population (SP) cells in primary cervical cancer. A primary culture was successfully established, and the SP cells were isolated via fluorescence-activated cell sorting. Subsequently, in vitro analysis of clonogenic capacity by soft agar assay and in vivo analysis of tumorigenicity were performed. The isolated SP cells accounted for ~4.73% of the total primary culture cells. The SP cells had a decreased proliferation rate and an increased distribution in G0/G1 compared with non-SP (NSP) cells. Following isolation, SP cells exhibited increased proliferative and self-renewal potency compared with NSP cells. Furthermore, significant ATP binding cassette subfamily G member 2 (ABCG2) expression was detected in SP cells but not in NSP cells. The tumor formation rate of SP cells was longer, and the tumor size and tumor formation rate of SP cells were increased in non-obese diabetic/severe combined immunodeficiency mice. In conclusion, the present study demonstrated that SP cells can be isolated from primary cervical cancer cell culture, and SP cells are enriched with stem cell-like cells that have a high capacity for colony formation and tumorigenesis.
Collapse
Affiliation(s)
- Zhen-Tong Wei
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Wei Yu
- Prenatal Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Xue He
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Liu
- Genetic Engineering Laboratory of The Chinese People's Liberation Army, Military Veterinary Institute, Acadamy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Song-Ling Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
4
|
The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 2017; 7:5160. [PMID: 28698572 PMCID: PMC5505993 DOI: 10.1038/s41598-017-04896-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of skeletal muscle mass and function occurs with increasing age. Calorie restriction (CR) increases the lifespan of C57Bl/6 mice, but not in the shorter-lived DBA/2 strain. There is some evidence that calorie restriction reduces or delays many of the age-related defects that occur in rodent skeletal muscle. We therefore investigated the effect of short (2.5 month) and longer term (8.5 and 18.5 months) CR on skeletal muscle in male and female C57Bl/6 and DBA/2 mice. We found that short-term CR increased the satellite cell number and collagen VI content of muscle, but resulted in a delayed regenerative response to injury.Consistent with this, the in vitro proliferation of satellite cells derived from these muscles was reduced by CR. The percentage of stromal cells, macrophages, hematopoietic stem cells and fibroadipogenic cells in the mononucleated cell population derived from skeletal muscle was reduced by CR at various stages. But overall, these changes are neither consistent over time, nor between strain and sex. The fact that changes induced by CR do not persist with time and the dissimilarities between the two mouse strains, combined with sex differences, urge caution in applying CR to improve skeletal muscle function across the lifespan in humans.
Collapse
|
5
|
Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016; 2016:1078686. [PMID: 27042182 PMCID: PMC4794588 DOI: 10.1155/2016/1078686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.
Collapse
|
6
|
Sharma A, Sane H, Gokulchandran N, Gandhi S, Bhovad P, Khopkar D, Paranjape A, Bhagwanani K, Badhe P. The role of cell transplantation in modifying the course of limb girdle muscular dystrophy: a longitudinal 5-year study. Degener Neurol Neuromuscul Dis 2015; 5:93-102. [PMID: 32669917 PMCID: PMC7337147 DOI: 10.2147/dnnd.s71775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
Limb girdle muscular dystrophy (LGMD), a group of progressive degenerative disorders, causes functional limitation affecting the quality of life. Cell therapy is being widely explored and preliminary studies have shown beneficial effects. Cell therapy induces trophic-factors release, angiogenesis, anti-inflammation, and protein synthesis, which helps in the reparative process at the microcellular level. In this 5-year longitudinal study, the effect of autologous bone marrow mononuclear cells is studied on the natural course of 65 patients with LGMD. Functional Independence Measure and manual muscle testing showed statistically significant improvement, post-cell transplantation. The key finding of this study was demonstration of a plateau phase in the disease progression of the patients. No adverse events were noted. Autologous bone marrow mononuclear cells may be a novel, safe, and effective treatment approach to control the rate of progression of LGMD, thus improving the functional outcomes. Further randomized controlled trials are required.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Medical Services and Clinical Research
| | | | | | - Sushant Gandhi
- Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Nerul, Navi Mumbai, Maharashtra, India
| | - Pradnya Bhovad
- Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Nerul, Navi Mumbai, Maharashtra, India
| | | | | | - Khushboo Bhagwanani
- Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Stemasia Hospital and Research Centre, Nerul, Navi Mumbai, Maharashtra, India
| | - Prerna Badhe
- Department of Medical Services and Clinical Research
| |
Collapse
|
7
|
