1
|
Rotelli MD, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Calvi BR. An RNAi Screen for Genes Required for Growth of Drosophila Wing Tissue. G3 (BETHESDA, MD.) 2019; 9:3087-3100. [PMID: 31387856 PMCID: PMC6778782 DOI: 10.1534/g3.119.400581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the Drosophila wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using dpp-GAL4, and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in Drosophila The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of lin-52, a subunit of the Myb-MuvB transcription factor, or βNACtes6, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.
Collapse
Affiliation(s)
- Michael D Rotelli
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Anna M Bolling
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Andrew W Killion
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | | | - Michael J Dixon
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405 and
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
2
|
Lim DH, Lee S, Han JY, Choi MS, Hong JS, Seong Y, Kwon YS, Lee YS. Ecdysone-responsive microRNA-252-5p controls the cell cycle by targeting Abi in Drosophila. FASEB J 2018. [PMID: 29543534 DOI: 10.1096/fj.201701185rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The steroid hormone ecdysone has a central role in the developmental transitions of insects through its control of responsive protein-coding and microRNA (miRNA) gene expression. However, the complete regulatory network controlling the expression of these genes remains to be elucidated. In this study, we performed cross-linking immunoprecipitation coupled with deep sequencing of endogenous Argonaute 1 (Ago1) protein, the core effector of the miRNA pathway, in Drosophila S2 cells. We found that regulatory interactions between miRNAs and their cognate targets were substantially altered by Ago1 in response to ecdysone signaling. Additionally, during the larva-to-adult metamorphosis, miR-252-5p was up-regulated via the canonical ecdysone-signaling pathway. Moreover, we provide evidence that miR-252-5p targets Abelson interacting protein ( Abi) to decrease the protein levels of cyclins A and B, controlling the cell cycle. Overall, our data suggest a potential role for the ecdysone/miR-252-5p/Abi regulatory axis partly in cell-cycle control during metamorphosis in Drosophila.-Lim, D.-H., Lee, S., Han, J. Y., Choi, M.-S., Hong, J.-S., Seong, Y., Kwon, Y.-S., Lee, Y. S. Ecdysone-responsive microR-252-5p controls the cell cycle by targeting Abi in Drosophila.
Collapse
Affiliation(s)
- Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| | - Seungjae Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| | - Jee Yun Han
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| | - Youngmo Seong
- Department of Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young-Soo Kwon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
3
|
Wu Z, Guo W, Xie Y, Zhou S. Juvenile Hormone Activates the Transcription of Cell-division-cycle 6 (Cdc6) for Polyploidy-dependent Insect Vitellogenesis and Oogenesis. J Biol Chem 2016; 291:5418-27. [PMID: 26728459 DOI: 10.1074/jbc.m115.698936] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/06/2022] Open
Abstract
Although juvenile hormone (JH) is known to prevent insect larval metamorphosis and stimulate adult reproduction, the molecular mechanisms of JH action in insect reproduction remain largely unknown. Earlier, we reported that the JH-receptor complex, composed of methoprene-tolerant and steroid receptor co-activator, acts on mini-chromosome maintenance (Mcm) genes Mcm4 and Mcm7 to promote DNA replication and polyploidy for the massive vitellogenin (Vg) synthesis required for egg production in the migratory locust (Guo, W., Wu, Z., Song, J., Jiang, F., Wang, Z., Deng, S., Walker, V. K., and Zhou, S. (2014) PLoS Genet. 10, e1004702). In this study we have investigated the involvement of cell-division-cycle 6 (Cdc6) in JH-dependent vitellogenesis and oogenesis, as Cdc6 is essential for the formation of prereplication complex. We demonstrate here that Cdc6 is expressed in response to JH and methoprene-tolerant, and Cdc6 transcription is directly regulated by the JH-receptor complex. Knockdown of Cdc6 inhibits polyploidization of fat body and follicle cells, resulting in the substantial reduction of Vg expression in the fat body as well as severely impaired oocyte maturation and ovarian growth. Our data indicate the involvement of Cdc6 in JH pathway and a pivotal role of Cdc6 in JH-mediated polyploidization, vitellogenesis, and oogenesis.
