1
|
Giamundo G, Intartaglia D, Del Prete E, Polishchuk E, Andreone F, Ognibene M, Buonocore S, Hay Mele B, Salierno FG, Monfregola J, Antonini D, Grumati P, Eva A, De Cegli R, Conte I. Ezrin defines TSC complex activation at endosomal compartments through EGFR-AKT signaling. eLife 2025; 13:RP98523. [PMID: 39937579 PMCID: PMC11820125 DOI: 10.7554/elife.98523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Endosomes have emerged as major signaling hubs where different internalized ligand-receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane-actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.
Collapse
Affiliation(s)
| | | | | | | | | | - Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Istituto Giannina GasliniGenovaItaly
| | - Sara Buonocore
- Department of Biology, University of Naples Federico IINaplesItaly
| | - Bruno Hay Mele
- Department of Biology, University of Naples Federico IINaplesItaly
| | | | | | - Dario Antonini
- Department of Biology, University of Naples Federico IINaplesItaly
| | - Paolo Grumati
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Clinical Medicine and Surgery, University of Naples Federico IINaplesItaly
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina GasliniGenovaItaly
| | | | - Ivan Conte
- Department of Biology, University of Naples Federico IINaplesItaly
| |
Collapse
|
2
|
Strandberg H, Hagströmer CJ, Werin B, Wendler M, Johanson U, Törnroth-Horsefield S. Structural Basis for the Interaction between the Ezrin FERM-Domain and Human Aquaporins. Int J Mol Sci 2024; 25:7672. [PMID: 39062914 PMCID: PMC11277499 DOI: 10.3390/ijms25147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden; (H.S.); (C.J.H.); (B.W.); (M.W.); (U.J.)
| |
Collapse
|
3
|
Zhao X, Liang B, Li C, Wang W. Expression Regulation and Trafficking of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:39-51. [PMID: 36717485 DOI: 10.1007/978-981-19-7415-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate the bidirectional water flow driven by an osmotic gradient. Either gating or trafficking allows for rapid and specific AQP regulation in a tissue-dependent manner. The regulatory mechanisms of AQP2 are discussed mainly in this chapter, as the mechanisms controlling the regulation and trafficking of AQP2 have been very well studied. The targeting of AQP2 to the apical plasma membrane of collecting duct principal cells is mainly regulated by the action of arginine vasopressin (AVP) on the type 2 AVP receptor (V2R), which cause increased intracellular cAMP or elevated intracellular calcium levels. Activation of these intracellular signaling pathways results in vesicles bearing AQP2 transport, docking and fusion with the apical membrane, which increase density of AQP2 on the membrane. The removal of AQP2 from the membrane requires dynamic cytoskeletal remodeling. AQP2 is degraded through the ubiquitin proteasome pathway and lysosomal proteolysis pathway. Finally, we review updated findings in transcriptional and epigenetic regulation of AQP2.
Collapse
Affiliation(s)
- Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Schacke S, Kirkpatrick J, Stocksdale A, Bauer R, Hagel C, Riecken LB, Morrison H. Ezrin deficiency triggers glial fibrillary acidic protein upregulation and a distinct reactive astrocyte phenotype. Glia 2022; 70:2309-2329. [PMID: 35929192 DOI: 10.1002/glia.24253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
Abstract
Astrocytes are increasingly being recognized as contributors to physiological brain function and behavior. Astrocytes engage in glia-synaptic interactions through peripheral astrocyte processes, thus modulating synaptic signaling, for example, by handling glutamate removal from the synaptic cleft and (re)provision to axonal terminals. Peripheral astrocyte processes are ultrafine membrane protrusions rich in the membrane-to-actin cytoskeleton linker Ezrin, an essential component of in vitro filopodia formation and in vivo peripheral astrocyte process motility. Consequently, it has been postulated that Ezrin significantly contributes to neurodevelopment as well as astrocyte functions within the adult brain. However, while Ezrin has been studied in vitro within cultured primary astrocytes, in vivo studies on the role of Ezrin in astrocytes remain to be conducted and consequences of its depletion to be studied. Here, we investigated consequences of Ezrin deletion in the mouse brain starting from early neuronal specification. While Ezrin knockout did not impact prenatal cerebral cortex development, behavioral phenotyping depicted reduced exploratory behavior. Starting with postnatal appearance of glia cells, Ezrin was verified to remain predominantly expressed in astrocytes. Proteome analysis of Ezrin deficient astrocytes revealed alterations in glutamate and ion homeostasis, metabolism and cell morphology - important processes for synaptic signal transmission. Notably, Ezrin deletion in astrocytes provoked (GFAP) glial fibrillary acidic protein upregulation - a marker of astrocyte activation and reactive astrogliosis. However, this spontaneous, reactive astrogliosis exhibited proteome changes distinct from ischemic-induced reactive astrogliosis. Moreover, in experimental ischemic stroke, Ezrin knockout mice displayed reduced infarct volume, indicating a protective effect of the Ezrin deletion-induced changes and astrogliosis.
Collapse
Affiliation(s)
- Stephan Schacke
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Amy Stocksdale
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
5
|
AQP2 trafficking in health and diseases: an updated overview. Int J Biochem Cell Biol 2022; 149:106261. [DOI: 10.1016/j.biocel.2022.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
|
6
|
Ezrin Regulates Ca 2+ Ionophore-Induced Plasma Membrane Translocation of Aquaporin-5. Int J Mol Sci 2021; 22:ijms222413505. [PMID: 34948308 PMCID: PMC8705411 DOI: 10.3390/ijms222413505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023] Open
Abstract
Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, sweat, and submucosal airway glands, and plays important roles in maintaining their secretory functions. Because AQP5 is not regulated by gating, localization on the plasma membrane is important for its water-permeable function. Ezrin is an ezrin-radixin-moesin family protein that serves as a crosslinker between the plasma membrane and actin cytoskeleton network. It plays important roles in translocation of various membrane proteins to mediate vesicle trafficking to the plasma membrane. In this study, we examined the effects of ezrin inhibition on membrane trafficking of AQP5. Ezrin inhibition selectively suppressed an ionomycin-induced increase in AQP5 translocation to the plasma membrane of mouse lung epithelial cells (MLE-12) without affecting the steady-state level of plasma membrane AQP5. Taken together, our data suggest that AQP5 translocates to the plasma membrane through at least two pathways and that ezrin is selectively involved in a stimulation-dependent pathway.
Collapse
|
7
|
Liu CCS, Cheung PW, Dinesh A, Baylor N, Paunescu TC, Nair AV, Bouley R, Brown D. Actin-related protein 2/3 complex plays a critical role in the aquaporin-2 exocytotic pathway. Am J Physiol Renal Physiol 2021; 321:F179-F194. [PMID: 34180716 PMCID: PMC8424666 DOI: 10.1152/ajprenal.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.