Skuk D, Tremblay JP. Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients. Expert Opin Biol Ther 2015; 15:1307-19. [PMID: 26076715 DOI: 10.1517/14712598.2015.1057564] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Muscular dystrophies (MDs) are genetic diseases that produce progressive loss of skeletal muscle fibers. Cell therapy (CT) is an experimental approach to treat MD. The first clinical trials of CT in MD conducted in the 1990s were based on myoblast transplantation (MT). Since they did not yield the expected results, several researchers sought to discover other cells with more advantageous properties than myoblasts whereas others sought to improve MT. AREAS COVERED We explain the properties that are required for a cell to be used in CT of MD. We briefly review most of the cells that were proposed for this CT, and to what extent these properties were met not only in laboratory animals but also in clinical trials. EXPERT OPINION Although the repertoire of cells proposed for CT of MD has been expanded since the 1990s, only myoblasts have currently demonstrated unequivocally to significantly engraft in humans. Indeed, MT for MD involves significant technical challenges that need be solved. While it would be ideal to find cells involving less technical challenges for CT of MD, there is so far no clinical evidence that this is possible and therefore the work to improve MT should continue.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, P-09300, Centre Hospitalier de l'Université Laval , 2705 boulevard Laurier, Québec (QC), G1V 4G2 , Canada +1 418 654 2186 ; +1 418 654 2207 ;
| | | |
Collapse
|
8
|
Pavo N, Charwat S, Nyolczas N, Jakab A, Murlasits Z, Bergler-Klein J, Nikfardjam M, Benedek I, Benedek T, Pavo IJ, Gersh BJ, Huber K, Maurer G, Gyöngyösi M. Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. J Mol Cell Cardiol 2014; 75:12-24. [PMID: 24998410 DOI: 10.1016/j.yjmcc.2014.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Abstract
A decade ago, stem or progenitor cells held the promise of tissue regeneration in human myocardium, with the expectation that these therapies could rescue ischemic myocyte damage, enhance vascular density and rebuild injured myocardium. The accumulated evidence in 2014 indicates, however, that the therapeutic success of these cells is modest and the tissue regeneration involves much more complex processes than cell-related biologics. As the quest for the ideal cell or combination of cells continues, alternative cell types, such as resident cardiac cells, adipose-derived or phenotypic modified stem or progenitor cells have also been applied, with the objective of increasing both the number and the retention of the reparative cells in the myocardium. Two main delivery routes (intracoronary and percutaneous intramyocardial) of stem cells are currently used preferably for patients with recent acute myocardial infarction or ischemic cardiomyopathy. Other delivery modes, such as surgical or intravenous via peripheral veins or coronary sinus have also been utilized with less success. Due to the difficult recruitment of patients within conceivable timeframe into cardiac regenerative trials, meta-analyses of human cardiac cell-based studies have tried to gather sufficient number of subjects to present a statistical compelling statement, reporting modest success with a mean increase of 0.9-6.1% in left ventricular global ejection fraction. Additionally, nearly half of the long-term studies reported the disappearance of the initial benefit of this treatment. Beside further extensive efforts to increase the efficacy of currently available methods, pre-clinical experiments using new techniques such as tissue engineering or exploiting paracrine effect hold promise to regenerate injured human cardiac tissue.
Collapse
Affiliation(s)
- Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Austria
| | - Silvia Charwat
- Department of Cardiology, Medical University of Vienna, Austria
| | - Noemi Nyolczas
- Department of Cardiology, Medical University of Vienna, Austria
| | - András Jakab
- Department of Biomedical Laboratory and Imaging Science, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Murlasits
- Exercise Biochemistry Laboratory, The University of Memphis, Department of Health and Sport Sciences, Memphis, TN, USA
| | | | | | - Imre Benedek
- Department of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Romania
| | - Teodora Benedek
- Department of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Romania
| | - Imre J Pavo
- Department of Cardiology, Medical University of Vienna, Austria
| | - Bernard J Gersh
- Internal Medicine, Mayo Graduate School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kurt Huber
- 3(rd) Dept. Cardiology and Emergency Medicine, Wilhelminen hospital, Vienna, Austria
| | - Gerald Maurer
- Department of Cardiology, Medical University of Vienna, Austria
| | | |
Collapse
|
9
|
Liew WKM, Kang PB. Recent developments in the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. Ther Adv Neurol Disord 2013; 6:147-60. [PMID: 23634188 DOI: 10.1177/1756285612472386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pediatric neuromuscular disorders comprise a large variety of disorders that can be classified based on their neuroanatomical localization, patterns of weakness, and laboratory test results. Over the last decade, the field of translational research has been active with many ongoing clinical trials. This is particularly so in two common pediatric neuromuscular disorders: Duchenne muscular dystrophy and spinal muscular atrophy. Although no definitive therapy has yet been found, numerous active areas of research raise the potential for novel therapies in these two disorders, offering hope for improved quality of life and life expectancy for affected individuals.