Collapse
Affiliation(s)
- Zhongxia Wu
- From the School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingtian Xie
- College of Life Sciences, Jilin University, Changchun, Jilin 30012, China, and
| | - Shutang Zhou
- State Key laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
4
|
Crevel G, Cotterill S. Forced binding of the origin of replication complex to chromosomal sites in Drosophila S2 cells creates an origin of replication. J Cell Sci 2012; 125:965-72. [PMID: 22421364 DOI: 10.1242/jcs.094409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Origins of replication in higher eukaryotes appear to lack specific sequence characteristics and those mapped often appear to be spread over several kilobases. This has complicated the study of site-specific events at origins of replication in vivo. Here we show that fusion of a Gal4-binding domain to proteins of the origin of replication complex (Orc) is sufficient to direct initiation to Gal4-binding sites inserted in the Drosophila S2 cell chromosome. The activation appears to go via an authentic route, taking place only in the S phase of the cell cycle and involving the formation of a prereplication complex. We have also shown that the origin-associated acetylation of histone H4 at K12 can be directed to the region of Orc binding by the presence of Orc. We expect that this system can provide a useful tool for the study of site-specific events at origins of replication in higher eukaryotes and a means to dissect Orc-dependent and Orc-independent events at origins.
Collapse
Affiliation(s)
- Gilles Crevel
- Department Basic Medical Sciences, St Georges University London, Cranmer Terrace, London, SW17 0RE, UK
| | | |
Collapse
|
5
|
Crevel I, Crevel G, Gostan T, de Renty C, Coulon V, Cotterill S. Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference. PLoS One 2011; 6:e27101. [PMID: 22102875 PMCID: PMC3216938 DOI: 10.1371/journal.pone.0027101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/10/2011] [Indexed: 01/07/2023] Open
Abstract
A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment.
Collapse
Affiliation(s)
- Isabelle Crevel
- Department Basic Medical Sciences, St. Georges University London, London, United Kingdom
| | - Gilles Crevel
- Department Basic Medical Sciences, St. Georges University London, London, United Kingdom
| | - Thierry Gostan
- DNA Combing Facility, Institute of Molecular Genetics, CNRS UMR 5535 and University Montpellier 1 and 2, Montpellier, France
| | - Christelle de Renty
- DNA Combing Facility, Institute of Molecular Genetics, CNRS UMR 5535 and University Montpellier 1 and 2, Montpellier, France
| | - Vincent Coulon
- DNA Combing Facility, Institute of Molecular Genetics, CNRS UMR 5535 and University Montpellier 1 and 2, Montpellier, France
| | - Sue Cotterill
- Department Basic Medical Sciences, St. Georges University London, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF. Exp Cell Res 2009; 315:1403-14. [DOI: 10.1016/j.yexcr.2008.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 12/16/2022]
|
7
|
Yoshioka Y, Suyari O, Yamaguchi M. Transcription factor NF-Y is involved in regulation of the JNK pathway during Drosophila thorax development. Genes Cells 2008; 13:117-30. [PMID: 18233955 DOI: 10.1111/j.1365-2443.2007.01155.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The CCAAT motif-binding factor, nuclear factor Y (NF-Y) consists of three different subunits, NF-YA, NF-YB and NF-YC. Knockdown of Drosophila NF-YA (dNF-YA) in the notum compartment of wing discs by a pannir-GAL4 and UAS-dNF-YAIR mainly resulted in a thorax disclosed phenotype. Reduction of the Drosophila c-Jun N-terminal kinase (JNK) basket (bsk) gene dose enhanced the knockdown of dNF-YA-induced phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc)-LacZ enhancer trap line revealed reduction in the level of the JNK reporter, puc-LacZ signals, in dNF-YA RNAi clones. In addition, expression of wild-type Bsk effectively suppressed the phenotype induced by knockdown of dNF-YA. The bsk gene promoter contains a CCAAT motif and this motif plays a positive role in the promoter activity. We performed chromatin immunoprecipitation (ChIP) assays in S2 cells with anti-dNF-YA IgG and quantitative real-time PCR. The bsk gene promoter region containing the CCAAT boxes was effectively amplified in the immunoprecipitates by PCR. However, this region was not amplified in the immunoprecipitates from dNF-YA knockdown cells. Furthermore, the level of endogenous bsk mRNA is reduced in the dNF-YA knockdown larvae. These results suggest that dNF-Y is necessary for proper bsk expression and activity of JNK pathway during thorax development.