Collapse
Affiliation(s)
- Chen-Chung Steven Liu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pui Wen Cheung
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anupama Dinesh
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodor C. Paunescu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V. Nair
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Wang R, Wu ST, Yang X, Qian Y, Choi JP, Gao R, Song S, Wang Y, Zhuang T, Wong JJ, Zhang Y, Han Z, Lu HA, Alexander SI, Liu R, Xia Y, Zheng X. Pdcd10-Stk24/25 complex controls kidney water reabsorption by regulating Aqp2 membrane targeting. JCI Insight 2021; 6:e142838. [PMID: 34156031 PMCID: PMC8262504 DOI: 10.1172/jci.insight.142838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
PDCD10, also known as CCM3, is a gene found to be associated with the human disease cerebral cavernous malformations (CCMs). PDCD10 forms a complex with GCKIII kinases including STK24, STK25, and MST4. Studies in C. elegans and Drosophila have shown a pivotal role of the PDCD10-GCKIII complex in maintaining epithelial integrity. Here, we found that mice deficient of Pdcd10 or Stk24/25 in the kidney tubules developed polyuria and displayed increased water consumption. Although the expression levels of aquaporin genes were not decreased, the levels of total and phosphorylated aquaporin 2 (Aqp2) protein in the apical membrane of tubular epithelial cells were decreased in Pdcd10- and Stk24/25-deficient mice. This loss of Aqp2 was associated with increased expression and membrane targeting of Ezrin and phosphorylated Ezrin, Radixin, Moesin (p-ERM) proteins and impaired intracellular vesicle trafficking. Treatment with Erlotinib, a tyrosine kinase inhibitor promoting exocytosis and inhibiting endocytosis, normalized the expression level and membrane abundance of Aqp2 protein, and partially rescued the water reabsorption defect observed in the Pdcd10-deficient mice. Our current study identified the PDCD10-STK-ERM signaling pathway as a potentially novel pathway required for water balance control by regulating vesicle trafficking and protein abundance of AQP2 in the kidneys.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yude Qian
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Siliang Song
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Justin Jl Wong
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hua A Lu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen I Alexander
- Department of Pediatric Nephrology, The Children's Hospital at Westmead and Centre for Kidney Research, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiangjian Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China.,Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Sholokh A, Klussmann E. Local cyclic adenosine monophosphate signalling cascades-Roles and targets in chronic kidney disease. Acta Physiol (Oxf) 2021; 232:e13641. [PMID: 33660401 DOI: 10.1111/apha.13641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3',5'-adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometre dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalization is tightly controlled by a specific set of proteins, including A-kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP-Lbc and STUB1, and PDE4 coordinate arginine-vasopressin (AVP)-induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na+ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalized cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease-relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD.
Collapse
Affiliation(s)
- Anastasiia Sholokh
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
| | - Enno Klussmann
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
| |
Collapse
|
10
|
Holst MR, Nejsum LN. A versatile aquaporin-2 cell system for quantitative temporal expression and live cell imaging. Am J Physiol Renal Physiol 2019; 317:F124-F132. [PMID: 31091121 DOI: 10.1152/ajprenal.00150.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-2 (AQP2) fine tunes urine concentration in response to the antidiuretic hormone vasopressin. In addition, AQP2 has been suggested to promote cell migration and epithelial morphogenesis. A cell system allowing temporal and quantitative control of expression levels of AQP2 and phospho-mimicking mutants has been missing, as has a system allowing expression of fluorescently tagged AQP2 for time-lapse imaging. In the present study, we generated and validated a Flp-In T-REx Madin-Darby canine kidney cell system for temporal and quantitative control of AQP2 and phospho-mimicking mutants. We verified that expression levels can be temporally and quantitatively controlled and that AQP2 translocated to the plasma membrane in response to elevated cAMP, which also induced S256 phosphorylation. The phospho-mimicking mutants AQP2-S256A and AQP2-S256D localized as previously described, primarily intracellular and to the plasma membrane, respectively. Induction of AQP2 expression in combination with transient, low expression of enhanced green fluorescent protein-tagged AQP2 enabled expression without aggregation and correct translocation in response to elevated cAMP. Interestingly, time-lapse imaging revealed AQP2-containing tubulating endosomes and that tubulation significantly decreased 30 min after cAMP elevation. This was mirrored by the phospho-mimicking mutants AQP2-S256A and AQP2-S256D, where AQP2-S256A-containing endosomes tubulated, whereas AQP2-S256D-containing endosomes did not. Thus, this cell system enables a multitude of cell-based assays warranted to provide deeper insights into the mechanisms of AQP2 regulation and effects on cell migration and epithelial morphogenesis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|
11
|
Ranieri M, Di Mise A, Difonzo G, Centrone M, Venneri M, Pellegrino T, Russo A, Mastrodonato M, Caponio F, Valenti G, Tamma G. Green olive leaf extract (OLE) provides cytoprotection in renal cells exposed to low doses of cadmium. PLoS One 2019; 14:e0214159. [PMID: 30897184 PMCID: PMC6428325 DOI: 10.1371/journal.pone.0214159] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is a heavy and highly toxic metal that contaminates air, food and water. Cadmium accumulates in several organs altering normal functions. The kidney is the major organ at risk of damage from chronic exposure to cadmium as a contaminant in food and water. This study aims to investigate the beneficial effects of OLE in renal collecting duct MCD4 cells exposed to a low dose cadmium (1 μM). In MCD4 cells cadmium caused an increase in ROS production, as well as generation of lipid droplets and reduced cell viability. Moreover, cadmium exposure led to a remarkable increase in the frequency of micronuclei and DNA double-strand breaks, assessed using the alkaline comet assay. In addition, cadmium dramatically altered cell cytoskeleton architecture and caused S-glutathionylation of actin. Notably, all cadmium-induced cellular deregulations were prevented by co-treatment with OLE, possibly due to its antioxidant action and to the presence of bioactive phytocompounds. Indeed, OLE treatment attenuated Cd-induced actin S-glutathionylation, thereby stabilizing actin filaments. Taken together, these observations provide a novel insight into the biological action of OLE in renal cells and support the notion that OLE may serve as a potential adjuvant against cadmium-induced nephrotoxicity.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso Pellegrino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria Russo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.), Bari, Italy
- Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.), Bari, Italy
- * E-mail:
| |
Collapse
|
12
|
Lei L, Huang M, Su L, Xie D, Mamuya FA, Ham O, Tsuji K, Păunescu TG, Yang B, Lu HAJ. Manganese promotes intracellular accumulation of AQP2 via modulating F-actin polymerization and reduces urinary concentration in mice. Am J Physiol Renal Physiol 2017; 314:F306-F316. [PMID: 29046300 DOI: 10.1152/ajprenal.00391.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aquaporin-2 (AQP2) is a water channel protein expressed in principal cells (PCs) of the kidney collecting ducts (CDs) and plays a critical role in mediating water reabsorption and urine concentration. AQP2 undergoes both regulated trafficking mediated by vasopressin (VP) and constitutive recycling, which is independent of VP. For both pathways, actin cytoskeletal dynamics is a key determinant of AQP2 trafficking. We report here that manganese chloride (MnCl2) is a novel and potent regulator of AQP2 trafficking in cultured cells and in the kidney. MnCl2 treatment promoted internalization and intracellular accumulation of AQP2. The effect of MnCl2 on the intracellular accumulation of AQP2 was associated with activation of RhoA and actin polymerization without modification of AQP2 phosphorylation. Although the level of total and phosphorylated AQP2 did not change, MnCl2 treatment impeded VP-induced phosphorylation of AQP2 at its serine-256, -264, and -269 residues and dephosphorylation at serine 261. In addition, MnCl2 significantly promoted F-actin polymerization along with downregulation of RhoA activity and prevented VP-induced membrane accumulation of AQP2. Finally, MnCl2 treatment in mice resulted in significant polyuria and reduced urinary concentration, likely due to intracellular relocation of AQP2 in the PCs of kidney CDs. More importantly, the reduced urinary concentration caused by MnCl2 treatment in animals was not corrected by VP. In summary, our study identified a novel effect of MnCl2 on AQP2 trafficking through modifying RhoA activity and actin polymerization and uncovered its potent impact on water diuresis in vivo.
