1
|
Wass SY, Sun H, Tchou G, Liu N, Van Wagoner DR, Chung MK, Barnard J, Smith JD. Transcriptomic Insights into the Atrial Fibrillation Susceptibility Locus near the MYOZ1 and SYNPO2L Genes. Int J Mol Sci 2024; 25:10309. [PMID: 39408638 PMCID: PMC11477451 DOI: 10.3390/ijms251910309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Genome-wide association studies have identified a locus on chromosome 10q22, where many co-inherited single nucleotide polymorphisms (SNPs) are associated with atrial fibrillation (AF). This study seeks to identify the impact of this locus on gene expression at the transcript isoform level in human left atria and to gain insight into potential causal variants. Bulk RNA sequencing was analyzed to identify myozenin 1 (MYOZ1) and synaptopodin 2-like (SYNPO2L) transcript isoforms and the association of common SNPs in this region with transcript isoform expression levels. Chromatin marks were used to suggest candidate regulatory SNPs in this region. Protein amino acid changes were examined for predicted functional consequences. Transfection of MYOZ1 and two SYNPO2L isoforms were performed to localize their encoded proteins in cardiomyocytes derived from stem cells. We identified one MYOZ1 transcript isoform and four SYNPO2L transcript isoforms, two of which encode proteins, while the other two encode long noncoding RNAs (lncRNAs). The risk allele of the strongest AF susceptibility SNP on chromosome 10q22 is associated with decreased MYOZ1 expression and increased expression of the two SNYPO2L lncRNA isoforms. There are many SNPs co-inherited with the top AF-associated SNP due to linkage disequilibrium (LD), including rs11000728, which we propose as the MYOZ1 regulatory SNP, confirmed by reporter gene transfection. In addition, this LD block includes three missense SNPs in the SYNPO2L gene, with the minor protective haplotype predicted to be detrimental to protein function. MYOZ1 and both protein isoforms of SYNPO2L were localized to the sarcomere. This is a complex locus with the potential for several SNPs in a haplotype to alter AF susceptibility by opposing effects on MYOZ1 and SYNPO2L lncRNA expression, along with effects on SYNPO2L protein function.
Collapse
Affiliation(s)
- Sojin Y. Wass
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Han Sun
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gregory Tchou
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nana Liu
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David R. Van Wagoner
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mina K. Chung
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan D. Smith
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Micolonghi C, Perrone F, Fabiani M, Caroselli S, Savio C, Pizzuti A, Germani A, Visco V, Petrucci S, Rubattu S, Piane M. Unveiling the Spectrum of Minor Genes in Cardiomyopathies: A Narrative Review. Int J Mol Sci 2024; 25:9787. [PMID: 39337275 PMCID: PMC11431948 DOI: 10.3390/ijms25189787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hereditary cardiomyopathies (CMPs), including arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM), represent a group of heart disorders that significantly contribute to cardiovascular morbidity and mortality and are often driven by genetic factors. Recent advances in next-generation sequencing (NGS) technology have enabled the identification of rare variants in both well-established and minor genes associated with CMPs. Nowadays, a set of core genes is included in diagnostic panels for ACM, DCM, and HCM. On the other hand, despite their lesser-known status, variants in the minor genes may contribute to disease mechanisms and influence prognosis. This review evaluates the current evidence supporting the involvement of the minor genes in CMPs, considering their potential pathogenicity and clinical significance. A comprehensive analysis of databases, such as ClinGen, ClinVar, and GeneReviews, along with recent literature and diagnostic guidelines provides a thorough overview of the genetic landscape of minor genes in CMPs and offers guidance in clinical practice, evaluating each case individually based on the clinical referral, and insights for future research. Given the increasing knowledge on these less understood genetic factors, future studies are essential to clearly assess their roles, ultimately leading to improved diagnostic precision and therapeutic strategies in hereditary CMPs.
Collapse
Affiliation(s)
- Caterina Micolonghi
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Perrone
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Fabiani
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- ALTAMEDICA, Human Genetics, 00198 Rome, Italy
| | - Silvia Caroselli
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Juno Genetics, Reproductive Genetics, 00188 Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vincenzo Visco
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Simona Petrucci
- S. Andrea University Hospital, 00189 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Piane
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
3
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
4
|
Lazzarino M, Zanetti M, Chen SN, Gao S, Peña B, Lam CK, Wu JC, Taylor MRG, Mestroni L, Sbaizero O. Defective Biomechanics and Pharmacological Rescue of Human Cardiomyocytes with Filamin C Truncations. Int J Mol Sci 2024; 25:2942. [PMID: 38474188 PMCID: PMC10932268 DOI: 10.3390/ijms25052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.
Collapse
Affiliation(s)
- Marco Lazzarino
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Michele Zanetti
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Suet Nee Chen
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Shanshan Gao
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Brisa Peña
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Bioengineering Department, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Matthew R. G. Taylor
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Orfeo Sbaizero
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Engineering and Architecture Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Corrêa MSL, Silva EN, Dos Santos TCF, Simielli Fonseca LF, Magalhães AFB, Verardo LL, de Albuquerque LG, Silva DBDS. A network-based approach to understanding gene-biological processes affecting economically important traits of Nelore cattle. Anim Genet 2024; 55:55-65. [PMID: 38112158 DOI: 10.1111/age.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
This study aimed to build gene-biological process networks with differentially expressed genes associated with economically important traits of Nelore cattle from 17 previous studies. The genes were clustered into three groups by evaluated traits: group 1, production traits; group 2, carcass traits; and group 3, meat quality traits. For each group, a gene-biological process network analysis was performed with the differentially expressed genes in common. For production traits, 37 genes were found in common, of which 13 genes were enriched for six Gene Ontology (GO) terms; these terms were not functionally grouped. However, the enriched GO terms were related to homeostasis, the development of muscles and the immune system. For carcass traits, four genes were found in common. Thus, it was not possible to functionally group these genes into a network. For meat quality traits, the analysis revealed 222 genes in common. CSRP3 was the only gene differentially expressed in all three groups. Non-redundant biological terms for clusters of genes were functionally grouped networks, reflecting the cross-talk between all biological processes and genes involved. Many biological processes and pathways related to muscles, the immune system and lipid metabolism were enriched, such as striated muscle cell development and triglyceride metabolic processes. This study provides insights into the genetic mechanisms of production, carcass and meat quality traits of Nelore cattle. This information is fundamental for a better understanding of the complex traits and could help in planning strategies for the production and selection systems of Nelore cattle.
Collapse
Affiliation(s)
| | - Evandro Neves Silva
- Professor Edson Antônio Velano University (UNIFENAS), Alfenas, Minas Gerais, Brazil
- Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Thaís Cristina Ferreira Dos Santos
- Professor Edson Antônio Velano University (UNIFENAS), Alfenas, Minas Gerais, Brazil
- National Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Ana Fabrícia Braga Magalhães
- Department of Animal Science, Federal University of Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Lucas Lima Verardo
- Department of Animal Science, Federal University of Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Danielly Beraldo Dos Santos Silva
- Professor Edson Antônio Velano University (UNIFENAS), Alfenas, Minas Gerais, Brazil
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
6
|
Furutani M, Suganuma M, Akiyama S, Mitsumori R, Takemura M, Matsui Y, Satake S, Nakano Y, Niida S, Ozaki K, Hosoyama T, Shigemizu D. RNA-Sequencing Analysis Identification of Potential Biomarkers for Diagnosis of Sarcopenia. J Gerontol A Biol Sci Med Sci 2023; 78:1991-1998. [PMID: 37347997 DOI: 10.1093/gerona/glad150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 06/24/2023] Open
Abstract
Sarcopenia is a geriatric disease associated with increased mortality and disability. Early diagnosis and intervention are required to prevent it. This study investigated biomarkers for sarcopenia by using a combination of comprehensive clinical data and messenger RNA-sequencing (RNA-seq) analysis obtained from peripheral blood mononuclear cells. We enrolled a total of 114 older adults aged 66-94 years (52 sarcopenia diagnosed according to the Asian Working Group for Sarcopenia 2019 consensus and 62 normal older people). We used clinical data which were not included diagnosis criteria of sarcopenia, and stride length showed significance by logistic regression analysis (Bonferroni corrected p = .012, odds ratio = 0.14, 95% confidence interval [CI]: 0.05-0.40). RNA-seq analysis detected 6 differential expressed genes (FAR1, GNL2, HERC5, MRPL47, NUBP2, and S100A11). We also performed gene-set enrichment analysis and detected 2 functional modules (ie, hub genes, MYH9, and FLNA). By using any combination of the 9 candidates and basic information (age and sex), risk-prediction models were constructed. The best model by using a combination of stride length, HERC5, S100A11, and FLNA, achieved a high area under the curve (AUC) of 0.91 in a validation cohort (95% CI: 0.78-0.95). The quantitative PCR results of the 3 genes were consistent with the trend observed in the RNA-seq results. When BMI was added, the model achieved a high AUC of 0.95 (95% CI: 0.84-0.99). We have discovered potential biomarkers for the diagnosis of sarcopenia. Further refinement may lead to their future practical use in clinical use.
