1
|
Cattini PA, Bock ME, Jin Y, Zanghi JA, Vakili H. A useful model to compare human and mouse growth hormone gene chromosomal structure, expression and regulation, and immune tolerance of human growth hormone analogues. Growth Horm IGF Res 2018; 42-43:58-65. [PMID: 30227383 DOI: 10.1016/j.ghir.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
Human (h) pituitary growth hormone (GH) is both physiologically and clinically important. GH reaches its highest circulatory levels in puberty, where it contributes to energy homeostasis and somatogenic growth. GH also helps to maintain tissues and organs and, thus, health and homeostasis. A reduction in the rate of hGH production begins in middle age but if GH insufficiency occurs this may result in tissue degenerative and metabolic diseases. As a consequence, hGH is prescribed under conditions of GH deficiency and, because of its lipolytic activity, stimulation of hGH release has also been used to treat obesity. However, studies of normal GH production and particularly synthesis versus secretion are not feasible in humans as they require sampling normal pituitaries from living subjects. Furthermore, human (or primate) GH structure and, as such, regulation and potential function, is distinct from non-primate rodent GH. As a result, most information about hGH regulation comes from measurements of secreted levels of GH in humans. Thus, partially humanized hGH transgenic mice, generated containing fragments of human chromosome 17 that include the intact hGH gene locus and many thousands of flanking base pairs as well as the endogenous mouse (m) GH gene provide a potentially useful model. Here we review this mouse model in terms of its ability to allow comparison of hGH versus mGH gene expression, and specifically: (i) GH locus structure as well as regulated and rhythmic expression; (ii) their ability to model a clinical assessment of hGH production in response to overeating and hyperinsulinemia as well as a possible effect of exercise, and (iii) their hGH-related immune tolerance and thus potential for testing hGH-related analogue immunogenicity.
Collapse
Affiliation(s)
- Peter A Cattini
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada.
| | - Margaret E Bock
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| | - Yan Jin
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| | | | - Hana Vakili
- Department of Pathology, University of Texas Southwestern Medical Center, TX, USA
| |
Collapse
|
2
|
Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape. Sci Rep 2017; 7:6219. [PMID: 28740156 PMCID: PMC5524710 DOI: 10.1038/s41598-017-06676-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
The distribution of the transcription machinery among different sub-nuclear domains raises the question on how the architecture of the nucleus modulates the transcriptional response. Here, we used fluorescence fluctuation analyses to quantitatively explore the organization of the glucocorticoid receptor (GR) in the interphase nucleus of living cells. We found that this ligand-activated transcription factor diffuses within the nucleus and dynamically interacts with bodies enriched in the coregulator NCoA-2, DNA-dependent foci and chromatin targets. The distribution of the receptor among the nuclear compartments depends on NCoA-2 and the conformation of the receptor as assessed with synthetic ligands and GR mutants with impaired transcriptional abilities. Our results suggest that the partition of the receptor in different nuclear reservoirs ultimately regulates the concentration of receptor available for the interaction with specific targets, and thus has an impact on transcription regulation.
Collapse
|
3
|
Wu CY, Persaud SD, Wei LN. Retinoic Acid Induces Ubiquitination-Resistant RIP140/LSD1 Complex to Fine-Tune Pax6 Gene in Neuronal Differentiation. Stem Cells 2015; 34:114-23. [PMID: 26372689 DOI: 10.1002/stem.2190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023]
Abstract
Receptor-interacting protein 140 (RIP140) is a wide-spectrum coregulator for hormonal regulation of gene expression, but its activity in development/stem cell differentiation is unknown. Here, we identify RIP140 as an immediate retinoic acid (RA)-induced dual-function chaperone for LSD1 (lysine-specific demethylase 1). RIP140 protects LSD1's catalytic domain and antagonizes its Jade-2-mediated ubiquitination and degradation. In RA-induced neuronal differentiation, the increased RIP140/LSD1 complex is recruited by RA-elevated Pit-1 to specifically reduce H3K4me2 modification on the Pax6 promoter, thereby repressing RA-induction of Pax6. This study reveals a new RA-induced gene repressive mechanism that modulates the abundance, enzyme quality, and recruitment of histone modifier LSD1 to neuronal regulator Pax6, which provides a homeostatic control for RA induction of neuronal differentiation.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shawna D Persaud
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Vakili H, Jin Y, Cattini PA. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. J Clin Invest 2014; 124:5002-12. [PMID: 25295535 DOI: 10.1172/jci77126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.