Collapse
Affiliation(s)
- Lei Lei
- Department of Pharmacology, School of Basic Medical Sciences, Peking University , Beijing , People's Republic of China.,Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts
| | - Ming Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University , Beijing , People's Republic of China.,Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts
| | - Limin Su
- Department of Pharmacology, School of Basic Medical Sciences, Peking University , Beijing , People's Republic of China.,Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts
| | - Dongping Xie
- Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts
| | - Fahmy A Mamuya
- Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Onju Ham
- Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Kenji Tsuji
- Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Teodor G Păunescu
- Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University , Beijing , People's Republic of China
| | - Hua A Jenny Lu
- Program in Membrane Biology, Center for Systems Biology, and Division of Nephrology, Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
13
|
Rahman SS, Moffitt AEJ, Trease AJ, Foster KW, Storck MD, Band H, Boesen EI. EHD4 is a novel regulator of urinary water homeostasis. FASEB J 2017; 31:5217-5233. [PMID: 28778975 DOI: 10.1096/fj.201601182rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/25/2017] [Indexed: 01/08/2023]
Abstract
The Eps15-homology domain-containing (EHD) protein family comprises 4 members that regulate endocytic recycling. Although the kidney expresses all 4 EHD proteins, their physiologic roles are largely unknown. This study focused on EHD4, which we found to be expressed differentially across nephron segments with the highest expression in the inner medullary collecting duct. Under baseline conditions, Ehd4-/- [EHD4-knockout (KO)] mice on a C57Bl/6 background excreted a higher volume of more dilute urine than control C57Bl/6 wild-type (WT) mice while maintaining a similar plasma osmolality. Urine excretion after an acute intraperitoneal water load was significantly increased in EHD4-KO mice compared to WT mice, and although EHD4-KO mice concentrated their urine during 24-h water restriction, urinary osmolality remained significantly lower than in WT mice, suggesting that EHD4 plays a role in renal water handling. Total aquaporin 2 (AQP2) and phospho-S256-AQP2 (pAQP2) protein expression in the inner medulla was similar in the two groups in baseline conditions. However, localization of both AQP2 and pAQP2 in the renal inner medullary principal cells appeared more dispersed, and the intensity of apical membrane staining for AQP2 was reduced significantly (by ∼20%) in EHD4-KO mice compared to WT mice in baseline conditions, suggesting an important role of EHD4 in trafficking of AQP2. Together, these data indicate that EHD4 play important roles in the regulation of water homeostasis.-Rahman, S. S., Moffitt, A. E. J., Trease, A. J., Foster, K. W., Storck, M. D., Band, H., Boesen, E. I. EHD4 is a novel regulator of urinary water homeostasis.
Collapse
Affiliation(s)
- Shamma S Rahman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alexandra E J Moffitt
- The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew D Storck
- The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hamid Band
- The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, USA; .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA; and.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA;
| |
Collapse
|
14
|
Li W, Jin WW, Tsuji K, Chen Y, Nomura N, Su L, Yui N, Arthur J, Cotecchia S, Paunescu TG, Brown D, Lu HAJ. Ezrin directly interacts with AQP2 and promotes its endocytosis. J Cell Sci 2017; 130:2914-2925. [PMID: 28754689 DOI: 10.1242/jcs.204842] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022] Open
Abstract
The water channel aquaporin-2 (AQP2) is a major regulator of water homeostasis in response to vasopressin (VP). Dynamic trafficking of AQP2 relies on its close interaction with trafficking machinery proteins and the actin cytoskeleton. Here, we report the identification of ezrin, an actin-binding protein from the ezrin/radixin/moesin (ERM) family as an AQP2-interacting protein. Ezrin was first detected in a co-immunoprecipitation (co-IP) complex using an anti-AQP2 antibody in a proteomic analysis. Immunofluorescence staining revealed the co-expression of ezrin and AQP2 in collecting duct principal cells, and VP treatment caused redistribution of both proteins to the apical membrane. The ezrin-AQP2 interaction was confirmed by co-IP experiments with an anti-ezrin antibody, and by pulldown assays using purified full-length and FERM domain-containing recombinant ezrin. By using purified recombinant proteins, we showed that ezrin directly interacts with AQP2 C-terminus through its N-terminal FERM domain. Knocking down ezrin expression with shRNA resulted in increased membrane accumulation of AQP2 and reduced AQP2 endocytosis. Therefore, through direct interaction with AQP2, ezrin facilitates AQP2 endocytosis, thus linking the dynamic actin cytoskeleton network with AQP2 trafficking.
Collapse
Affiliation(s)
- Wei Li
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - William W Jin
- Washington University in St. Louis, College of Arts and Sciences, St Louis, MO 63130, USA
| | - Kenji Tsuji
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Ying Chen
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Naohiro Nomura
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Limin Su
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA.,Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Naofumi Yui
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Julian Arthur
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Susanna Cotecchia
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne 1005, Switzerland
| | - Teodor G Paunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Hua A J Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Tamma G, Di Mise A, Ranieri M, Geller A, Tamma R, Zallone A, Valenti G. The V2 receptor antagonist tolvaptan raises cytosolic calcium and prevents AQP2 trafficking and function: an in vitro and in vivo assessment. J Cell Mol Med 2017; 21:1767-1780. [PMID: 28326667 PMCID: PMC5571526 DOI: 10.1111/jcmm.13098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023] Open
Abstract
Tolvaptan, a selective vasopressin V2 receptor antagonist, is a new generation diuretic. Its clinical efficacy is in principle due to impaired vasopressin‐regulated water reabsorption via aquaporin‐2 (AQP2). Nevertheless, no direct in vitro evidence that tolvaptan prevents AQP2‐mediated water transport, nor that this pathway is targeted in vivo in patients with syndrome of inappropriate antidiuresis (SIAD) has been provided. The effects of tolvaptan on the vasopressin–cAMP/PKA signalling cascade were investigated in MDCK cells expressing endogenous V2R and in mouse kidney. In MDCK, tolvaptan prevented dDAVP‐induced increase in ser256‐AQP2 and osmotic water permeability. A similar effect on ser256‐AQP2 was found in V1aR −/− mice, thus confirming the V2R selectively. Of note, calcium calibration in MDCK showed that tolvaptan per se caused calcium mobilization from the endoplasmic reticulum resulting in a significant increase in basal intracellular calcium. This effect was only observed in cells expressing the V2R, indicating that it requires the tolvaptan–V2R interaction. Consistent with this finding, tolvaptan partially reduced the increase in ser256‐AQP2 and the water permeability in response to forskolin, a direct activator of adenylyl cyclase (AC), suggesting that the increase in intracellular calcium is associated with an inhibition of the calcium‐inhibitable AC type VI. Furthermore, tolvaptan treatment reduced AQP2 excretion in two SIAD patients and normalized plasma sodium concentration. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of tolvaptan and underscore a novel effect in raising intracellular calcium that can be of significant clinical relevance.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Roberto Tamma
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alberta Zallone
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
16
|
Mamuya FA, Cano-Peñalver JL, Li W, Rodriguez Puyol D, Rodriguez Puyol M, Brown D, de Frutos S, Lu HAJ. ILK and cytoskeletal architecture: an important determinant of AQP2 recycling and subsequent entry into the exocytotic pathway. Am J Physiol Renal Physiol 2016; 311:F1346-F1357. [PMID: 27760768 DOI: 10.1152/ajprenal.00336.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
Within the past decade tremendous efforts have been made to understand the mechanism behind aquaporin-2 (AQP2) water channel trafficking and recycling, to open a path toward effective diabetes insipidus therapeutics. A recent study has shown that integrin-linked kinase (ILK) conditional-knockdown mice developed polyuria along with decreased AQP2 expression. To understand whether ILK also regulates AQP2 trafficking in kidney tubular cells, we performed in vitro analysis using LLCPK1 cells stably expressing rat AQP2 (LLC-AQP2 cells). Upon treatment of LLC-AQP2 cells with ILK inhibitor cpd22 and ILK-siRNA, we observed increased accumulation of AQP2 in the perinuclear region, without any significant increase in the rate of endocytosis. This perinuclear accumulation did not occur in cells expressing a serine-256-aspartic acid mutation that retains AQP2 in the plasma membrane. We then examined clathrin-mediated endocytosis after ILK inhibition using rhodamine-conjugated transferrin. Despite no differences in overall transferrin endocytosis, the endocytosed transferrin also accumulated in the perinuclear region where it colocalized with AQP2. These accumulated vesicles also contained the recycling endosome marker Rab11. In parallel, the usual vasopressin-induced AQP2 membrane accumulation was prevented after ILK inhibition; however, ILK inhibition did not measurably affect AQP2 phosphorylation at serine-256 or its dephosphorylation at serine-261. Instead, we found that inhibition of ILK increased F-actin polymerization. When F-actin was depolymerized with latrunculin, the perinuclear located AQP2 dispersed. We conclude that ILK is important in orchestrating dynamic cytoskeletal architecture during recycling of AQP2, which is necessary for its subsequent entry into the exocytotic pathway.