Collapse
Affiliation(s)
- Motoki Furutani
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mutsumi Suganuma
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shintaro Akiyama
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Risa Mitsumori
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Marie Takemura
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yasumoto Matsui
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shosuke Satake
- Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tohru Hosoyama
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, AichiJapan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
7
|
Du T, Ma C, Wang Z, Hao Y, Zhang W. Distribution and Degradation of Pork Filamin during Postmortem Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15287-15295. [PMID: 37788342 DOI: 10.1021/acs.jafc.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The filamin C (FLNC) was hypothesized to be colocalized with its certain binding partners in pork tissues and calpain as well as caspase was assumed responsible for the postmortem degradation of FLNC. Therefore, the specific distribution of pork FLNC and its degradation pattern during postmortem aging were investigated in this study. The longissimus thoracis muscles from 12 pigs were removed from the carcasses and then aged at 4 °C for 1, 6, 12, 24, 72, and 168 h, respectively. The FLNC signals appeared to localize in subsarcolemmal areas by cross-sectional images, while the localization was found surrounding the myofibrils at the level of the Z-discs in longitudinal sections. FLNC displayed a highly overlapped spatial colocalization with actin or integrin. Western blot results showed that the intact 290 kDa FLNC was rapidly degraded to produce an approximately 280 kDa band. An almost overlapped distribution pattern was observed between FLNC and μ-calpain or caspase-3 in porcine skeletal muscle cells. Moreover, both the μ-calpain inhibitor and the caspase-3 inhibitor could inhibit the degradation of FLNC in porcine LT muscles during postmortem aging.
Collapse
Affiliation(s)
- Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuejing Hao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Stonadge A, Genzor AV, Russell A, Hamed MF, Romero N, Evans G, Pownall ME, Bekker-Jensen S, Blanco G. Myofibrillar myopathy hallmarks associated with ZAK deficiency. Hum Mol Genet 2023; 32:2751-2770. [PMID: 37427997 PMCID: PMC10789240 DOI: 10.1093/hmg/ddad113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The ZAK gene encodes two functionally distinct kinases, ZAKα and ZAKβ. Homozygous loss of function mutations affecting both isoforms causes a congenital muscle disease. ZAKβ is the only isoform expressed in skeletal muscle and is activated by muscle contraction and cellular compression. The ZAKβ substrates in skeletal muscle or the mechanism whereby ZAKβ senses mechanical stress remains to be determined. To gain insights into the pathogenic mechanism, we exploited ZAK-deficient cell lines, zebrafish, mice and a human biopsy. ZAK-deficient mice and zebrafish show a mild phenotype. In mice, comparative histopathology data from regeneration, overloading, ageing and sex conditions indicate that while age and activity are drivers of the pathology, ZAKβ appears to have a marginal role in myoblast fusion in vitro or muscle regeneration in vivo. The presence of SYNPO2, BAG3 and Filamin C (FLNC) in a phosphoproteomics assay and extended analyses suggested a role for ZAKβ in the turnover of FLNC. Immunofluorescence analysis of muscle sections from mice and a human biopsy showed evidence of FLNC and BAG3 accumulations as well as other myofibrillar myopathy markers. Moreover, endogenous overloading of skeletal muscle exacerbated the presence of fibres with FLNC accumulations in mice, indicating that ZAKβ signalling is necessary for an adaptive turnover of FLNC that allows for the normal physiological response to sustained mechanical stress. We suggest that accumulation of mislocalized FLNC and BAG3 in highly immunoreactive fibres contributes to the pathogenic mechanism of ZAK deficiency.
Collapse
Affiliation(s)
- Amy Stonadge
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Aitana V Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alex Russell
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Norma Romero
- Unité de Morphologie Neuromusculaire Institut de Myologie - Inserm Sorbonne Université - GHU Pitié-Salpêtrière 47- 83, boulevard de l’Hôpital F-75 651 Paris, Cedex 13, France
| | - Gareth Evans
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mary Elizabeth Pownall
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Gonzalo Blanco
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
9
|
Zhou X, Fang X, Ithychanda SS, Wu T, Gu Y, Chen C, Wang L, Bogomolovas J, Qin J, Chen J. Interaction of Filamin C With Actin Is Essential for Cardiac Development and Function. Circ Res 2023; 133:400-411. [PMID: 37492967 PMCID: PMC10529502 DOI: 10.1161/circresaha.123.322750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (β1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Xi Fang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Sujay Subbayya Ithychanda
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Tongbin Wu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Yusu Gu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Chao Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Li Wang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Julius Bogomolovas
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Ju Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| |
Collapse
|
10
|
Deng Y, Yan J. Force-Dependent Structural Changes of Filamin C Rod Domains Regulated by Filamin C Dimer. J Am Chem Soc 2023; 145:14670-14678. [PMID: 37369984 PMCID: PMC10348313 DOI: 10.1021/jacs.3c02303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/29/2023]
Abstract
Filamin C (FLNC), a large dimeric actin-binding protein in muscle cells, plays a critical role in transmitting force in the cytoskeleton and that between membrane receptors and the cytoskeleton. It performs crucial mechanosensing and downstream mechanotransduction functions via force-dependent interactions with signaling proteins. Mutations in FLNC have been linked to muscle and heart diseases. The mechanical responses of the force-bearing elements in FLNC have not been determined. This study investigated the mechanical responses of FLNC domains and their dimerization interface using magnetic tweezers. Results showed high stability of the N-terminal domains in the rod-1 segment but significant changes in the rod-2 domains in response to forces of a few piconewtons (pN). The dimerization interface, formed by the R24 domain, has a lifetime of seconds to tens of seconds at pN forces, and it dissociates within 1 s at forces greater than 14 pN. The findings suggest the FLNC dimerization interface provides sufficient mechanical stability that enables force-dependent structural changes in rod-2 domains for signaling protein binding and maintains structural integrity of the rod-1 domains.