Collapse
Affiliation(s)
- Wendy K M Liew
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, USA and Neurology service, Department of Paediatric Medicine, KK Women's and Children's Hospital, Singapore
| | | |
Collapse
|
10
|
Pacak CA, Eddy MT, Woodhull L, Wang KR, Alpatov I, Fullen S, Dowd RP, Choi YH, Cowan DB. Microcarrier-based expansion of adult murine side population stem cells. PLoS One 2013; 8:e55187. [PMID: 23383102 PMCID: PMC3557248 DOI: 10.1371/journal.pone.0055187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/19/2012] [Indexed: 01/19/2023] Open
Abstract
The lack of reliable methods to efficiently isolate and propagate stem cell populations is a significant obstacle to the advancement of cell-based therapies for human diseases. One isolation technique is based on efflux of the fluorophore Hoechst 33342. Using fluorescence-activated cell sorting (FACS), a sub-population containing adult stem cells has been identified in a multitude of tissues in every mammalian species examined. These rare cells are referred to as the ‘side population’ or SP due to a distinctive FACS profile that results from weak staining by Hoechst dye. Although the SP contains multi-potent cells capable of differentiating toward hematopoietic and mesenchymal lineages; there is currently no method to efficiently expand them. Here, we describe a spinner-flask culture system containing C2C12 myoblasts attached to spherical microcarriers that act to support the growth of non-adherent, post-natal murine skeletal muscle and bone marrow SP cells. Using FACS and hemocytometry, we show expansion of unfractionated EGFP+ SP cells over 6 wks. A significant number of these cells retain characteristics of freshly-isolated, unfractionated SP cells with respect to protein expression and dye efflux capacity. Expansion of the SP will permit further study of these heterogeneous cells and determine their therapeutic potential for regenerative and reparative therapies.
Collapse
Affiliation(s)
- Christina A. Pacak
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anæsthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mau-Thek Eddy
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Lindsey Woodhull
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kai-Roy Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Ivan Alpatov
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anæsthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shelby Fullen
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Rory P. Dowd
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Yeong-Hoon Choi
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anæsthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas B. Cowan
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anæsthesia, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Salani S, Donadoni C, Rizzo F, Bresolin N, Comi GP, Corti S. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J Cell Mol Med 2012; 16:1353-64. [PMID: 22129481 PMCID: PMC3823206 DOI: 10.1111/j.1582-4934.2011.01498.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs.
Collapse
Affiliation(s)
- Sabrina Salani
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Sheveleva ON, Payushina OV, Starostin VI. Cellular and molecular basis of skeletal muscle hystogenesis. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012060118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Asakura A. Skeletal Muscle-derived Hematopoietic Stem Cells: Muscular Dystrophy Therapy by Bone Marrow Transplantation. ACTA ACUST UNITED AC 2012; Suppl 11. [PMID: 24524008 PMCID: PMC3918728 DOI: 10.4172/2157-7633.s11-005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell populations which can be purified as a side population (SP) fraction or as a hematopoietic marker CD45-positive cell population. These muscle-derived hematopoietic stem/progenitor cell populations are surprisingly capable of differentiation into hematopoietic cells both after transplantation into irradiated mice and during in vitro colony formation assay. Therefore, these muscle-derived hematopoietic stem/progenitor cells appear to have characteristics similar to classical hematopoietic stem/progenitor cells found in bone marrow. This review outlines recent findings regarding hematopoietic stem/progenitor cell populations residing in adult skeletal muscle and discusses their myogenic potential along with their role in the stem cell niche and related cell therapies for approaching treatment of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
14
|
|
15
|
Doyle MJ, Zhou S, Tanaka KK, Pisconti A, Farina NH, Sorrentino BP, Olwin BB. Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration. ACTA ACUST UNITED AC 2011; 195:147-63. [PMID: 21949413 PMCID: PMC3187700 DOI: 10.1083/jcb.201103159] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abcg2-expressing cells proliferate after muscle injury and are required for effective regeneration of multiple muscle cell lineages. Skeletal muscle contains progenitor cells (satellite cells) that maintain and repair muscle. It also contains muscle side population (SP) cells, which express Abcg2 and may participate in muscle regeneration or may represent a source of satellite cell replenishment. In Abcg2-null mice, the SP fraction is lost in skeletal muscle, although the significance of this loss was previously unknown. We show that cells expressing Abcg2 increased upon injury and that muscle regeneration was impaired in Abcg2-null mice, resulting in fewer centrally nucleated myofibers, reduced myofiber size, and fewer satellite cells. Additionally, using genetic lineage tracing, we demonstrate that the progeny of Abcg2-expressing cells contributed to multiple cell types within the muscle interstitium, primarily endothelial cells. After injury, Abcg2 progeny made a minor contribution to regenerated myofibers. Furthermore, Abcg2-labeled cells increased significantly upon injury and appeared to traffic to muscle from peripheral blood. Together, these data suggest an important role for Abcg2 in positively regulating skeletal muscle regeneration.