Collapse
Affiliation(s)
- Fahmy A Mamuya
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jose Luis Cano-Peñalver
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain; and
| | - Wei Li
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Diego Rodriguez Puyol
- Biomedical Research Foundation and Nephrology Department, Hospital Príncipe de Asturias, Alcalá de Henares, and Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Rodriguez Puyol
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain; and
| | - Dennis Brown
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sergio de Frutos
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain; and
| | - Hua Ann Jenny Lu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
17
|
AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci U S A 2016; 113:E4328-37. [PMID: 27402760 DOI: 10.1073/pnas.1607745113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis.
Collapse
|
18
|
Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016; 7:23. [PMID: 26903868 PMCID: PMC4749865 DOI: 10.3389/fphar.2016.00023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments.
Collapse
Affiliation(s)
- Tanja Vukićević
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Maike Schulz
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Dörte Faust
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlin, Germany; German Centre for Cardiovascular ResearchBerlin, Germany
| |
Collapse
|
19
|
Urinary concentration: different ways to open and close the tap. Pediatr Nephrol 2014; 29:1297-303. [PMID: 23736674 DOI: 10.1007/s00467-013-2526-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
Nephrogenic diabetes insipidus (NDI) provides an excellent model for the benefits and insights that can be gained from studying rare diseases. The discovery of underlying genes identified key molecules involved in urinary concentration, including the type 2 vasopressin receptor AVPR2 and the water channel AQP2, which constitute obvious pharmacologic targets. Subsequently developed drugs targeting AVPR2 not only provide potential benefit to some patients with NDI, but are now used for much more common clinical applications as diverse as nocturnal enuresis and heart failure. Yet, the story is still evolving: clinical observations and animal experiments continue to discover new ways to affect urinary concentration. These novel pathways can potentially be exploited for therapeutic gain. Here we review the (patho)physiology of water homoeostasis, the current status of clinical management, and potential new treatments.
Collapse
|
20
|
Tamma G, Lasorsa D, Trimpert C, Ranieri M, Di Mise A, Mola MG, Mastrofrancesco L, Devuyst O, Svelto M, Deen PMT, Valenti G. A protein kinase A-independent pathway controlling aquaporin 2 trafficking as a possible cause for the syndrome of inappropriate antidiuresis associated with polycystic kidney disease 1 haploinsufficiency. J Am Soc Nephrol 2014; 25:2241-53. [PMID: 24700872 DOI: 10.1681/asn.2013111234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renal water reabsorption is controlled by arginine vasopressin (AVP), which binds to V2 receptors, resulting in protein kinase A (PKA) activation, phosphorylation of aquaporin 2 (AQP2) at serine 256, and translocation of AQP2 to the plasma membrane. However, AVP also causes dephosphorylation of AQP2 at S261. Recent studies showed that cyclin-dependent kinases (cdks) can phosphorylate AQP2 peptides at S261 in vitro. We investigated the possible role of cdks in the phosphorylation of AQP2 and identified a new PKA-independent pathway regulating AQP2 trafficking. In ex vivo kidney slices and MDCK-AQP2 cells, R-roscovitine, a specific inhibitor of cdks, increased pS256 levels and decreased pS261 levels. The changes in AQP2 phosphorylation status were paralleled by increases in cell surface expression of AQP2 and osmotic water permeability in the absence of forskolin stimulation. R-Roscovitine did not alter cAMP-dependent PKA activity but specifically reduced protein phosphatase 2A (PP2A) expression and activity in MDCK cells. Notably, we found reduced PP2A expression and activity and reduced pS261 levels in Pkd1(+/-) mice displaying a syndrome of inappropriate antidiuresis with high levels of pS256, despite unchanged AVP and cAMP. Similar to previous findings in Pkd1(+/-) mice, R-roscovitine treatment caused a significant decrease in intracellular calcium in MDCK cells. Our data indicate that reduced activity of PP2A, secondary to reduced intracellular Ca(2+) levels, promotes AQP2 trafficking independent of the AVP-PKA axis. This pathway may be relevant for explaining pathologic states characterized by inappropriate AVP secretion and positive water balance.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy;
| | - Domenica Lasorsa
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Christiane Trimpert
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands; and
| | - Marianna Ranieri
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Lisa Mastrofrancesco
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Maria Svelto
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Peter M T Deen
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands; and
| | - Giovanna Valenti
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
21
|
Wilson JLL, Miranda CA, Knepper MA. Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol 2013; 17:751-64. [PMID: 23584881 PMCID: PMC3775849 DOI: 10.1007/s10157-013-0789-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 12/26/2022]
Abstract
Water excretion is regulated in large part through the regulation of osmotic water permeability of the renal collecting duct epithelium. Water permeability is controlled by vasopressin through regulation of the water channel, aquaporin-2 (AQP2). Two processes contribute: (1) regulation of AQP2 trafficking to the apical plasma membrane; and (2) regulation of the total amount of the AQP2 protein in the cells. Regulation of AQP2 abundance is defective in several water-balance disorders, including many polyuric disorders and the syndrome of inappropriate antidiuresis. Here we review vasopressin signaling in the renal collecting duct that is relevant to the two modes of water permeability regulation.
Collapse
Affiliation(s)
- Justin L L Wilson
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr., Bldg 10, Room 6N260, Bethesda, MD, 20892-1603, USA
| | | | | |
Collapse
|
22
|
Tamma G, Ranieri M, Di Mise A, Spirlì A, Russo A, Svelto M, Valenti G. Effect of roscovitine on intracellular calcium dynamics: differential enantioselective responses. Mol Pharm 2013; 10:4620-8. [PMID: 24168213 DOI: 10.1021/mp400430t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinases (CDKs) inhibitors have emerged as interesting therapeutic candidates. Of these, (S)-roscovitine has been proposed as potential neuroprotective molecule for stroke while (R)-roscovitine is currently entering phase II clinical trials against cancers and phase I clinical tests against glomerulonephritis. In addition, (R)-roscovitine has been suggested as potential antihypertensive and anti-inflammatory drug. Dysfunction of intracellular calcium balance is a common denominator of these diseases, and the two roscovitine enantiomers (S and R) are known to modulate calcium voltage channel activity differentially. Here, we provide a detailed description of short- and long-term responses of roscovitine on intracellular calcium handling in renal epithelial cells. Short-term exposure to (S)-roscovitine induced a cytosolic calcium peak, which was abolished after stores depletion with cyclopiazonic acid (CPA). Instead, (R)-roscovitine caused a calcium peak followed by a small calcium plateau. Cytosolic calcium response was prevented after stores depletion. Bafilomycin, a selective vacuolar H(+)-ATPase inhibitor, abolished the small calcium plateau. Long-term exposure to (R)-roscovitine significantly reduced the basal calcium level compared to control and (S)-roscovitine treated cells. However, both enantiomers increased calcium accumulation in the endoplasmic reticulum (ER). Consistently, cells treated with (R)-roscovitine showed a significant increase in SERCA activity, whereas (S)-roscovitine incubation resulted in a reduced PMCA expression. We also found a tonic decreased ability to release calcium from the ER, likely via IP3 signaling, under treatment with (S)- or (R)-roscovitine. Together our data revealed that (S)-roscovitine and (R)-roscovitine exert distinct enantiospecific effects on intracellular calcium signaling in renal epithelial cells. This distinct pharmacological profile can be relevant for roscovitine clinical use.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics and ∥Centre of Excellence Genomic and Proteomics GEBCA, University of Bari , Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc Natl Acad Sci U S A 2013; 110:17119-24. [PMID: 24085853 DOI: 10.1073/pnas.1309219110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase.