Collapse
Affiliation(s)
- Yunxin Deng
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
11
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Sellung D, Heil L, Daya N, Jacobsen F, Mertens-Rill J, Zhuge H, Döring K, Piran M, Milting H, Unger A, Linke WA, Kley R, Preusse C, Roos A, Fürst DO, Ven PFMVD, Vorgerd M. Novel Filamin C Myofibrillar Myopathy Variants Cause Different Pathomechanisms and Alterations in Protein Quality Systems. Cells 2023; 12:cells12091321. [PMID: 37174721 PMCID: PMC10177260 DOI: 10.3390/cells12091321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Myofibrillar myopathies (MFM) are a group of chronic muscle diseases pathophysiologically characterized by accumulation of protein aggregates and structural failure of muscle fibers. A subtype of MFM is caused by heterozygous mutations in the filamin C (FLNC) gene, exhibiting progressive muscle weakness, muscle structural alterations and intracellular protein accumulations. Here, we characterize in depth the pathogenicity of two novel truncating FLNc variants (p.Q1662X and p.Y2704X) and assess their distinct effect on FLNc stability and distribution as well as their impact on protein quality system (PQS) pathways. Both variants cause a slowly progressive myopathy with disease onset in adulthood, chronic myopathic alterations in muscle biopsy including the presence of intracellular protein aggregates. Our analyses revealed that p.Q1662X results in FLNc haploinsufficiency and p.Y2704X in a dominant-negative FLNc accumulation. Moreover, both protein-truncating variants cause different PQS alterations: p.Q1662X leads to an increase in expression of several genes involved in the ubiquitin-proteasome system (UPS) and the chaperone-assisted selective autophagy (CASA) system, whereas p.Y2704X results in increased abundance of proteins involved in UPS activation and autophagic buildup. We conclude that truncating FLNC variants might have different pathogenetic consequences and impair PQS function by diverse mechanisms and to varying extents. Further studies on a larger number of patients are necessary to confirm our observations.
Collapse
Affiliation(s)
- Dominik Sellung
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Lorena Heil
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Janine Mertens-Rill
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Heidi Zhuge
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Kristina Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Misagh Piran
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Rudi Kley
- Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, 46325 Borken, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
13
|
Silencing MYOT Expression May Inhibit Autophagy in Human Skeletal Muscle Cells. DISEASE MARKERS 2023; 2023:3350685. [PMID: 36776921 PMCID: PMC9911237 DOI: 10.1155/2023/3350685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Muscle diseases are closely related to autophagy disorders. Studies of autophagy inhibition indicated the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. Previous studies have revealed that mutations in the MYOT gene may lead to several kinds of hereditary myopathies. However, whether the autophagy played a crucial role in hereditary myopathy caused by MYOT mutations was still not clear. In this study, we established the MYOT knockdown human skeletal muscle cell models (HSkMCs) by small interfering RNA. Real-time PCR and Western blot studies found that the expression of p62 and LC3B-II was decreased dramatically, which suggested that silencing MYOT expression may regulate the autophagy in HSkMCs. Further immunofluorescence study on Ad-mCherry-GFP-LC3B adenovirus transfection and monodansylcadaverine (MDC) staining revealed that knocking down the expression of MYOT may inhibit the autophagy. Next, we used the autophagy inducer Earle's balanced salt solution (EBSS) and late-autophagy inhibitor bafilomycin A1 (BAF A1) to treat the HSkMCs, respectively, and found that silencing MYOT expression can inhibit the activation of autophagy by EBSS and aggravate the inhibition of autophagy by BAF A1. Finally, we also found that silencing MYOT expression can downregulate the expression of ATG7 and ATG5, two important autophagy regulatory molecules. Hence, our study may first reveal that knocking down the expression of MYOT may inhibit the autophagy. Hereditary myopathies caused by MYOT mutations may partly result from the inhibition of autophagy in HSkMCs.
Collapse
|
14
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
15
|
Wu T, Xu Y, Zhang L, Liang Z, Zhou X, Evans SM, Chen J. Filamin C is Essential for mammalian myocardial integrity. PLoS Genet 2023; 19:e1010630. [PMID: 36706168 PMCID: PMC9907827 DOI: 10.1371/journal.pgen.1010630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
FLNC, encoding filamin C, is one of the most mutated genes in dilated and hypertrophic cardiomyopathy. However, the precise role of filamin C in mammalian heart remains unclear. In this study, we demonstrated Flnc global (FlncgKO) and cardiomyocyte-specific knockout (FlnccKO) mice died in utero from severely ruptured ventricular myocardium, indicating filamin C is required to maintain the structural integrity of myocardium in the mammalian heart. Contrary to the common belief that filamin C acts as an integrin inactivator, we observed attenuated activation of β1 integrin specifically in the myocardium of FlncgKO mice. Although deleting β1 integrin from cardiomyocytes did not recapitulate the heart rupture phenotype in Flnc knockout mice, deleting both β1 integrin and filamin C from cardiomyocytes resulted in much more severe heart ruptures than deleting filamin C alone. Our results demonstrated that filamin C works in concert with β1 integrin to maintain the structural integrity of myocardium during mammalian heart development.
Collapse
Affiliation(s)
- Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yujun Xu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lunfeng Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Xiaohai Zhou
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
17
|
Wei D, Zhang J, Raza SHA, Song Y, Jiang C, Song X, Wu H, Alotaibi MA, Albiheyri R, Al-Zahrani M, Makhlof RTM, Alsaad MA, Abdelnour SA, Quan G. Interaction of MyoD and MyoG with Myoz2 gene in bovine myoblast differentiation. Res Vet Sci 2022; 152:569-578. [PMID: 36191510 DOI: 10.1016/j.rvsc.2022.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
This study aims to explore the functional role of Myoz2 in myoblast differentiation, and elucidate the potential factors interact with Myoz2 in promoter transcriptional regulation. The temporal-spatial expression results showed that the bovine Myoz2 gene was highest expressed in longissimus dorsi, and in individual growth stages and myoblast differentiation stages. Knockdown of Myoz2 inhibited the differentiation of myoblast, and negative effect of MyoD, MyoG, MyH and MEF2A expression on mRNA levels. Subsequently, the promoter region of bovine Myoz2 gene with 1.7 Kb sequence was extracted, and then it was set as eight series of deleted fragments, which were ligated into pGL3-basic to detect core promoter regions of Myoz2 gene in myoblasts and myotubes. Transcription factors MyoD and MyoG were identified as important cis-acting elements in the core promoter region (-159/+1). Also, it was highly conserved in different species based on dual-luciferase analysis and multiple sequence alignment analysis, respectively. Furthermore, a chromatin immunoprecipitation (ChIP) analysis combined with site-directed mutation and siRNA interference and overexpression confirmed that the combination of MyoD and MyoG occurred in region -159/+1, and played an important role in the regulation of bovine Myoz2 gene. These findings explored the regulatory network mechanism of Myoz2 gene during the development of bovine skeletal muscle.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China,.
| | - Jiupan Zhang
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | | | - Yaping Song
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | | | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Al-Zahrani
- Biological Science Department, College of Science and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Department of Parasitology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Mohammad A Alsaad
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan Province, China
| |
Collapse
|
18
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
19
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
20
|
Cheok YY, Tan GMY, Fernandez KC, Chan YT, Lee CYQ, Cheong HC, Looi CY, Vadivelu J, Abdullah S, Wong WF. Podoplanin Drives Motility of Active Macrophage via Regulating Filamin C During Helicobacter pylori Infection. Front Immunol 2021; 12:702156. [PMID: 34707599 PMCID: PMC8543000 DOI: 10.3389/fimmu.2021.702156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Podoplanin (Pdpn) is a mucin-type transmembrane protein that has been implicated in multiple physiological settings including lymphangiogenesis, platelet aggregation, and cancer metastasis. Here, we reported an absence of Pdpn transcript expression in the resting mouse monocytic macrophages, RAW264.7 cells; intriguingly, a substantial upregulation of Pdpn was observed in activated macrophages following Helicobacter pylori or lipopolysaccharide stimulation. Pdpn-knockout macrophages demonstrated intact phagocytic and intracellular bactericidal activities comparable to wild type but exhibited impaired migration due to attenuated filopodia formation. In contrast, an ectopic expression of Pdpn augmented filopodia protrusion in activated macrophages. NanoString analysis uncovered a close dependency of Filamin C gene on the presence of Pdpn, highlighting an involvement of Filamin C in modulation of actin polymerization activity, which controls cell filopodia formation and migration. In addition, interleukin-1β production was significantly declined in the absence of Pdpn, suggesting a role of Pdpn in orchestrating inflammation during H. pylori infection besides cellular migration. Together, our findings unravel the Pdpn network that modulates movement of active macrophages.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keith Conrad Fernandez
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Abstract
Cardiomyopathy affects approximately 1 in 500 adults and is the leading cause of death. Familial cases are common, and mutations in many genes are involved in cardiomyopathy, especially those in genes encoding cytoskeletal, sarcomere, and nuclear envelope proteins. Filamin C is an actin-binding protein encoded by filamin C (FLNC) gene and participates in sarcomere stability maintenance. FLNC was first demonstrated to be a causal gene of myofibrillar myopathy; recently, it has been found that FLNC mutation plays a critical role in the pathogenesis of cardiomyopathy. In this review, we summarized the physiological roles of filamin C in cardiomyocytes and the genetic evidence for links between FLNC mutations and cardiomyopathies. Truncated FLNC is enriched in dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Non-truncated FLNC is enriched in hypertrophic cardiomyopathy and restrictive cardiomyopathy. Two major pathomechanisms in FLNC-related cardiomyopathy have been described: protein aggregation resulting from non-truncating mutations and haploinsufficiency triggered by filamin C truncation. Therefore, it is important to understand the cellular biology and molecular regulation of FLNC to design new therapies to treat patients with FLNC-related cardiomyopathy.