Collapse
Affiliation(s)
- Yasuhide Yoshioka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | |
Collapse
|
8
|
Crevel G, Bennett D, Cotterill S. The human TPR protein TTC4 is a putative Hsp90 co-chaperone which interacts with CDC6 and shows alterations in transformed cells. PLoS One 2008; 3:e0001737. [PMID: 18320024 PMCID: PMC2253824 DOI: 10.1371/journal.pone.0001737] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/30/2008] [Indexed: 01/28/2023] Open
Abstract
Background The human TTC4 protein is a TPR (tetratricopeptide repeat) motif-containing protein. The gene was originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant melanoma. Methodology/Principle Findings Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their interaction with the CDC6 protein. Conclusions/Significance Based on these results and our previous work with the Drosophila Dpit47 protein we suggest that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through which TTC4 could influence malignant development of cells.
Collapse
Affiliation(s)
- Gilles Crevel
- Department of Basic Medical Sciences, St Georges Hospital Medical School, London, United Kingdom
| | - Dorothy Bennett
- Department of Basic Medical Sciences, St Georges Hospital Medical School, London, United Kingdom
| | - Sue Cotterill
- Department of Basic Medical Sciences, St Georges Hospital Medical School, London, United Kingdom
- *E-mail:
| |
Collapse
|
9
|
Crevel G, Hashimoto R, Vass S, Sherkow J, Yamaguchi M, Heck MM, Cotterill S. Differential requirements for MCM proteins in DNA replication in Drosophila S2 cells. PLoS One 2007; 2:e833. [PMID: 17786205 PMCID: PMC1950684 DOI: 10.1371/journal.pone.0000833] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/16/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The MCM2-7 proteins are crucial components of the pre replication complex (preRC) in eukaryotes. Since they are significantly more abundant than other preRC components, we were interested in determining whether the entire cellular content was necessary for DNA replication in vivo. METHODOLOGY/PRINCIPLE FINDINGS We performed a systematic depletion of the MCM proteins in Drosophila S2 cells using dsRNA-interference. Reducing MCM2-6 levels by >95-99% had no significant effect on cell cycle distribution or viability. Depletion of MCM7 however caused an S-phase arrest. MCM2-7 depletion produced no change in the number of replication forks as measured by PCNA loading. We also depleted MCM8. This caused a 30% reduction in fork number, but no significant effect on cell cycle distribution or viability. No additive effects were observed by co-depleting MCM8 and MCM5. CONCLUSIONS/SIGNIFICANCE These studies suggest that, in agreement with what has previously been observed for Xenopus in vitro, not all of the cellular content of MCM2-6 proteins is needed for normal cell cycling. They also reveal an unexpected unique role for MCM7. Finally they suggest that MCM8 has a role in DNA replication in S2 cells.
Collapse
Affiliation(s)
- Gilles Crevel
- Basic Medical Sciences, St. George's University of London, London, United Kingdom
| | - Reina Hashimoto
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Sharron Vass
- Queen's Medical Research Institute Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jake Sherkow
- Queen's Medical Research Institute Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Margarete M.S. Heck
- Queen's Medical Research Institute Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sue Cotterill
- Basic Medical Sciences, St. George's University of London, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Cdc18 enforces long-term maintenance of the S phase checkpoint by anchoring the Rad3-Rad26 complex to chromatin. Mol Cell 2007; 26:553-63. [PMID: 17531813 DOI: 10.1016/j.molcel.2007.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/26/2007] [Accepted: 04/20/2007] [Indexed: 01/11/2023]
Abstract
DNA replication is initiated by recruitment of Cdc18 to origins. During S phase, CDK-dependent destruction of Cdc18 occurs. We show that when DNA replication stalls, Cdc18 persists in a chromatin-bound complex including the checkpoint kinases Rad3 and Rad26. Rad26 directly binds Cdc18 and is required for Rad3 recruitment to chromatin. Depletion of Cdc18 when DNA replication is stalled leads to release of Rad3 and Rad26 from chromatin and entry into an aberrant mitosis even though replication intermediates can still be detected. These findings indicate that Cdc18 plays a pivotal role in checkpoint maintenance by anchoring the Rad3-Rad26 complex to chromatin. Cdc18 persistence during DNA-replication arrest requires the S phase checkpoint that inhibits the S phase CDK. We propose that S phase arrest activates the S phase checkpoint blocking mitosis onset and inhibiting Cdc18 degradation, and that the stabilized Cdc18, in turn, anchors Rad3 to chromatin to ensure long-term checkpoint maintenance.