Collapse
|
24
|
Sengupta S, Barber TR, Xia H, Ready DF, Hardie RC. Depletion of PtdIns(4,5)P₂ underlies retinal degeneration in Drosophila trp mutants. J Cell Sci 2013; 126:1247-59. [PMID: 23378018 DOI: 10.1242/jcs.120592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The prototypical transient receptor potential (TRP) channel is the major light-sensitive, and Ca(2+)-permeable channel in the microvillar photoreceptors of Drosophila. TRP channels are activated following hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] by the key effector enzyme phospholipase C (PLC). Mutants lacking TRP channels undergo light-dependent retinal degeneration, as a consequence of the reduced Ca(2+) influx. It has been proposed that degeneration is caused by defects in the Ca(2+)-dependent visual pigment cycle, which result in accumulation of toxic phosphorylated metarhodopsin-arrestin complexes (MPP-Arr2). Here we show that two interventions, which prevent accumulation of MPP-Arr2, namely rearing under red light or eliminating the C-terminal rhodopsin phosphorylation sites, failed to rescue degeneration in trp mutants. Instead, degeneration in trp mutants reared under red light was rescued by mutation of PLC. Degeneration correlated closely with the light-induced depletion of PtdIns(4,5)P₂ that occurs in trp mutants due to failure of Ca(2+)-dependent inhibition of PLC. Severe retinal degeneration was also induced in the dark in otherwise wild-type flies by overexpression of a bacterial PtdInsPn phosphatase (SigD) to deplete PtdIns(4,5)P₂. In degenerating trp photoreceptors, phosphorylated Moesin, a PtdIns(4,5)P₂-regulated membrane-cytoskeleton linker essential for normal microvillar morphology, was found to delocalize from the rhabdomere and there was extensive microvillar actin depolymerisation. The results suggest that compromised light-induced Ca(2+) influx, due to loss of TRP channels, leads to PtdIns(4,5)P₂ depletion, resulting in dephosphorylation of Moesin, actin depolymerisation and disintegration of photoreceptor structure.
Collapse
Affiliation(s)
- Sukanya Sengupta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
25
|
Khan LA, Zhang H, Abraham N, Sun L, Fleming JT, Buechner M, Hall DH, Gobel V. Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat Cell Biol 2013; 15:143-56. [PMID: 23334498 PMCID: PMC4091717 DOI: 10.1038/ncb2656] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 11/16/2012] [Indexed: 01/29/2023]
Abstract
Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure.
Collapse
Affiliation(s)
- Liakot A Khan
- Department of Pediatrics, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yui N, Lu HAJ, Chen Y, Nomura N, Bouley R, Brown D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol 2012; 304:C38-48. [PMID: 23015545 DOI: 10.1152/ajpcell.00109.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aquaporin-2 (AQP2) water channel relocates mainly to the apical plasma membrane of collecting duct principal cells after vasopressin (VP) stimulation. AQP2 transport to this membrane domain is assumed to be a direct route involving recycling of intracellular vesicles. However, basolateral plasma membrane expression of AQP2 is observed in vivo in principal cells. Here, we asked whether there is a transcytotic pathway of AQP2 trafficking between apical and basolateral membranes. We used MDCK cells in which AQP2 normally accumulates apically after VP exposure. In contrast, both site-specific biotinylation and immunofluorescence showed that AQP2 is strongly accumulated in the basolateral membrane, along with the endocytic protein clathrin, after a brief cold shock (4°C). This suggests that AQP2 may be constitutively targeted to basolateral membranes and then retrieved by clathrin-mediated endocytosis at physiological temperatures. Rab11 does not accumulate in basolateral membranes after cold shock, suggesting that the AQP2 in this location is not associated with Rab11-positive vesicles. After rewarming (37°C), basolateral AQP2 staining is diminished and it subsequently accumulates at the apical membrane in the presence of VP/forskolin, suggesting that transcytosis can be followed by apical insertion of AQP2. This process is inhibited by treatment with colchicine. Our data suggest that the cold shock procedure reveals the presence of microtubule-dependent AQP2 transcytosis, which represents an indirect pathway of apical AQP2 delivery in these cells. Furthermore, our data indicate that protein polarity data obtained from biotinylation assays, which require cells to be cooled to 4°C during the labeling procedure, should be interpreted with caution.
Collapse
Affiliation(s)
- Naofumi Yui
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Cell biology of vasopressin-regulated aquaporin-2 trafficking. Pflugers Arch 2012; 464:133-44. [DOI: 10.1007/s00424-012-1129-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 01/03/2023]
|
28
|
Brown D, Bouley R, Păunescu TG, Breton S, Lu HAJ. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am J Physiol Cell Physiol 2012; 302:C1421-33. [PMID: 22460710 DOI: 10.1152/ajpcell.00085.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
29
|
Yui N, Lu HJ, Bouley R, Brown D. AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells. Biol Open 2011; 1:101-8. [PMID: 23213402 PMCID: PMC3507199 DOI: 10.1242/bio.2011042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Remodeling of the actin cytoskeleton is required for vasopressin (VP)-induced aquaporin 2 (AQP2) trafficking. Here, we asked whether VP and forskolin (FK)-mediated F-actin depolymerization depends on AQP2 expression. Using various MDCK and LLC-PK1 cell lines with different AQP2 expression levels, we performed F-actin quantification and immunofluorescence staining after VP/FK treatment. In MDCK cells, in which AQP2 is delivered apically, VP/FK mediated F-actin depolymerization was significantly correlated with AQP2 expression levels. A decrease of apical membrane associated F-actin was observed upon VP/FK treatment in AQP2 transfected, but not in untransfected cells. There was no change in basolateral actin staining under these conditions. In LLC-PK1 cells, which deliver AQP2 basolaterally, a significant VP/FK mediated decrease in F-actin was also detected only in AQP2 transfected cells. This depolymerization response to VP/FK was significantly reduced by siRNA knockdown of AQP2. By immunofluorescence, an inverse relationship between plasma membrane AQP2 and membrane-associated F-actin was observed after VP/FK treatment again only in AQP2 transfected cells. This is the first report showing that VP/FK mediated F-actin depolymerization is dependent on AQP2 protein expression in renal epithelial cells, and that this is not dependent on the polarity of AQP2 membrane insertion.