Collapse
|
22
|
Kley RA, Leber Y, Schrank B, Zhuge H, Orfanos Z, Kostan J, Onipe A, Sellung D, Güttsches AK, Eggers B, Jacobsen F, Kress W, Marcus K, Djinovic-Carugo K, van der Ven PFM, Fürst DO, Vorgerd M. FLNC-Associated Myofibrillar Myopathy: New Clinical, Functional, and Proteomic Data. NEUROLOGY-GENETICS 2021; 7:e590. [PMID: 34235269 PMCID: PMC8237399 DOI: 10.1212/nxg.0000000000000590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/28/2020] [Indexed: 11/15/2022]
Abstract
Objective To determine whether a new indel mutation in the dimerization domain of filamin C (FLNc) causes a hereditary myopathy with protein aggregation in muscle fibers, we clinically and molecularly studied a German family with autosomal dominant myofibrillar myopathy (MFM). Methods We performed mutational analysis in 3 generations, muscle histopathology, and proteomic studies of IM protein aggregates. Functional consequences of the FLNC mutation were investigated with interaction and transfection studies and biophysics molecular analysis. Results Eight patients revealed clinical features of slowly progressive proximal weakness associated with a heterozygous c.8025_8030delCAAGACinsA (p.K2676Pfs*3) mutation in FLNC. Two patients exhibited a mild cardiomyopathy. MRI of skeletal muscle revealed lipomatous changes typical for MFM with FLNC mutations. Muscle biopsies showed characteristic MFM findings with protein aggregation and lesion formation. The proteomic profile of aggregates was specific for MFM-filaminopathy and indicated activation of the ubiquitin-proteasome system (UPS) and autophagic pathways. Functional studies revealed that mutant FLNc is misfolded, unstable, and incapable of forming homodimers and heterodimers with wild-type FLNc. Conclusions This new MFM-filaminopathy family confirms that expression of mutant FLNC leads to an adult-onset muscle phenotype with intracellular protein accumulation. Mutant FLNc protein is biochemically compromised and leads to dysregulation of protein quality control mechanisms. Proteomic analysis of MFM protein aggregates is a potent method to identify disease-relevant proteins, differentiate MFM subtypes, evaluate the relevance of gene variants, and identify novel MFM candidate genes.
Collapse
Affiliation(s)
- Rudolf Andre Kley
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Yvonne Leber
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Bertold Schrank
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Heidi Zhuge
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Zacharias Orfanos
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Julius Kostan
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Adekunle Onipe
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dominik Sellung
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Anne Katrin Güttsches
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Britta Eggers
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Frank Jacobsen
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Wolfram Kress
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Katrin Marcus
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Djinovic-Carugo
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter F M van der Ven
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dieter O Fürst
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Vorgerd
- Department of Neurology (R.A.K., H.Z., D.S., A.K.G., F.J., M.V.), Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany; Department of Neurology and Clinical Neurophysiology (R.A.K.), St. Marien-Hospital Borken, Borken, Germany; Department of Molecular Cell Biology (Y.L., Z.O., P.F.M.V., D.O.F.), Institute for Cell Biology, University of Bonn, Bonn, Germany; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany; Department of Structural and Computational Biology (J.K., A.O., K.D.-C.), Max Perutz Laboratories, University of Vienna, Vienna, Austria; Medizinisches Proteom-Center (B.E., K.M.), Ruhr-University Bochum, Bochum, Germany; Institute of Human Genetics (W.K.), University of Würzburg, Würzburg, Germany; and Department of Biochemistry (K.D.-C.), Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polyansky A, De Almeida Ribeiro E, Pedron M, Zawadzka-Kazimierczuk A, Mlynek G, Peterbauer T, Doto P, Schreiner C, Hollerl E, Mateos B, Geist L, Faulkner G, Kozminski W, Svergun DI, Warscheid B, Zagrovic B, Gautel M, Konrat R, Djinović-Carugo K. Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin. SCIENCE ADVANCES 2021; 7:eabg7653. [PMID: 34049882 PMCID: PMC8163081 DOI: 10.1126/sciadv.abg7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 05/03/2023]
Abstract
In sarcomeres, α-actinin cross-links actin filaments and anchors them to the Z-disk. FATZ (filamin-, α-actinin-, and telethonin-binding protein of the Z-disk) proteins interact with α-actinin and other core Z-disk proteins, contributing to myofibril assembly and maintenance. Here, we report the first structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble. We show that FATZ-1 forms a tight fuzzy complex with α-actinin-2 and propose an interaction mechanism via main molecular recognition elements and secondary binding sites. The obtained integrative model reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent scaffold function, might organize interaction partners and stabilize α-actinin-2 preferential orientation in Z-disk. Last, we uncover FATZ-1 ability to phase-separate and form biomolecular condensates with α-actinin-2, raising the question whether FATZ proteins can create an interaction hub for Z-disk proteins through membraneless compartmentalization during myofibrillogenesis.
Collapse
Affiliation(s)
- Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Joan L Arolas
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas C Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Ariadna Rodriguez Chamorro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Andrea Ghisleni
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anton Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Euripedes De Almeida Ribeiro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Miriam Pedron
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas Peterbauer
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Dr. BohrGasse 9, A-1030 Vienna, Austria
| | - Pierantonio Doto
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Claudia Schreiner
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Eneda Hollerl
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Leonhard Geist
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | | | - Wiktor Kozminski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dmitri I Svergun
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Mathias Gautel
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 2021; 184:2135-2150.e13. [PMID: 33765442 PMCID: PMC8054911 DOI: 10.1016/j.cell.2021.02.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.
Collapse
Affiliation(s)
- Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Ay Lin Kho
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Excellence Centre, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Mathias Gautel
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Excellence Centre, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
25
|
Kostan J, Pavšič M, Puž V, Schwarz TC, Drepper F, Molt S, Graewert MA, Schreiner C, Sajko S, van der Ven PFM, Onipe A, Svergun DI, Warscheid B, Konrat R, Fürst DO, Lenarčič B, Djinović-Carugo K. Molecular basis of F-actin regulation and sarcomere assembly via myotilin. PLoS Biol 2021; 19:e3001148. [PMID: 33844684 PMCID: PMC8062120 DOI: 10.1371/journal.pbio.3001148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/22/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.