Collapse
|
5
|
Roche C, Rasolonjanahary R, Thirion S, Goddard I, Fusco A, Figarella-Branger D, Dufour H, Brue T, Franc JL, Enjalbert A, Barlier A. Inactivation of transcription factor pit-1 to target tumoral somatolactotroph cells. Hum Gene Ther 2012; 23:104-14. [PMID: 21942649 DOI: 10.1089/hum.2011.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of growth hormone (GH)- and prolactin (PRL)-secreting tumors resistant to current therapeutic molecules (somatostatin and dopamine analogues) remains challenging. To target these tumors specifically, we chose to inactivate a gene coding for a crucial factor in cell proliferation and hormonal regulation, specifically expressed in pituitary, by using a dominant-negative form of this gene involved in human pituitary deficiencies: transcription factor Pit-1 (POU1F1) mutated on arginine 271 to tryptophan (R271W). After lentiviral transfer, the effect of R271W was studied in vitro on human tumoral somatotroph and lactotroph cells and on the murine mammosomatotroph cell line GH4C1 and in vivo on GH4C1 subcutaneous xenografts in nude mice. R271W induced a decrease in GH and PRL hypersecretion by controlling the transcription of the corresponding hormones. This mutant decreased cell viability by an apoptotic mechanism and in vivo blocked the tumoral growth and GH secretion of xenografts obtained after transplantation of GH4C1 expressing mutant R271W. The strategy of using a dominant-negative form of a main factor controlling cell proliferation and hormonal secretion, and exclusively expressed in pituitary, seems promising for the gene therapy of human pituitary tumors and may be translated to other types of tumors maintaining some differentiation features.
Collapse
Affiliation(s)
- Catherine Roche
- CRN2M, UMR 6231-CNRS, Aix-Marseille University , 13344 Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
EBV nuclear antigen EBNALP dismisses transcription repressors NCoR and RBPJ from enhancers and EBNA2 increases NCoR-deficient RBPJ DNA binding. Proc Natl Acad Sci U S A 2011; 108:7808-13. [PMID: 21518914 DOI: 10.1073/pnas.1104991108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EBV nuclear antigen 2 (EBNA2) and EBV nuclear antigen LP (EBNALP) are critical for B-lymphocyte transformation to lymphoblastoid cell lines (LCLs). EBNA2 activates transcription through recombination signal-binding immunoglobulin κJ region (RBPJ), a transcription factor associated with NCoR repressive complexes, and EBNALP is implicated in repressor relocalization. EBNALP coactivation with EBNA2 was found to dominate over NCoR repression. EBNALP associated with NCoR and dismissed NCoR, NCoR and RBPJ, or NCoR, RBPJ, and EBNA2 from matrix-associated deacetylase (MAD) bodies. In non-EBV-infected BJAB B lymphoma cells that stably express EBNA2, EBNALP, or EBNA2 and EBNALP, EBNALP was associated with hairy and enhancer of split 1 (hes1), cd21, cd23, and arginine and glutamate-rich 1 (arglu1) enhancer or promoter DNA and was associated minimally with coding DNA. With the exception of RBPJ at the arglu1 enhancer, NCoR and RBPJ were significantly decreased at enhancer and promoter sites in EBNALP or EBNA2 and EBNALP BJAB cells. EBNA2 DNA association was unaffected by EBNALP, and EBNALP was unaffected by EBNA2. EBNA2 markedly increased RBPJ at enhancer sites without increasing NCoR. EBNALP further increased hes1 and arglu1 RNA levels with EBNA2 but did not further increase cd21 or cd23 RNA levels. EBNALP in which the 45 C-terminal residues critical for transformation and transcriptional activation were deleted associated with NCoR but was deficient in dismissing NCoR from MAD bodies and from enhancer and promoter sites. These data strongly support a model in which EBNA2 association with NCoR-deficient RBPJ enhances transcription and EBNALP dismisses NCoR and RBPJ repressive complexes from enhancers to coactivate hes1 and arglu1 but not cd21 or cd23.