Collapse
Affiliation(s)
- Naofumi Yui
- Massachusetts General Hospital Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts , USA
| | | | | | | |
Collapse
|
30
|
Tamma G, Lasorsa D, Ranieri M, Mastrofrancesco L, Valenti G, Svelto M. Integrin signaling modulates AQP2 trafficking via Arg-Gly-Asp (RGD) motif. Cell Physiol Biochem 2011; 27:739-48. [PMID: 21691091 DOI: 10.1159/000330082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 12/20/2022] Open
Abstract
Aquaporin-2 (AQP2) increases the water permeability of renal collecting ducts in response to vasopressin. Vasopressin stimulation is accompanied by a profound remodeling of actin cytoskeleton whose dynamics are regulated by crosstalk between intracellular and extracellular signals. Here, we report that AQP2 contains a conserved RGD domain in its external C-loop. Co-immunoprecipitation experiments demonstrated that AQP2 binds integrin β1 in renal tissue and in MCD4 cells. To investigate the role of this interaction on AQP2 trafficking, cells were exposed to synthetic RGD-containing peptides, GRGDNP or GRGDSP, able to bind certain integrins. Incubation with these peptides increased the membrane expression of AQP2 in the absence of hormonal stimulation as assessed by confocal analysis and cell surface biotinylation. To identify the signals underlying the effects of peptides on AQP2 trafficking, some possible intracellular messengers were evaluated. Exposure of MCD4 cells to GRGDNP increased intracellular cAMP as assessed by FRET studies while GRGDSP increased intracellular calcium concentration. Taken together, these data propose integrins as new players controlling the cellular localization of AQP2, via two distinct signal transduction pathways dependent on cAMP and calcium respectively.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, 70125 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
ERM stable knockdown by siRNA reduced in vitro migration and invasion of human SGC-7901 cells. Biochimie 2011; 93:954-61. [DOI: 10.1016/j.biochi.2011.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/29/2011] [Indexed: 01/30/2023]
|
32
|
Li W, Zhang Y, Bouley R, Chen Y, Matsuzaki T, Nunes P, Hasler U, Brown D, Lu HAJ. Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am J Physiol Renal Physiol 2011; 301:F309-18. [PMID: 21511701 DOI: 10.1152/ajprenal.00001.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Statins are 3-hydroxyl-3-methyglutaryl-CoA reductase inhibitors that are commonly used to inhibit cholesterol biosynthesis. Emerging data have suggested that they also have "pleotropic effects," including modulating actin cytoskeleton reorganization. Here, we report an effect of simvastatin on the trafficking of aquaporin-2 (AQP2). Specifically, simvastatin induced the membrane accumulation of AQP2 in cell cultures and kidneys in situ. The effect of simvastatin was independent of protein kinase A activation and phosphorylation at AQP2-Ser(256), a critical event involved in vasopressin (VP)-regulated AQP2 trafficking. Further investigation showed that simvastatin inhibited endocytosis in parallel with downregulation of RhoA activity. Overexpression of active RhoA attenuated simvastatin's effect, suggesting the involvement of this small GTPase in simvastatin-mediated AQP2 trafficking. Finally, the effect of simvastatin on urinary concentration was investigated in VP-deficient Brattleboro rats. Simvastatin acutely (3-6 h) increased urinary concentration and decreased urine output in these animals. In summary, simvastatin regulates AQP2 trafficking in vitro and urinary concentration in vivo via events involving downregulation of Rho GTPase activity and inhibition of endocytosis. Our study provides an alternative mechanism to regulate AQP2 trafficking, bypassing the VP-vasopressin receptor signaling pathway.
Collapse
Affiliation(s)
- Wei Li
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Dept. of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Edemir B, Pavenstädt H, Schlatter E, Weide T. Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflugers Arch 2011; 461:607-21. [PMID: 21327781 DOI: 10.1007/s00424-011-0928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 01/02/2023]
Abstract
The kidneys participate in whole-body homeostasis, regulating acid-base balance, electrolyte concentrations, extracellular fluid volume, and regulation of blood pressure. Many of the kidney's functions are accomplished by relatively simple mechanisms of filtration, reabsorption, and secretion, which take place in the nephron. The kidneys generate 140-180 l of primary urine per day, while reabsorbing a large percentage, allowing for only the excretion of approximately 2 l of urine. Within the nephron, the majority of the filtered water and solutes are reabsorbed. This is mainly facilitated by specialized transporters and channels which are localized at different segments of the nephron and asymmetrically localized within the polarized epithelial cells. The asymmetric localization of these transporters and channels is essential for the physiological tasks of the renal tissues. One family of these proteins are the water-permeable aquaporins which are selectively expressed in cells along the nephron and localized at different compartments. Here, we discuss potential molecular links between mechanisms involved in the establishment of cell polarity and the members of the aquaporin family. In the first part of this review, we will focus on aspects of apical cell polarity. In the second part, we will review the motifs identified so far that are involved in aquaporin sorting and point out potential molecular links.
Collapse
Affiliation(s)
- Bayram Edemir
- Medizinische Klinik und Poliklinik D, Experimentelle und Molekulare Nephrologie, Universität Münster, Germany.
| | | | | | | |
Collapse
|
34
|
Chirivino D, Del Maestro L, Formstecher E, Hupé P, Raposo G, Louvard D, Arpin M. The ERM proteins interact with the HOPS complex to regulate the maturation of endosomes. Mol Biol Cell 2010; 22:375-85. [PMID: 21148287 PMCID: PMC3031467 DOI: 10.1091/mbc.e10-09-0796] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the degradative pathway, the progression of cargos through endosomal compartments involves a series of fusion and maturation events. The HOPS (homotypic fusion and protein sorting) complex is part of the machinery that promotes the progression from early to late endosomes and lysosomes by regulating the exchange of small GTPases. We report that an interaction between subunits of the HOPS complex and the ERM (ezrin, radixin, moesin) proteins is required for the delivery of EGF receptor (EGFR) to lysosomes. Inhibiting either ERM proteins or the HOPS complex leads to the accumulation of the EGFR into early endosomes, delaying its degradation. This impairment in EGFR trafficking observed in cells depleted of ERM proteins is due to a delay in the recruitment of Rab7 on endosomes. As a consequence, the maturation of endosomes is perturbed as reflected by an accumulation of hybrid compartments positive for both early and late endosomal markers. Thus, ERM proteins represent novel regulators of the HOPS complex in the early to late endosomal maturation.
Collapse
Affiliation(s)
- Dafne Chirivino
- Institut Curie-Unité Mixte de Recherche 144 (UMR144), Centre National de la Recherche Scientifique (CNRS)/Morphogenèse et Signalisation cellulaires, Paris, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Jang KJ, Cho HS, Kang DH, Bae WG, Kwon TH, Suh KY. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol (Camb) 2010; 3:134-41. [PMID: 21079870 DOI: 10.1039/c0ib00018c] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In vivo, renal tubular epithelial cells are exposed to luminal fluid shear stress (FSS) and a transepithelial osmotic gradient. In this study, we used a simple collecting-duct-on-a-chip to investigate the role of an altered luminal microenvironment in the translocation of aquaporin-2 (AQP2) and the reorganization of actin cytoskeleton (F-actin) in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. Immunocytochemistry demonstrated that 3 h of exposure to luminal FSS at 1 dyn cm(-2) was sufficient to induce depolymerization of F-actin in those cells. We observed full actin depolymerization after 5 h exposure and substantial re-polymerization within 2 h of removing the luminal FSS, suggesting that the process is reversible and the fluidic environment regulates the reorganization of intracellular F-actin. We demonstrate that several factors (i.e., luminal FSS, hormonal stimulation, transepithelial osmotic gradient) collectively exert a profound effect on the AQP2 trafficking in the collecting ducts, which is associated with actin cytoskeletal reorganization.
Collapse
Affiliation(s)
- Kyung-Jin Jang
- Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
36
|
A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 2010; 460:925-52. [PMID: 20686783 DOI: 10.1007/s00424-010-0863-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 12/11/2022]
Abstract
The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.
Collapse
|
37
|
Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8. J Proteomics 2010; 73:2031-40. [PMID: 20619372 DOI: 10.1016/j.jprot.2010.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/09/2010] [Accepted: 06/23/2010] [Indexed: 12/28/2022]
Abstract
Aquaporin (AQP) family plays a fundamental role in transmembrane water and small solutes movement. Within this family, aquaporin 8 (AQP8), showed to be widely distributed in the digestive system especially colon. To investigate the possible protein alterations involved in AQP8 regulation and trafficking, we extensively compared between wild type and AQP8 knockout mouse colon using semi-quantitative fluorescence- stained two dimensional gel electrophoresis (2-DE) coupled with nano LC-Ms/Ms. Our analysis revealed identification and regulation of 21 proteins, most notably, actin-related family which suggests its possible involvement in regulating AQP8 secretory vesicles migration to be integrated as a cell membrane protein.