Collapse
Affiliation(s)
- Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Vid Puž
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Thomas C. Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sibylle Molt
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | | | - Claudia Schreiner
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Peter F. M. van der Ven
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | - Adekunle Onipe
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Hamburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dieter O. Fürst
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
27
|
Clausen AG, Vad OB, Andersen JH, Olesen MS. Loss-of-Function Variants in the SYNPO2L Gene Are Associated With Atrial Fibrillation. Front Cardiovasc Med 2021; 8:650667. [PMID: 33768119 PMCID: PMC7985167 DOI: 10.3389/fcvm.2021.650667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have identified numerous loci associated with atrial fibrillation (AF). However, the genes driving these associations and how they contribute to the AF pathogenesis remains poorly understood. To identify genes likely to be driving the observed association, we searched the FinnGen study consisting of 12,859 AF cases and 73,341 controls for rare genetic variants predicted to cause loss-of-function. A specific splice site variant was found in the SYNPO2L gene, located in an AF associated locus on chromosome 10. This variant was associated with an increased risk of AF with a relatively high odds ratio of 3.5 (p = 9.9 × 10-8). SYNPO2L is an important gene involved in the structural development and function of the cardiac myocyte and our findings thus support the recent suggestions that AF can present as atrial cardiomyopathy.
Collapse
Affiliation(s)
- Alexander Guldmann Clausen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Bundgaard Vad
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Husted Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Kotov V, Mlynek G, Vesper O, Pletzer M, Wald J, Teixeira‐Duarte CM, Celia H, Garcia‐Alai M, Nussberger S, Buchanan SK, Morais‐Cabral JH, Loew C, Djinovic‐Carugo K, Marlovits TC. In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci 2021; 30:201-217. [PMID: 33140490 PMCID: PMC7737771 DOI: 10.1002/pro.3986] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Protein stability is a key factor in successful structural and biochemical research. However, the approaches for systematic comparison of protein stability are limited by sample consumption or compatibility with sample buffer components. Here we describe how miniaturized measurement of intrinsic tryptophan fluorescence (NanoDSF assay) in combination with a simplified description of protein unfolding can be used to interrogate the stability of a protein sample. We demonstrate that improved protein stability measures, such as apparent Gibbs free energy of unfolding, rather than melting temperature Tm , should be used to rank the results of thermostability screens. The assay is compatible with protein samples of any composition, including protein complexes and membrane proteins. Our data analysis software, MoltenProt, provides an easy and robust way to perform characterization of multiple samples. Potential applications of MoltenProt and NanoDSF include buffer and construct optimization for X-ray crystallography and cryo-electron microscopy, screening for small-molecule binding partners and comparison of effects of point mutations.
Collapse
Affiliation(s)
- Vadim Kotov
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Oliver Vesper
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Marina Pletzer
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Jiri Wald
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Celso M. Teixeira‐Duarte
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Maria Garcia‐Alai
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular SystemsUniversity of StuttgartStuttgartGermany
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - João H. Morais‐Cabral
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Christian Loew
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Kristina Djinovic‐Carugo
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
- Department of Biochemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| | - Thomas C. Marlovits
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| |
Collapse
|
29
|
Xu C, Zhang R, Xia Y, Xiong L, Yang W, Wang P. Annotation of susceptibility SNPs associated with atrial fibrillation. Aging (Albany NY) 2020; 12:16981-16998. [PMID: 32902410 PMCID: PMC7521544 DOI: 10.18632/aging.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) and the candidate gene based association studies have identified a panel of variants associated with atrial fibrillation (AF), however, most of the identified single nucleotide polymorphisms (SNPs) were found located within intergenic or intronic genomic regions, and whether the positive SNPs have a real biological function is unknown, and the real disease causing gene need to be studied. RESULTS The current results of the genetic studies including common variants identified by GWAS (338 index SNPs) and candidate gene based association studies (40 SNPs) were summarized. CONCLUSION Our study suggests the relationship between genetic variants and possible targeted genes, and provides insight into potential genetic pathways underlying AF incidence and development. The results may provide an encyclopedia of AF susceptibility SNPs and shed light on the functional mechanisms of AF variants identified through genetic studies. METHODS We summarized AF susceptibility SNPs identified by GWAS and candidate gene based association studies, and give a comprehensive functional annotation of all these AF susceptibility loci. by genomic annotation, microRNA binding prediction, promoter activity analysis, enhancer activity analysis, transcription factors binding activity prediction, expression quantitative trait loci (eQTL) analysis, long-range transcriptional regulatory function analysis, gene ontology and pathway enrichment analysis.
Collapse
Affiliation(s)
- Chengqi Xu
- College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| |
Collapse
|
30
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
31
|
Yoshimoto Y, Ikemoto-Uezumi M, Hitachi K, Fukada SI, Uezumi A. Methods for Accurate Assessment of Myofiber Maturity During Skeletal Muscle Regeneration. Front Cell Dev Biol 2020; 8:267. [PMID: 32391357 PMCID: PMC7188918 DOI: 10.3389/fcell.2020.00267] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
Adult skeletal muscle has a remarkable ability to regenerate. Regeneration of mature muscle fibers is dependent on muscle stem cells called satellite cells. Although they are normally in a quiescent state, satellite cells are rapidly activated after injury, and subsequently proliferate and differentiate to make new muscle fibers. Myogenesis is a highly orchestrated biological process and has been extensively studied, and therefore many parameters that can precisely evaluate regenerating events have been established. However, in some cases, it is necessary to evaluate the completion of regeneration rather than ongoing regeneration. In this study, we establish methods for assessing the myofiber maturation during muscle regeneration. By carefully comparing expression patterns of several muscle regeneration-related genes, we found that expression of Myozenin (Myoz1 and Myoz3), Troponin I (Tnni2), and Dystrophin (Dmd) is gradually increased as muscle regeneration proceeds. In contrast, commonly used regeneration markers such as Myh3 and Myh8 are transiently upregulated after muscle injury but their expression decreases as regeneration progresses. Intriguingly, upregulation of Myoz1, Myoz3 and Tnni2 cannot be achieved in cultured myotubes, indicating that these markers are excellent indicators to assess myofiber maturity. We also show that analyzing re-expression of Myoz1 and dystrophin in individual fiber during regeneration enables accurate assessment of myofiber maturity at the single-myofiber level. Together, our study provides valuable methods that are useful in evaluating muscle regeneration and the efficacy of therapeutic strategies for muscle diseases.
Collapse
Affiliation(s)
- Yuki Yoshimoto
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
32
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
33
|
Abstract
Dilated cardiomyopathy (DCM) represents one of the primary cardiomyopathies and may lead to heart failure and sudden death. Until recently, ventricular arrhythmias were considered to be a direct consequence of the systolic dysfunction of the left ventricle (LV) and guidelines for implantable cardioverter defibrillator implantation were established on this basis. However, the identification of heritable dilated cardiomyopathy phenotypes that presented with mildly impaired or moderate LV dysfunction, with or without chamber dilatation, and ventricular arrhythmias exceeding the degree of the underlying morphological abnormalities lead to the identification of the arrhythmogenic phenotypes and genotypes of DCM. This subset of DCM patients presents phenotypic and in many cases genotypic overlaps with left dominant arrhythmogenic cardiomyopathy (LDAC). LMNA, SCN5A, FLNC, TTN, and RBM20 are the main genes responsible for arrhythmogenic DCM. Moreover, desmosomal genes such as DSP and other non-desmosomal such as DES and PLN have been associated with both LDAC and arrhythmogenic DCM. The aim of this review is to highlight the importance of genetic profiling among DCM patients with disproportionate arrhythmic burden and the significance of the electrocardiogram, cardiac magnetic resonance, Holter monitoring, detailed family history, and other assays in order to identify red flags for arrhythmogenic DCM and proceed to an early preventive approach for sudden cardiac death. A special consideration was given to the phenotypic and genotypic overlap with LDAC. The role of myocarditis as a common disease expression of LDAC and arrhythmogenic DCM is also analyzed supporting the premise of their phenotypic overlap.