Collapse
Affiliation(s)
- Michelle J Doyle
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
de la Garza-Rodea AS, van der Velde I, Boersma H, Gonçalves MAFV, van Bekkum DW, de Vries AAF, Knaän-Shanzer S. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 2010; 20:217-31. [PMID: 20719081 DOI: 10.3727/096368910x522117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice. β-Galactosidase-positive (β-gal(+)) human-mouse hybrid myofibers (HMs) were counted in serial cross sections over the full length of the treated TAMs of groups of mice at monthly intervals. The number of human cells was estimated using chemiluminescence assays. While the number of human cells declined gradually to about 10% of the injected cells at 60 days after transplantation, the number of HMs increased from day 10 onwards, reaching 104 ± 39.1 per TAM at 4 months postinjection. β-gal(+) cells and HMs were distributed over the entire muscle, indicating migration of the former from the central injection site to the ends of the TAMs. The identification of HMs that stained positive for human spectrin suggests myogenic reprogramming of hMSC nuclei. In summary, our findings reveal that BM-hMSCs continue to participate in the regeneration/remodeling of CTX-injured TAMs, resulting in ±5% HMs at 4 months after damage induction. Moreover, donor-derived cells were shown to express genetic information, both endogenous and transgenic, in recipient myofibers.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Kang PB, Lidov HG, White AJ, Mitchell M, Balasubramanian A, Estrella E, Bennett RR, Darras BT, Shapiro FD, Bambach BJ, Kurtzberg J, Gussoni E, Kunkel LM. Inefficient dystrophin expression after cord blood transplantation in Duchenne muscular dystrophy. Muscle Nerve 2010; 41:746-50. [PMID: 20513101 PMCID: PMC2965738 DOI: 10.1002/mus.21702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a boy who received two allogeneic stem cell transplantations from umbilical cord donors to treat chronic granulomatous disease (CGD). The CGD was cured after the second transplantation, but 2.5 years later he was diagnosed with Duchenne muscular dystrophy (DMD). Examinations of his DNA, muscle tissue, and myoblast cultures derived from muscle tissue were performed to determine whether any donor dystrophin was being expressed. The boy was found to have a large-scale deletion on the X chromosome that spanned the loci for CYBB and DMD. The absence of dystrophin led to muscle histology characteristic of DMD. Analysis of myofibers demonstrated no definite donor cell engraftment. This case suggests that umbilical cord-derived hematopoietic stem cell transplantation will not be efficacious in the therapy of DMD without additional interventions that induce engraftment of donor cells in skeletal muscle.