Collapse
|
38
|
Chen G, Yang Y, Fröhlich O, Klein JD, Sands JM. Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base. Physiol Genomics 2010; 41:203-11. [PMID: 20197420 DOI: 10.1152/physiolgenomics.00129.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect and to clone the new active urea transporter, we employed a modified two-tester suppression subtractive hybridization (ttSSH) approach and examined gene expression induced by LPD and Vit D in kidney IM base. Approximately 600 clones from the subtracted library were randomly selected; 150 clones were further confirmed to be the true positive genes by slot blot hybridization with subtracted probes from LPD and Vit D and sent for DNA sequencing. We identified 10 channel/transporter genes that were upregulated in IM base in LPD and Vit D animal models; 8 were confirmed by real-time PCR. These genes include aquaporin 2 (AQP2), two-pore calcium channel protein 2, brain-specific organic cation transporter, Na(+)- and H(+)-coupled glutamine transporter, and solute carrier family 25. Nine genes are totally new, and twelve are uncharacterized hypothetical proteins. Among them, four genes were shown to be new transmembrane proteins as judged by Kyte-Doolittle hydrophobic plot analysis. ttSSH provides a useful method to identify new genes from two conditioned populations.
Collapse
|
39
|
Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 2009; 29:13971-80. [PMID: 19890007 DOI: 10.1523/jneurosci.3799-09.2009] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) functions as a putative protein kinase of ezrin, radixin, and moesin (ERM) family proteins. A Parkinson's disease-related G2019S substitution in the kinase domain of LRRK2 further enhances the phosphorylation of ERM proteins. The phosphorylated ERM (pERM) proteins are restricted to the filopodia of growing neurites in which they tether filamentous actin (F-actin) to the cytoplasmic membrane and regulate the dynamics of filopodia protrusion. Here, we show that, in cultured neurons derived from LRRK2 G2019S transgenic mice, the number of pERM-positive and F-actin-enriched filopodia was significantly increased, and this correlates with the retardation of neurite outgrowth. Conversely, deletion of LRRK2, which lowered the pERM and F-actin contents in filopodia, promoted neurite outgrowth. Furthermore, inhibition of ERM phosphorylation or actin polymerization rescued the G2019S-dependent neuronal growth defects. These data support a model in which the G2019S mutation of LRRK2 causes a gain-of-function effect that perturbs the homeostasis of pERM and F-actin in sprouting neurites critical for neuronal morphogenesis.
Collapse
|
40
|
Involvement of aquaporin in thromboxane A2 receptor-mediated, G 12/13/RhoA/NHE-sensitive cell swelling in 1321N1 human astrocytoma cells. Cell Signal 2009; 22:41-6. [PMID: 19772916 DOI: 10.1016/j.cellsig.2009.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
The physiological role of the thromboxane A(2) (TXA(2)) receptor expressed on glial cells remains unclear. We previously reported that 1321N1 human astrocytoma cells pretreated with dibutyryl cyclic AMP (dbcAMP) became swollen in response to U46619, a TXA(2) analogue. In the present study, we examined the detailed mechanisms of TXA(2) receptor-mediated cell swelling in 1321N1 cells. The cell swelling caused by U46619 was suppressed by expression of p115-RGS, an inhibitory peptide of G alpha(12/13) pathway and C3 toxin, an inhibitory protein for RhoA. The swelling was also inhibited by treatment with Y27632, a Rho kinase inhibitor and 5-(ethyl-N-isopropyl)amiloride (EIPA), a Na(+)/H(+)-exchanger inhibitor. Furthermore, cell swelling was suppressed by the pretreatment with aquaporin inhibitors mercury chloride or phloretin in a concentration-dependent manner, suggesting that aquaporins are involved in U46619-induced 1321N1 cell swelling. In fact, U46619 caused [(3)H]H(2)O influx into the cells, which was inhibited by p115-RGS, C3 toxin, EIPA, mercury chloride and phloretin. This is the first report that the TXA(2) receptor mediates water influx through aquaporins in astrocytoma cells via TXA(2) receptor-mediated activation of G alpha(12/13), Rho A, Rho kinase and Na(+)/H(+)-exchanger.
Collapse
|
41
|
Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr Opin Nephrol Hypertens 2009; 17:491-8. [PMID: 18695390 DOI: 10.1097/mnh.0b013e3283094eb1] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights the role of phosphorylation in the trafficking and targeting of aquaporin 2. Current knowledge will be put into the context of modulating the cell surface expression of aquaporin 2 by vasopressin in renal epithelial cells, which is critical for regulation of urinary concentration and control of fluid and electrolyte homeostasis. RECENT FINDINGS In addition to previously identified phosphorylation sites on aquaporin 2, new data have revealed three other serine residues in the C-terminus whose phosphorylation is altered by vasopressin. Several steps in aquaporin 2 recycling, including exocytosis and endocytosis, are coordinated by phosphorylation and dephosphorylation to regulate cell surface accumulation. Aquaporin 2 phosphorylation on serine 256 regulates aquaporin 2 association with proteins that are involved in trafficking, including hsc/hsp70 and myelin and lymphocyte-associated protein. SUMMARY Aquaporin 2 trafficking is regulated by phosphorylation of serine 256 and other amino acid residues in its cytoplasmic domain. These events increase or decrease interaction of aquaporin 2 with key regulatory proteins to determine the cellular distribution and fate of aquaporin 2, both after vasopressin addition and under baseline conditions. Better understanding of these mechanisms may provide new therapeutic avenues for patients with X-linked nephrogenic diabetes insipidus, as well as providing basic cell biological information relevant to membrane trafficking processes in general.
Collapse
|
42
|
Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E. Regulation of aquaporin-2 trafficking. Handb Exp Pharmacol 2009:133-157. [PMID: 19096775 DOI: 10.1007/978-3-540-79885-9_6] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2. The identification of proteins and protein-protein interactions may lead to the development of drugs targeting AQP2 trafficking. Such drugs may be suitable for the treatment of diseases associated with dysregulation of body water homeostasis, including NDI or cardiovascular diseases (e.g., chronic heart failure) where the AVP level is elevated, inducing excessive water retention.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, 13125, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene 2008; 28:854-65. [PMID: 19029950 DOI: 10.1038/onc.2008.427] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The NF2 gene product, merlin/schwannomin, is a cytoskeleton organizer with unique growth-inhibiting activity in specific cell types. A narrow spectrum of tumors is associated with NF2 deficiency, mainly schwannomas and meningiomas, suggesting cell-specific mechanisms of growth control. We have investigated merlin function in mouse Schwann cells (SCs). We found that merlin regulates contact inhibition of proliferation by limiting the delivery of several growth factor receptors at the plasma membrane of primary SCs. Notably, upon cell-to-cell contact, merlin downregulates the membrane levels of ErbB2 and ErbB3, thus inhibiting the activity of the downstream mitogenic signaling pathways protein kinase B and mitogen-activated protein kinase. Consequently, loss of merlin activity is associated with elevated levels of ErbB receptors in primary SCs. We also observed accumulation of growth factor receptors such as ErbB2 and 3, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor in peripheral nerves of Nf2-mutant mice and in human NF2 schwannomas, suggesting that this mechanism could play an important role in tumorigenesis.