Collapse
Affiliation(s)
- Thomas Zegkos
- 1st Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
34
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
35
|
Verdonschot JAJ, Robinson EL, James KN, Mohamed MW, Claes GRF, Casas K, Vanhoutte EK, Hazebroek MR, Kringlen G, Pasierb MM, van den Wijngaard A, Glatz JFC, Heymans SRB, Krapels IPC, Nahas S, Brunner HG, Szklarczyk R. Mutations in PDLIM5 are rare in dilated cardiomyopathy but are emerging as potential disease modifiers. Mol Genet Genomic Med 2019; 8:e1049. [PMID: 31880413 PMCID: PMC7005607 DOI: 10.1002/mgg3.1049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A causal genetic mutation is found in 40% of families with dilated cardiomyopathy (DCM), leaving a large percentage of families genetically unsolved. This prevents adequate counseling and clear recommendations in these families. We aim to identify novel genes or modifiers associated with DCM. METHODS We performed computational ranking of human genes based on coexpression with a predefined set of genes known to be associated with DCM, which allowed us to prioritize gene candidates for their likelihood of being involved in DCM. Top candidates will be checked for variants in the available whole-exome sequencing data of 142 DCM patients. RNA was isolated from cardiac biopsies to investigate gene expression. RESULTS PDLIM5 was classified as the top candidate. An interesting heterozygous variant (189_190delinsGG) was found in a DCM patient with a known pathogenic truncating TTN-variant. The PDLIM5 loss-of-function (LoF) variant affected all cardiac-specific isoforms of PDLIM5 and no LoF variants were detected in the same region in a control cohort of 26,000 individuals. RNA expression of PDLIM5 and its direct interactors (MYOT, LDB3, and MYOZ2) was increased in cardiac tissue of this patient, indicating a possible compensatory mechanism. The PDLIM5 variant cosegregated with the TTN-variant and the phenotype, leading to a high disease penetrance in this family. A second patient was an infant with a homozygous 10 kb-deletion of exon 2 in PDLIM5 resulting in early-onset cardiac disease, showing the importance of PDLIM5 in cardiac function. CONCLUSIONS Heterozygous PDLIM5 variants are rare and therefore will not have a major contribution in DCM. Although they likely play a role in disease development as this gene plays a major role in contracting cardiomyocytes and homozygous variants lead to early-onset cardiac disease. Other environmental and/or genetic factors are probably necessary to unveil the cardiac phenotype in PDLIM5 mutation carriers.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Emma L Robinson
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kiely N James
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Mohamed W Mohamed
- Sanford Children's Hospital, Fargo, ND, USA.,North Dakota University, Fargo, ND, USA
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kari Casas
- Sanford Children's Hospital, Fargo, ND, USA.,North Dakota University, Fargo, ND, USA
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Cardiovascular Research, University of Leuven, Leuven, Belgium.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Shareef Nahas
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Human Genetics, Donders Center for Neuroscience, Radboudumc, Nijmegen, The Netherlands.,GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Radek Szklarczyk
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
36
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
37
|
Ankrd2 in Mechanotransduction and Oxidative Stress Response in Skeletal Muscle: New Cues for the Pathogenesis of Muscular Laminopathies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7318796. [PMID: 31428229 PMCID: PMC6681624 DOI: 10.1155/2019/7318796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Ankrd2 (ankyrin repeats containing domain 2) or Arpp (ankyrin repeat, PEST sequence, and proline-rich region) is a member of the muscle ankyrin repeat protein family. Ankrd2 is mostly expressed in skeletal muscle, where it plays an intriguing role in the transcriptional response to stress induced by mechanical stimulation as well as by cellular reactive oxygen species. Our studies in myoblasts from Emery-Dreifuss muscular dystrophy 2, a LMNA-linked disease affecting skeletal and cardiac muscles, demonstrated that Ankrd2 is a lamin A-binding protein and that mutated lamins found in Emery-Dreifuss muscular dystrophy change the dynamics of Ankrd2 nuclear import, thus affecting oxidative stress response. In this review, besides describing the latest advances related to Ankrd2 studies, including novel discoveries on Ankrd2 isoform-specific functions, we report the main findings on the relationship of Ankrd2 with A-type lamins and discuss known and potential mechanisms involving defective Ankrd2-lamin A interplay in the pathogenesis of muscular laminopathies.
Collapse
|
38
|
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:e301-e372. [PMID: 31078652 DOI: 10.1016/j.hrthm.2019.05.007] [Citation(s) in RCA: 505] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic disorder of the myocardium not secondary to ischemic, hypertensive, or valvular heart disease. ACM incorporates a broad spectrum of genetic, systemic, infectious, and inflammatory disorders. This designation includes, but is not limited to, arrhythmogenic right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left ventricular noncompaction. The ACM phenotype overlaps with other cardiomyopathies, particularly dilated cardiomyopathy with arrhythmia presentation that may be associated with ventricular dilatation and/or impaired systolic function. This expert consensus statement provides the clinician with guidance on evaluation and management of ACM and includes clinically relevant information on genetics and disease mechanisms. PICO questions were utilized to evaluate contemporary evidence and provide clinical guidance related to exercise in arrhythmogenic right ventricular cardiomyopathy. Recommendations were developed and approved by an expert writing group, after a systematic literature search with evidence tables, and discussion of their own clinical experience, to present the current knowledge in the field. Each recommendation is presented using the Class of Recommendation and Level of Evidence system formulated by the American College of Cardiology and the American Heart Association and is accompanied by references and explanatory text to provide essential context. The ongoing recognition of the genetic basis of ACM provides the opportunity to examine the diverse triggers and potential common pathway for the development of disease and arrhythmia.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- Le Bonheur Children's Hospital, Memphis, Tennessee; University of Tennessee Health Science Center, Memphis, Tennessee
| | - William J McKenna
- University College London, Institute of Cardiovascular Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | - N A Mark Estes
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wei Hua
- Fu Wai Hospital, Beijing, China
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Roy M John
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, South Carolina
| | - Roberto Keegan
- Hospital Privado Del Sur, Buenos Aires, Argentina; Hospital Español, Bahia Blanca, Argentina
| | | | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | - Frank I Marcus
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia G Priori
- University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); ICS Maugeri, IRCCS, Pavia, Italy
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - J Peter van Tintelen
- University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Utrecht University Medical Center Utrecht, University of Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | |
Collapse
|
39
|
Sterzyńska K, Klejewski A, Wojtowicz K, Świerczewska M, Nowicki M, Brązert J, Januchowski R. Myotilin, a New Topotecan Resistant Protein in Ovarian Cancer Cell Lines. J Cancer 2018; 9:4413-4421. [PMID: 30519347 PMCID: PMC6277650 DOI: 10.7150/jca.27342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022] Open
Abstract
Background: Low effectiveness of chemotherapy in ovarian cancer results from development of drug resistance during treatment. Topotecan (TOP) is a chemotherapeutic drug used in second-line chemotherapy of this cancer. Unfortunately, during treatment cancer can develop diverse cellular and tissue specific mechanisms of resistance to cytotoxic drugs. Methods: We analyzed development of TOP resistance in ovarian cancer cell lines (A2780 and W1). On the base of our previous results where a set of “new genes” with different functions that can be related to TOP-resistance was described hereby we performed detailed analysis of MYOT expression. MYOT mRNA level (real time PCR analysis), protein expression in cell lysates and cell culture medium (western blot analysis) and protein expression in cancer cells (immunofluorescence analysis) were determined in this study. Results: We observed increased expression of MYOT in TOP resistant cell lines at both mRNA and protein level. MYOT, together with extracellular matrix molecules like COL1A2 and COL15A1 were also secreted to corresponding cell culture media. Conclusion: Our results suggest that upregulation of MYOT can be related to TOP resistance in ovarian cancer cell lines.