Collapse
|
11
|
Kim J, Feng H, Kipreos ET. C. elegans CUL-4 prevents rereplication by promoting the nuclear export of CDC-6 via a CKI-1-dependent pathway. Curr Biol 2007; 17:966-72. [PMID: 17509881 PMCID: PMC1945017 DOI: 10.1016/j.cub.2007.04.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Genome stability requires that genomic DNA is replicated only once per cell cycle. The replication-licensing system ensures that the formation of prereplicative complexes is temporally separated from the initiation of DNA replication [1-4]. The replication-licensing factors Cdc6 and Cdt1 are required for the assembly of prereplicative complexes during G1 phase. During S phase, metazoan Cdt1 is targeted for degradation by the CUL4 ubiquitin ligase [5-8], and vertebrate Cdc6 is translocated from the nucleus to the cytoplasm [9, 10]. However, because residual vertebrate Cdc6 remains in the nucleus throughout S phase [10-13], it has been unclear whether Cdc6 translocation to the cytoplasm prevents rereplication [1, 2, 14]. The inactivation of C. elegans CUL-4 is associated with dramatic levels of DNA rereplication [5]. Here, we show that C. elegans CDC-6 is exported from the nucleus during S phase in response to the phosphorylation of multiple CDK sites. CUL-4 promotes the phosphorylation and subsequent translocation of CDC-6 via negative regulation of the CDK-inhibitor CKI-1. Rereplication can be induced by coexpression of nonexportable CDC-6 with nondegradable CDT-1, indicating that redundant regulation of CDC-6 and CDT-1 prevents rereplication. This demonstrates that CDC-6 translocation is critical for preventing rereplication and that CUL-4 independently controls both replication-licensing factors.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607, USA
| | | | | |
Collapse
|
12
|
Wiggins BL, Malik HS. Molecular evolution of Drosophila Cdc6, an essential DNA replication-licensing gene, suggests an adaptive choice of replication origins. Fly (Austin) 2007; 1:155-63. [PMID: 18618020 PMCID: PMC2447932 DOI: 10.4161/fly.4599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increased size of eukaryotic genomes necessitated the use of multiple origins of DNA replication, and presumably selected for their efficient spacing to ensure rapid DNA replication. The sequence of these origins remains undetermined in metazoan genomes, leaving important questions about the selective constraints acting on replication origins unanswered. We have chosen to study the evolution of proteins that recognize and define these origins every cell cycle, as a surrogate to the direct analysis of replication origins. Among these DNA replication proteins is the essential Cdc6 protein, which acts to license origins for replication. We find that two different species pairs of Drosophila show evidence of positive selection in Cdc6 in their highly conserved C-terminal AAA-ATPase domain. We also identified amino acid segments that are highly conserved in the N-terminal tail of Cdc6 proteins from various Drosophila species, but are not conserved even in closely related insect species. Instead, we find that the N-terminal tails of Cdc6 proteins vary extensively in size and sequence across different eukaryotic lineages. Our results suggest that choice of origin firing may be significantly altered in closely related species, as each set of replication proteins optimizes to its own genomic landscape.
Collapse
Affiliation(s)
- Benjamin L. Wiggins
- Molecular and Cellular Biology program, University of Washington, Seattle WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109
| |
Collapse
|
13
|
Lau E, Zhu C, Abraham RT, Jiang W. The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep 2006; 7:425-30. [PMID: 16439999 PMCID: PMC1456921 DOI: 10.1038/sj.embor.7400624] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/18/2005] [Accepted: 12/07/2005] [Indexed: 11/08/2022] Open
Abstract
The Cdc6 protein is required for licensing of replication origins before the onset of DNA replication in eukaryotic cells. Here, we examined whether Cdc6 has other roles in mammalian cell-cycle progression from S to G2/M phase. Using RNA interference, we showed that depletion of Cdc6 in synchronous G1 cells blocks G1 to S transition, confirming the essential role of Cdc6 in the initiation of DNA replication. In contrast, depletion of Cdc6 in synchronous S-phase cells slowed DNA replication and led to mitotic lethality. The Cdc6-depleted S-phase cells showed fewer newly fired origins; however, established replication forks remained active, even during chromatin condensation. Despite such DNA replication abnormalities, loss of Cdc6 failed to activate Chk1 kinase. These results show that Cdc6 is not only required for G1 origin licensing, but is also crucial for proper S-phase DNA replication that is essential for DNA segregation during mitosis.
Collapse
Affiliation(s)
- Eric Lau
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- Graduate Program in Molecular Pathology, University of California, 9500 Gilman Drive 0612, La Jolla, California 92093, USA
| | - Changjun Zhu
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert T Abraham
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Wei Jiang
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- Tel: +1 858 646 3186; Fax: +1 858 713 6247; E-mail:
| |
Collapse
|