Collapse
|
44
|
Kleine-Vehn J, Langowski L, Wisniewska J, Dhonukshe P, Brewer PB, Friml J. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. MOLECULAR PLANT 2008; 1:1056-1066. [PMID: 19825603 DOI: 10.1093/mp/ssn062] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The polar, sub-cellular localization of PIN auxin efflux carriers determines the direction of intercellular auxin flow, thus defining the spatial aspect of auxin signalling. Dynamic, transcytosis-like relocalizations of PIN proteins occur in response to external and internal signals, integrating these signals into changes in auxin distribution. Here, we examine the cellular and molecular mechanisms of polar PIN delivery and transcytosis. The mechanisms of the ARF-GEF-dependent polar targeting and transcytosis are well conserved and show little variations among diverse Arabidopsis ecotypes consistent with their fundamental importance in regulating plant development. At the cellular level, we refine previous findings on the role of the actin cytoskeleton in apical and basal PIN targeting, and identify a previously unknown role for microtubules, specifically in basal targeting. PIN protein delivery to different sides of the cell is mediated by ARF-dependent trafficking with a previously unknown complex level of distinct ARF-GEF vesicle trafficking regulators. Our data suggest that alternative recruitment of PIN proteins by these distinct pathways can account for cell type- and cargo-specific aspects of polar targeting, as well as for polarity changes in response to different signals. The resulting dynamic PIN positioning to different sides of cells defines a three-dimensional pattern of auxin fluxes within plant tissues.
Collapse
Affiliation(s)
- Jürgen Kleine-Vehn
- Department of Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Tamma G, Procino G, Mola MG, Svelto M, Valenti G. Functional involvement of Annexin-2 in cAMP induced AQP2 trafficking. Pflugers Arch 2008; 456:729-36. [PMID: 18389276 DOI: 10.1007/s00424-008-0453-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/09/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
Annexin-2 is required for the apical transport in epithelial cells. In this study, we investigated the involvement of annexin-2 in cAMP-induced aquaporin-2 (AQP2) translocation to the apical membrane in renal cells. We found that the cAMP-elevating agent forskolin increased annexin-2 abundance in the plasma membrane enriched fraction with a parallel decrease in the soluble fraction. Interestingly, forskolin stimulation resulted in annexin-2 enrichment in lipid rafts, suggesting that hormonal stimulation might be responsible for a new configuration of membrane interacting proteins involved in the fusion of AQP2 vesicles to the apical plasma membrane. To investigate the functional involvement of annexin-2 in AQP2 exocytosis, the fusion process between purified AQP2 membrane vesicles and plasma membranes was reconstructed in vitro and monitored by a fluorescence assay. An N-terminal peptide that comprises 14 residues of annexin-2 and that includes the binding site for the calcium binding protein p11 strongly inhibited the fusion process. Preincubation of cells with this annexin-2 peptide also failed to increase the osmotic water permeability in the presence of forskolin in intact cells. Altogether, these data demonstrate that annexin-2 is required for cAMP-induced AQP2 exocytosis in renal cells.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, Bari, Italy
| | | | | | | | | |
Collapse
|
46
|
Abstract
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.
Collapse
|
47
|
Krishnan R, Eley L, Sayer JA. Urinary concentration defects and mechanisms underlying nephronophthisis. Kidney Blood Press Res 2008; 31:152-62. [PMID: 18460874 DOI: 10.1159/000129648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cystic kidney disease nephronophthisis (NPHP) is the commonest genetic cause of end-stage renal failure in young people and children. Histologically the disease is characterized by interstitial fibrosis, tubular atrophy with corticomedullary cyst development and disruption of the tubular basement membrane. Affected children present with polydipsia and polyuria, secondary to a urinary concentration defect, before these structural changes develop. Recently, molecular genetic advances have identified several genes mutated in NPHP, providing novel insights into its pathophysiology for the first time in decades. Here we review the normal physiological mechanisms of urinary concentration and explain, in the context of recent discoveries, the possible mechanisms underlying urinary concentration defects in patients with NPHP. The pattern of a ciliary and adherens junction subcellular localization of nephrocystin proteins is discussed. Recent animal models of cystic kidney disease and treatment with vasopressin V2 receptor antagonists are reviewed and a hypothesis regarding urinary concentration defects in NPHP is proposed. Understanding the cellular mechanisms underlying NPHP and other cystic kidney diseases will provide the rationale for therapeutic interventions in this disease. Early urinary concentration defects provide both a clue to clinical diagnosis of NPHP and potential therapeutic targets for pharmacological treatment of this condition.
Collapse
Affiliation(s)
- Rajesh Krishnan
- Royal Victoria Infirmary, International Centre for Life, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
48
|
Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 2008; 456:1005-24. [PMID: 18431594 PMCID: PMC2518081 DOI: 10.1007/s00424-008-0498-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 01/06/2023]
Abstract
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease.
Collapse
Affiliation(s)
- Michelle Boone
- Department of Physiology (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
49
|
O'Brien M, Flynn D, Mullins B, Morrison JJ, Smith TJ. Expression of RHOGTPase regulators in human myometrium. Reprod Biol Endocrinol 2008; 6:1. [PMID: 18190708 PMCID: PMC2254629 DOI: 10.1186/1477-7827-6-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/11/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND RHOGTPases play a significant role in modulating myometrial contractility in uterine smooth muscle. They are regulated by at least three families of proteins, RHO guanine nucleotide exchange factors (RHOGEFs), RHOGTPase-activating proteins (RHOGAPs) and RHO guanine nucleotide inhibitors (RHOGDIs). RHOGEFs activate RHOGTPases from the inactive GDP-bound to the active GTP-bound form. RHOGAPs deactivate RHOGTPases by accelerating the intrinsic GTPase activity of the RHOGTPases, converting them from the active to the inactive form. RHOGDIs bind to GDP-bound RHOGTPases and sequester them in the cytosol, thereby inhibiting their activity. Ezrin-Radixin-Moesin (ERM) proteins regulate the cortical actin cytoskeleton, and an ERM protein, moesin (MSN), is activated by and can also activate RHOGTPases. METHODS We therefore investigated the expression of various RHOGEFs, RHOGAPs, a RHOGDI and MSN in human myometrium, by semi-quantitative reverse transcription PCR, real-time fluorescence RT-PCR, western blotting and immunofluorescence microscopy. Expression of these molecules was also examined in myometrial smooth muscle cells. RESULTS ARHGEF1, ARHGEF11, ARHGEF12, ARHGAP5, ARHGAP24, ARHGDIA and MSN mRNA and protein expression was confirmed in human myometrium at term pregnancy, at labour and in the non-pregnant state. Furthermore, their expression was detected in myometrial smooth muscle cells. It was determined that ARHGAP24 mRNA expression significantly increased at labour in comparison to the non-labour state. CONCLUSION This study demonstrated for the first time the expression of the RHOGTPase regulators ARHGEF1, ARHGEF11, ARHGEF12, ARHGAP5, ARHGAP24, ARHGDIA and MSN in human myometrium, at term pregnancy, at labour, in the non-pregnant state and also in myometrial smooth muscle cells. ARHGAP24 mRNA expression significantly increased at labour in comparison to the non-labouring state. Further investigation of these molecules may enable us to further our knowledge of RHOGTPase regulation in human myometrium during pregnancy and labour.
Collapse
Affiliation(s)
- Margaret O'Brien
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - David Flynn
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Brian Mullins
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - John J Morrison
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
- Department of Obstetrics and Gynaecology, National University of Ireland Galway, Clinical Science Institute, University College Hospital Galway, Newcastle Road, Galway, Ireland
| | - Terry J Smith
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
50
|
Abstract
This chapter focuses on the contribution of proteomic analysis to the understanding of the process of exosome secretion and the mechanism and function of exosomes. It also describes the potential of exosome proteomic analysis to aid in the development of exosomes for therapeutic use.
Collapse
Affiliation(s)
- Christine Olver
- Clinical Pathology Section, Colorado State University, Ft. Collins, USA
| | | |
Collapse
|