Collapse
MESH Headings
- Alemtuzumab
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neoplasm/therapeutic use
- Child
- Chromosome Mapping
- Chromosomes, Human, X
- Cyclophosphamide/therapeutic use
- Dystrophin/deficiency
- Dystrophin/genetics
- Follow-Up Studies
- Gene Deletion
- Gene Expression Regulation
- Granulomatous Disease, Chronic/genetics
- Granulomatous Disease, Chronic/surgery
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Male
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/surgery
- Reoperation
- Transplantation, Homologous
- Treatment Outcome
- Vidarabine/analogs & derivatives
- Vidarabine/therapeutic use
Collapse
Affiliation(s)
- Peter B. Kang
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Hart G.W. Lidov
- Department of Pathology, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Alexander J. White
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Matthew Mitchell
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Anuradha Balasubramanian
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Elicia Estrella
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Richard R. Bennett
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Basil T. Darras
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Frederic D. Shapiro
- Department of Orthopaedic Surgery, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Barbara J. Bambach
- Pediatric Hematology-Oncology, Roswell Park Cancer Institute, Buffalo, NY
| | - Joanne Kurtzberg
- Division of Blood and Bone Marrow Transplantation, Duke University Medical Center, Durham, NC
| | - Emanuela Gussoni
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Louis M. Kunkel
- Program in Genomics and Division of Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA
- The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA
| |
Collapse
|
18
|
Xynos A, Corbella P, Belmonte N, Zini R, Manfredini R, Ferrari G. Bone marrow-derived hematopoietic cells undergo myogenic differentiation following a Pax-7 independent pathway. Stem Cells 2010; 28:965-73. [PMID: 20333749 DOI: 10.1002/stem.418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several reports showed that hematopoietic stem cells (HSCs) participate in muscle regeneration, raising hope for their therapeutic potential for degenerative muscle diseases. However, proof that HSCs are able to reprogram their fate and enter a myogenic pathway, remains elusive. We demonstrate that murine bone marrow (BM)-derived hematopoietic cells, carrying reporter genes controlled by muscle-specific regulatory elements from the Myf5, myosin light chain (MLC3F), or MCK genes, are induced by myoblasts to activate muscle-specific genes. This potential resides in the more undifferentiated progenitors, expressing surface markers typical of HSCs. Comparative gene expression profiling of CD45(+)/Sca1(+) cells isolated from muscle or BM shows that hematopoietic cells participate to muscle regeneration, by undergoing a profound although incomplete myogenic reprogramming on interaction with the muscle microenviroment. These cells undergo specification and differentiation independently from Pax7 and MyoD, and lack Pax7-associated properties, such as self-renewal and proliferation, distinguishing from satellite cells. Our findings indicate that hematopoietic cells, on seeding in the muscle, become a distinct cell population endowed with myogenic potential.
Collapse
Affiliation(s)
- Alexandros Xynos
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 2009; 215:477-97. [PMID: 19702867 DOI: 10.1111/j.1469-7580.2009.01138.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Collapse
Affiliation(s)
- A Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
| | | | | |
Collapse
|
20
|
Current opportunities and challenges in skeletal muscle tissue engineering. J Tissue Eng Regen Med 2009; 3:407-15. [DOI: 10.1002/term.190] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Lee ASJ, Kahatapitiya P, Kramer B, Joya JE, Hook J, Liu R, Schevzov G, Alexander IE, McCowage G, Montarras D, Gunning PW, Hardeman EC. Methylguanine DNA methyltransferase-mediated drug resistance-based selective enrichment and engraftment of transplanted stem cells in skeletal muscle. Stem Cells 2009; 27:1098-108. [PMID: 19415780 DOI: 10.1002/stem.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell replacement therapy using stem cell transplantation holds much promise in the field of regenerative medicine. In the area of hematopoietic stem cell transplantation, O(6)-methylguanine-DNA methyltransferase MGMT (P140K) gene-mediated drug resistance-based in vivo enrichment strategy of donor stem cells has been shown to achieve up to 75%-100% donor cell engraftment in the host's hematopoietic stem cell compartment following repeated rounds of selection. This strategy, however, has not been applied in any other organ system. We tested the feasibility of using this MGMT (P140K)-mediated enrichment strategy for cell transplantation in skeletal muscles of mice. We demonstrate that muscle cells expressing an MGMT (P140K) drug resistance gene can be protected and selectively enriched in response to alkylating chemotherapy both in vitro and in vivo. Upon transplantation of MGMT (P140K)-expressing male CD34(+ve) donor stem cells isolated from regenerating skeletal muscle into injured female muscle treated with alkylating chemotherapy, donor cells showed enhanced engraftment in the recipient muscle 7 days following transplantation as examined by quantitative-polymerase chain reaction using Y-chromosome specific primers. Fluorescent in situ hybridization analysis using a Y-chromosome paint probe revealed donor-derived de novo muscle fiber formation in the recipient muscle 14 days following transplantation, with approximately 12.5% of total nuclei within the regenerated recipient muscle being of donor origin. Following engraftment, the chemo-protected donor CD34(+ve) cells induced substantial endogenous regeneration of the chemo-ablated host muscle that is otherwise unable to self-regenerate. We conclude that the MGMT (P140K)-mediated enrichment strategy can be successfully implemented in muscle.
Collapse
Affiliation(s)
- Antonio S J Lee
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|