Collapse
Affiliation(s)
- Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Poznań, Poland.,Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Brązert
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
40
|
Weng W, He S, Song H, Li X, Cao L, Hu Y, Cui J, Zhou Q, Peng H, Su J. Aligned Carbon Nanotubes Reduce Hypertrophic Scar via Regulating Cell Behavior. ACS NANO 2018; 12:7601-7612. [PMID: 30040897 DOI: 10.1021/acsnano.7b07439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hypertrophic scars, characterized by excessive cell proliferation, disordered cell growth, and aberrant deposition of collagens, could cause significant clinical problems. Herein, aligned carbon nanotubes (ACNTs) were synthesized via chemical vapor deposition, and bulk ACNTs were pulled out from the arrays. The capacity of the ACNTs to reduce hypertrophic scar formation was evaluated both in vitro and in vivo. The results demonstrated that the ACNTs suppressed the overproliferation of fibroblast cells, directed their growth, and inhibited collagen expression in vitro without cell cytotoxicity. Moreover, in vivo evaluation in a rabbit ear model indicated relieved scar hypertrophy after the ACNTs treatment. The gene expression microarray was further used to understand the mechanism, which showed that ACNTs could inhibit the TGFβ pathway to alter the components in the extracellular matrix, cell proliferation, cell cytoskeleton, and cell motility. These findings may provide a potent strategy of using carbon nanotubes in the bioengineering field.
Collapse
Affiliation(s)
| | - Sisi He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials , Fudan University , Shanghai 200438 , China
| | | | | | | | - Yajie Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials , Fudan University , Shanghai 200438 , China
| | | | | | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials , Fudan University , Shanghai 200438 , China
| | | |
Collapse
|
41
|
Nozari A, Aghaei-Moghadam E, Zeinaloo A, Mollazadeh R, Majnoon MT, Alavi A, Ghasemi Firouzabadi S, Mohammadzadeh A, Banihashemi S, Nikzaban M, Najmabadi H, Behjati F. A novel splicing variant in FLNC gene responsible for a highly penetrant familial dilated cardiomyopathy in an extended Iranian family. Gene 2018; 659:160-167. [DOI: 10.1016/j.gene.2018.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
42
|
Begay RL, Graw SL, Sinagra G, Asimaki A, Rowland TJ, Slavov DB, Gowan K, Jones KL, Brun F, Merlo M, Miani D, Sweet M, Devaraj K, Wartchow EP, Gigli M, Puggia I, Salcedo EE, Garrity DM, Ambardekar AV, Buttrick P, Reece TB, Bristow MR, Saffitz JE, Mestroni L, Taylor MRG. Filamin C Truncation Mutations Are Associated With Arrhythmogenic Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion Structures. JACC Clin Electrophysiol 2018; 4:504-514. [PMID: 30067491 PMCID: PMC6074050 DOI: 10.1016/j.jacep.2017.12.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The purpose of this study was to assess the phenotype of Filamin C (FLNC) truncating variants in dilated cardiomyopathy (DCM) and understand the mechanism leading to an arrhythmogenic phenotype. BACKGROUND Mutations in FLNC are known to lead to skeletal myopathies, which may have an associated cardiac component. Recently, the clinical spectrum of FLNC mutations has been recognized to include a cardiac-restricted presentation in the absence of skeletal muscle involvement. METHODS A population of 319 U.S. and European DCM cardiomyopathy families was evaluated using whole-exome and targeted next-generation sequencing. FLNC truncation probands were identified and evaluated by clinical examination, histology, transmission electron microscopy, and immunohistochemistry. RESULTS A total of 13 individuals in 7 families (2.2%) were found to harbor 6 different FLNC truncation variants (2 stopgain, 1 frameshift, and 3 splicing). Of the 13 FLNC truncation carriers, 11 (85%) had either ventricular arrhythmias or sudden cardiac death, and 5 (38%) presented with evidence of right ventricular dilation. Pathology analysis of 2 explanted hearts from affected FLNC truncation carriers showed interstitial fibrosis in the right ventricle and epicardial fibrofatty infiltration in the left ventricle. Ultrastructural findings included occasional disarray of Z-discs within the sarcomere. Immunohistochemistry showed normal plakoglobin signal at cell-cell junctions, but decreased signals for desmoplakin and synapse-associated protein 97 in the myocardium and buccal mucosa. CONCLUSIONS We found FLNC truncating variants, present in 2.2% of DCM families, to be associated with a cardiac-restricted arrhythmogenic DCM phenotype characterized by a high risk of life-threatening ventricular arrhythmias and a pathological cellular phenotype partially overlapping with arrhythmogenic right ventricular cardiomyopathy.
Collapse
Affiliation(s)
- Rene L Begay
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Gianfranco Sinagra
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Angeliki Asimaki
- Department of Pathology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, Massachusetts
| | - Teisha J Rowland
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Dobromir B Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Katherine Gowan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Denver, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Denver, Aurora, Colorado
| | - Francesca Brun
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Marco Merlo
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Daniela Miani
- Department of Cardiothoracic Science, University Hospital S. Maria della Misericordia, Udine, Italy
| | - Mary Sweet
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Kalpana Devaraj
- Department of Pathology, University of Colorado, University Hospital, Aurora, Colorado
| | - Eric P Wartchow
- Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| | - Marta Gigli
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Ilaria Puggia
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Ernesto E Salcedo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Deborah M Garrity
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Amrut V Ambardekar
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Peter Buttrick
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - T Brett Reece
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Michael R Bristow
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, Massachusetts
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
43
|
Ye M, Ye F, He L, Luo B, Yang F, Cui C, Zhao X, Yin H, Li D, Xu H, Wang Y, Zhu Q. Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation. PLoS One 2017; 12:e0189476. [PMID: 29236749 PMCID: PMC5728575 DOI: 10.1371/journal.pone.0189476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Embryonic muscle development and fibre type differentiation has always been a topic of great importance due to its impact on both human health and farm animal financial values. Myozenin3 (Myoz3) is an important candidate gene that may regulate these processes. In the current study, we knocked down and overexpressed Myoz3 in chicken embryonic fibroblasts (CEFs) and chicken myoblasts, then utilized RNA-seq technology to screen genes, pathways and biological processes associated with Myoz3. Multiple differentially expressed genes were identified, including MYH10, MYLK2, NFAM1, MYL4, MYL9, PDZLIM1; those can in turn regulate each other and influence the development of muscle fibres. Gene ontology (GO) terms including some involved in positive regulation of cell proliferation were enriched. We further validated our results by testing the activity of cells by cell counting kit-8(CCK-8) and confirmed that under the condition of Myoz3 overexpression, the proliferation rate of CEFs and myoblasts was significantly upregulated, in addition, expression level of fast muscle specific gene was also significantly upregulated in myoblasts. Pathway enrichment analysis revealed that the PPAR (Peroxisome Proliferator-Activated Receptor) pathway was enriched, suggesting the possibility that Myoz3 regulates muscle fibre development and differentiation through the PPAR pathway. Our results provide valuable evidence regarding the regulatory functions of Myoz3 in embryonic cells by screening multiple candidate genes, biological processes and pathways associated with Myoz3.
Collapse
Affiliation(s)
- Maosen Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Fei Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Liutao He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Bin Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Fuling Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- * E-mail: (YW); (QZ)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- * E-mail: (YW); (QZ)
| |
Collapse
|
44
|
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017; 38:303-316. [PMID: 29119312 PMCID: PMC5742121 DOI: 10.1007/s10974-017-9487-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the proteins and pathways affected. A substantial proportion of cardiomyopathies are inherited and those will be the focus of this review article. With the wide application of high-throughput sequencing in the practice of clinical genetics, the roles of novel genes in cardiomyopathies are recognised. Here, we focus on a subgroup of cardiomyopathy genes [TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four and a Half LIM domain 1, Muscle LIM Protein, Filamin C and Phospholamban, respectively], which, despite their diverse biological functions, all have important signalling functions in the heart, suggesting that disturbances in signalling networks can contribute to cardiomyopathies.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Abstract
Myotilin is a component of the sarcomere where it plays an important role in organisation and maintenance of Z-disk integrity. This involves direct binding to F-actin and filamin C, a function mediated by its Ig domain pair. While the structures of these two individual domains are known, information about their relative orientation and flexibility remains limited. We set on to characterise the Ig domain pair of myotilin with emphasis on its molecular structure, dynamics and phylogeny. First, sequence conservation analysis of myotilin shed light on the molecular basis of myotilinopathies and revealed several motifs in Ig domains found also in I-band proteins. In particular, a highly conserved Glu344 mapping to Ig domain linker, was identified as a critical component of the inter-domain hinge mechanism. Next, SAXS and molecular dynamics revealed that Ig domain pair exists as a multi-conformation species with dynamic exchange between extended and compact orientations. Mutation of AKE motif to AAA further confirmed its impact on inter-domain flexibility. We hypothesise that the conformational plasticity of the Ig domain pair in its unbound form is part of the binding partner recognition mechanism.