Collapse
|
7
|
Zaidi SK, Young DW, Javed A, Pratap J, Montecino M, van Wijnen A, Lian JB, Stein JL, Stein GS. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 2007; 7:454-63. [PMID: 17522714 DOI: 10.1038/nrc2149] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- University of Massachusetts Medical School and UMASS Memorial Cancer Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pagan JK, Arnold J, Hanchard KJ, Kumar R, Bruno T, Jones MJK, Richard DJ, Forrest A, Spurdle A, Verdin E, Crossley M, Fanciulli M, Chenevix-Trench G, Young DB, Khanna KK. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP. J Biol Chem 2007; 282:15248-57. [PMID: 17379597 DOI: 10.1074/jbc.m700246200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.
Collapse
Affiliation(s)
- Julia K Pagan
- Queensland Institute of Medical Research, 300 Herston Road, Herston 4029, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Blaschke F, Takata Y, Caglayan E, Collins A, Tontonoz P, Hsueh WA, Tangirala RK. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circ Res 2006; 99:e88-99. [PMID: 17110595 DOI: 10.1161/01.res.0000252878.34269.06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C-reactive protein (CRP), the prototypical human acute phase protein, is an independent risk predictor of future cardiovascular events, both in healthy individuals and in patients with known cardiovascular disease. In addition, previous studies indicate that CRP might have direct proatherogenic properties. Ligand activation of the liver X receptor (LXR), a member of the nuclear hormone receptor superfamily, inhibits inflammatory gene expression in macrophages and attenuates the development of atherosclerosis in various animal models. We demonstrate herein that 2 synthetic LXR ligands, T0901317 and GW3965, inhibit interleukin-1beta/interleukin-6-induced CRP mRNA and protein expression in human hepatocytes. Knockdown of LXRalpha/beta by short interfering RNAs completely abolished the inhibitory effect of the LXR agonist T0901317 on cytokine-induced CRP gene transcription. Transient transfection experiments with 5'-deletion CRP promoter constructs identified a region from -125 to -256 relative to the initiation site that mediated the inhibitory effect of LXR ligands on CRP gene transcription. Depletion of the nuclear receptor corepressor by specific short interfering RNA increased cytokine-inducible CRP mRNA expression and promoter activity and reversed LXR ligand-mediated repression of CRP gene transcription. Chromatin immunoprecipitation assays indicated that nuclear receptor corepressor is present on the endogenous CRP promoter under basal conditions. Cytokine-induced clearance of nuclear receptor corepressor complexes was inhibited by LXR ligand treatment, maintaining the CRP gene in a repressed state. Finally, treatment of C57Bl6/J mice with LXR ligands attenuated lipopolysaccharide-induced mouse CRP and serum amyloid P component gene expression in the liver, whereas no effect was observed in LXRalphabeta knockout mice. Our observations identify a novel mechanism of inflammatory gene regulation by LXR ligands. Thus, inhibition of CRP expression by LXR agonists may provide a promising approach to impact initiation and progression of atherosclerosis.
Collapse
MESH Headings
- Acute-Phase Reaction/metabolism
- Acute-Phase Reaction/physiopathology
- Animals
- Benzoates/pharmacology
- Benzylamines/pharmacology
- C-Reactive Protein/genetics
- C-Reactive Protein/metabolism
- Carcinoma, Hepatocellular
- Cell Line, Tumor
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Hepatocytes/cytology
- Hepatocytes/physiology
- Humans
- Hydrocarbons, Fluorinated
- Interleukin-1beta/pharmacology
- Interleukin-6/pharmacology
- Ligands
- Liver Neoplasms
- Liver X Receptors
- Male
- Mice
- Mice, Inbred C57BL
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Receptor Co-Repressor 1
- Orphan Nuclear Receptors
- Promoter Regions, Genetic/physiology
- RNA, Small Interfering
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sulfonamides/pharmacology
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Florian Blaschke
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Wu Y, Kawate H, Ohnaka K, Nawata H, Takayanagi R. Nuclear compartmentalization of N-CoR and its interactions with steroid receptors. Mol Cell Biol 2006; 26:6633-55. [PMID: 16914745 PMCID: PMC1592818 DOI: 10.1128/mcb.01534-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The repression mechanisms by the nuclear receptor corepressor (N-CoR) of steroid hormone receptor (SHR)-mediated transactivation were examined. Yellow fluorescent protein (YFP)-N-CoR was distributed as intranuclear discrete dots, while coexpression of androgen receptor (AR), glucocorticoid receptor alpha, and estrogen receptor alpha ligand-dependently triggered redistribution of YFP-N-CoR. In fluorescence recovery after photobleaching analysis, mobility of the N-CoR was reduced by 5alpha-dihydrotestosterone (DHT)-bound AR. The middle region of N-CoR mostly contributed to the interaction with agonist-bound SHRs and the suppression of their transactivation function. N-CoR impaired the DHT-induced N-C interaction of AR, and the impaired interaction was dose-dependently recovered by coexpression of SRC-1 and CBP. N-CoR also impaired the intranuclear complete (distinct) focus formation of SHRs. Coexpression of SRC-1 or CBP released YFP-N-CoR or endogenous N-CoR from incomplete foci and simultaneously recovered complete foci of AR-green fluorescent protein. These results indicate that the relative ratio of coactivators and corepressors determines the conformational equilibrium between transcriptionally active and inactive SHRs in the presence of agonists. The intranuclear foci formed by agonist-bound SHRs were completely destroyed by actinomycin D and alpha-amanitin, indicating that the focus formation does not precede the transcriptional activation. The focus formation may reflect the accumulation of SHR/coactivator complexes released from the transcriptionally active sites and thus be a mirror of transcriptionally active complex formation.
Collapse
Affiliation(s)
- Yin Wu
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
11
|
Demarco IA, Voss TC, Booker CF, Day RN. Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus. Mol Cell Biol 2006; 26:8087-98. [PMID: 16908544 PMCID: PMC1636741 DOI: 10.1128/mcb.02410-05] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.
Collapse
Affiliation(s)
- Ignacio A Demarco
- Department of Medicine, University of Virginia Health Services, Charlottesville, VA 22908-0578, USA
| | | | | | | |
Collapse
|
12
|
Voss TC, John S, Hager GL. Single-cell analysis of glucocorticoid receptor action reveals that stochastic post-chromatin association mechanisms regulate ligand-specific transcription. Mol Endocrinol 2006; 20:2641-55. [PMID: 16873444 DOI: 10.1210/me.2006-0091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The glucocorticoid receptor (GR) dynamically interacts with response elements in the mouse mammary tumor virus (MMTV) promoter to regulate steroid-dependent transcription. In a clonal mammary carcinoma cell line containing a tandem array of MMTV promoter-reporter gene cassettes integrated at a single genomic locus, direct binding of a green fluorescent protein (GFP)-GR fusion protein to the MMTV regulatory elements can be observed in living cells. After ligand treatment, MMTV-dependent transcription in individual cells was detected by RNA fluorescence in situ hybridization (FISH). High-resolution fluorescence images were acquired from large numbers of randomly selected cells. Images were analyzed with a novel automated computer algorithm, measuring the RNA FISH signal and the relative GFP-GR fluorescence intensity at the MMTV array for each cell. Although dexamethasone increased the mean RNA FISH signal approximately 10-fold, RU486 produced only about a 2-fold induction, as expected for this mixed antagonist. For all treatment conditions, the relative GFP-GR fluorescence at the array for the averaged cells paralleled the RNA FISH measurements, suggesting that image analysis accurately detected an increase in steady-state GR association with the MMTV array that was responsible for the increase in transcriptional activity. The antagonist-dependent decreases in GR association with the MMTV promoter were confirmed by chromatin immunoprecipitation experiments, supporting the image analysis results. A pronounced cell-to-cell variability was observed in RNA FISH signal and GR-MMTV association within treatment groups. We observed a nonlinear relationship between GR-MMTV association and RNA FISH in individual cells, indicating that differences in GR-MMTV interaction account for some, but not all, of the transcriptional heterogeneity between individual cells. In selected cell subpopulations with equal levels of GR-MMTV association, there was a decrease in RNA FISH signal with RU486 treatment compared with dexamethasone treatment. These results indicate that stochastic events occurring after GR-promoter association, such as the actions of chromatin remodeling complexes or other cofactors, change in a ligand-dependent manner and regulate heterogeneous transcription in individual cells.
Collapse
Affiliation(s)
- Ty C Voss
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | | | |
Collapse
|