Collapse
|
46
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
47
|
Reimann L, Wiese H, Leber Y, Schwäble AN, Fricke AL, Rohland A, Knapp B, Peikert CD, Drepper F, van der Ven PFM, Radziwill G, Fürst DO, Warscheid B. Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKCα) Modulating Protein Dynamics. Mol Cell Proteomics 2016; 16:346-367. [PMID: 28028127 DOI: 10.1074/mcp.m116.065425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts versus differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis. Interestingly, EPS of differentiated myotubes to induce Z-disc assembly and maturation resulted in increased levels of proteins involved in ATP synthesis, presumably to fulfill the higher energy demand of contracting myotubes. Because an important role of the Z-disc for signal integration and transduction was recently suggested, its precise phosphorylation landscape further warranted in-depth analysis. We therefore established, by global phosphoproteomics of EPS-treated contracting myotubes, a comprehensive site-resolved protein phosphorylation map of the Z-disc and found that it is a phosphorylation hotspot in skeletal myocytes, underscoring its functions in signaling and disease-related processes. In an illustrative fashion, we analyzed the actin-binding multiadaptor protein filamin C (FLNc), which is essential for Z-disc assembly and maintenance, and found that PKCα phosphorylation at distinct serine residues in its hinge 2 region prevents its cleavage at an adjacent tyrosine residue by calpain 1. Fluorescence recovery after photobleaching experiments indicated that this phosphorylation modulates FLNc dynamics. Moreover, FLNc lacking the cleaved Ig-like domain 24 exhibited remarkably fast kinetics and exceedingly high mobility. Our data set provides research community resource for further identification of kinase-mediated changes in myofibrillar protein interactions, kinetics, and mobility that will greatly advance our understanding of Z-disc dynamics and signaling.
Collapse
Affiliation(s)
- Lena Reimann
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Heike Wiese
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Yvonne Leber
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Anja N Schwäble
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna L Fricke
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Rohland
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Knapp
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Peter F M van der Ven
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Gerald Radziwill
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| | - Dieter O Fürst
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Warscheid
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; .,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| |
Collapse
|
48
|
Ortiz-Genga MF, Cuenca S, Dal Ferro M, Zorio E, Salgado-Aranda R, Climent V, Padrón-Barthe L, Duro-Aguado I, Jiménez-Jáimez J, Hidalgo-Olivares VM, García-Campo E, Lanzillo C, Suárez-Mier MP, Yonath H, Marcos-Alonso S, Ochoa JP, Santomé JL, García-Giustiniani D, Rodríguez-Garrido JL, Domínguez F, Merlo M, Palomino J, Peña ML, Trujillo JP, Martín-Vila A, Stolfo D, Molina P, Lara-Pezzi E, Calvo-Iglesias FE, Nof E, Calò L, Barriales-Villa R, Gimeno-Blanes JR, Arad M, García-Pavía P, Monserrat L. Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies. J Am Coll Cardiol 2016; 68:2440-2451. [DOI: 10.1016/j.jacc.2016.09.927] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
|
49
|
Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet 2016; 25:2131-2142. [PMID: 26969713 DOI: 10.1093/hmg/ddw080] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/07/2016] [Indexed: 01/23/2023] Open
Abstract
Myofibrillar myopathy is a progressive muscle disease characterized by the disintegration of muscle fibers and formation of protein aggregates. Causative mutations have been identified in nine genes encoding Z-disk proteins, including the actin binding protein filamin C (FLNC). To investigate the mechanism of disease in FLNCW2710X myopathy we overexpressed fluorescently tagged FLNC or FLNCW2710X in zebrafish. Expression of FLNCW2710X causes formation of protein aggregates but surprisingly, our studies reveal that the mutant protein localizes correctly to the Z-disk and is capable of rescuing the fiber disintegration phenotype that results from FLNC knockdown. This demonstrates that the functions necessary for muscle integrity are not impaired, and suggests that it is the formation of protein aggregates and subsequent sequestration of FLNC away from the Z-disk that results in myofibrillar disintegration. Similar to those found in patients, the aggregates in FLNCW2710X expressing fish contain the co-chaperone BAG3. FLNC is a target of the BAG3-mediated chaperone assisted selective autophagy (CASA) pathway and therefore we investigated its role, and the role of autophagy in general, in clearing protein aggregates. We reveal that despite BAG3 recruitment to the aggregates they are not degraded via CASA. Additionally, recruitment of BAG3 is sufficient to block alternative autophagy pathways which would otherwise clear the aggregates. This blockage can be relieved by reducing BAG3 levels or by stimulating autophagy. This study therefore identifies both BAG3 reduction and autophagy promotion as potential therapies for FLNCW2710X myofibrillar myopathy, and identifies protein insufficiency due to sequestration, compounded by impaired autophagy, as the cause.
Collapse
Affiliation(s)
| | - Viola Oorschot
- The Clive and Vera Ramaciotti Centre for Structural Cryo-Electron Microscopy and and
| | - Georg Ramm
- The Clive and Vera Ramaciotti Centre for Structural Cryo-Electron Microscopy and and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
50
|
New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol Commun 2016; 4:8. [PMID: 26842778 PMCID: PMC4739336 DOI: 10.1186/s40478-016-0280-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction Myofibrillar myopathies are characterized by progressive muscle weakness and impressive abnormal protein aggregation in muscle fibers. In about 10 % of patients, the disease is caused by mutations in the MYOT gene encoding myotilin. The aim of our study was to decipher the composition of protein deposits in myotilinopathy to get new information about aggregate pathology. Results Skeletal muscle samples from 15 myotilinopathy patients were included in the study. Aggregate and control samples were collected from muscle sections by laser microdissection and subsequently analyzed by a highly sensitive proteomic approach that enables a relative protein quantification. In total 1002 different proteins were detected. Seventy-six proteins showed a significant over-representation in aggregate samples including 66 newly identified aggregate proteins. Z-disc-associated proteins were the most abundant aggregate components, followed by sarcolemmal and extracellular matrix proteins, proteins involved in protein quality control and degradation, and proteins with a function in actin dynamics or cytoskeletal transport. Forty over-represented proteins were evaluated by immunolocalization studies. These analyses validated our mass spectrometric data and revealed different regions of protein accumulation in abnormal muscle fibers. Comparison of data from our proteomic analysis in myotilinopathy with findings in other myofibrillar myopathy subtypes indicates a characteristic basic pattern of aggregate composition and resulted in identification of a highly sensitive and specific diagnostic marker for myotilinopathy. Conclusions Our findings i) indicate that main protein components of aggregates belong to a network of interacting proteins, ii) provide new insights into the complex regulation of protein degradation in myotilinopathy that may be relevant for new treatment strategies, iii) imply a combination of a toxic gain-of-function leading to myotilin-positive protein aggregates and a loss-of-function caused by a shift in subcellular distribution with a deficiency of myotilin at Z-discs that impairs the integrity of myofibrils, and iv) demonstrate that proteomic analysis can be helpful in differential diagnosis of protein aggregate myopathies. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0280-0) contains supplementary material, which is available to authorized users.
Collapse
|