1
|
Gu W, Fillebeen C, Pantopoulos K. Human IRP1 Translocates to the Nucleus in a Cell-Specific and Iron-Dependent Manner. Int J Mol Sci 2022; 23:ijms231810740. [PMID: 36142654 PMCID: PMC9502121 DOI: 10.3390/ijms231810740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Iron regulatory protein 1 (IRP1) is a bifunctional protein with mutually exclusive RNA-binding or enzymatic activities that depend on the presence of a 4Fe-4S cluster. While IRP1 is a well-established cytosolic protein, work in a Drosophila model suggested that it may also exhibit nuclear localization. Herein, we addressed whether mammalian IRP1 can likewise translocate to the nucleus. We utilized primary cells and tissues from wild type and Irp1−/− mice, as well as human cell lines and tissue biopsy sections. IRP1 subcellular localization was analyzed by Western blotting, immunofluorescence and immunohistochemistry. We did not detect presence of nuclear IRP1 in wild type mouse embryonic fibroblasts (MEFs), primary hepatocytes or whole mouse liver. However, we observed IRP1-positive nuclei in human liver but not ovary sections. Biochemical fractionation studies revealed presence of IRP1 in the nucleus of human Huh7 and HepG2 hepatoma cells, but not HeLa cervical cancer cells. Importantly, nuclear IRP1 was only evident in iron-replete cells and disappeared following pharmacological iron chelation. These data provide the first experimental evidence for nuclear IRP1 expression in mammals, which appears to be species- and cell-specific. Furthermore, they suggest that the nuclear translocation of IRP1 is mediated by an iron-dependent mechanism.
Collapse
Affiliation(s)
- Wen Gu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-340-8260 (ext. 25293)
| |
Collapse
|
2
|
Hernández-Gallardo AK, Missirlis F. Cellular iron sensing and regulation: Nuclear IRP1 extends a classic paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118705. [PMID: 32199885 DOI: 10.1016/j.bbamcr.2020.118705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
Abstract
The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.
Collapse
Affiliation(s)
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, CDMX, Mexico.
| |
Collapse
|
3
|
Huynh N, Ou Q, Cox P, Lill R, King-Jones K. Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET. Nat Commun 2019; 10:5463. [PMID: 31784520 PMCID: PMC6884552 DOI: 10.1038/s41467-019-13237-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements. Higher organisms regulate cellular iron concentrations through Iron Regulatory Proteins (IRPs), which regulate specific messenger RNAs. Here Huynh et al. show that IRP1 requires a Glycogen Branching Enzyme for proper function, and that IRP1 has additional regulatory roles in cell nuclei.
Collapse
Affiliation(s)
- Nhan Huynh
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Pendleton Cox
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg, Germany.,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
4
|
Lumsden AL, Rogers JT, Majd S, Newman M, Sutherland GT, Verdile G, Lardelli M. Dysregulation of Neuronal Iron Homeostasis as an Alternative Unifying Effect of Mutations Causing Familial Alzheimer's Disease. Front Neurosci 2018; 12:533. [PMID: 30150923 PMCID: PMC6099262 DOI: 10.3389/fnins.2018.00533] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
The overwhelming majority of dominant mutations causing early onset familial Alzheimer’s disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An effect-in-common of these mutations is alteration of production of the APP-derived peptide, amyloid β (Aβ). It is this key fact that underlies the authority of the Amyloid Hypothesis that has informed Alzheimer’s disease research for over two decades. Any challenge to this authority must offer an alternative explanation for the relationship between the PSEN genes and APP. In this paper, we explore one possible alternative relationship – the dysregulation of cellular iron homeostasis as a common effect of EOfAD mutations in these genes. This idea is attractive since it provides clear connections between EOfAD mutations and major characteristics of Alzheimer’s disease such as dysfunctional mitochondria, vascular risk factors/hypoxia, energy metabolism, and inflammation. We combine our ideas with observations by others to describe a “Stress Threshold Change of State” model of Alzheimer’s disease that may begin to explain the existence of both EOfAD and late onset sporadic (LOsAD) forms of the disease. Directing research to investigate the role of dysregulation of iron homeostasis in EOfAD may be a profitable way forward in our struggle to understand this form of dementia.
Collapse
Affiliation(s)
- Amanda L Lumsden
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Harvard University, Charlestown, MA, United States
| | - Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Morgan Newman
- Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Greg T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Michael Lardelli
- Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Geiser DL, Patel N, Patel P, Bhakta J, Velasquez LS, Winzerling JJ. Description of a Second Ferritin Light Chain Homologue From the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE 2017. [PMCID: PMC5751084 DOI: 10.1093/jisesa/iex096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ferritin is required for iron storage in vertebrates and for iron transport and storage in invertebrates, specifically insects. Classical ferritins consist of 24 subunits configured as a polyhedron wherein iron is held. The 24 subunits include light and heavy chains, each with specific functions. Several homologues of the light and heavy chains have been sequenced and studied in insects. In addition to iron transport and storage, ferritin has a role in dietary iron absorption, and functions as a protective agent preventing iron overload, decreasing oxidative stress, and reducing infection in these animals. The expression profile and regulation of a second ferritin light chain homologue (LCH2) in Aedes aegypti [Linnaeus (Diptera: Culicidae), yellow fever mosquito] was characterized in cells, animal developmental stages, and tissues post bloodmeal (PBM) by real-time PCR and immunoblot. Two previously studied ferritin subunits from Ae. aegypti, HCH and LCH1, along with LCH2 were immunoprecipitated and analyzed by mass spectrometry. The three Ae. aegypti ferritin subunits, HCH, LCH1, and LCH2, have different expression profiles and regulation with iron exposure, developmental stage, and tissue response PBM. Ae. aegypti expresses multiple and unique ferritin light chain subunits. Ae. aegypti, the vector for Zika, Dengue, and yellow fever, requires iron for oogenesis that is transported and stored in ferritin; this vector expresses a second light chain ferritin subunit homologue unlike any other species in which ferritin has been studied to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
- Corresponding author, e-mail:
| | - Naren Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Pritesh Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Janki Bhakta
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Lissette S Velasquez
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Geiser DL, Conley ZR, Elliott JL, Mayo JJ, Winzerling JJ. Characterization of Anopheles gambiae (African Malaria Mosquito) Ferritin and the Effect of Iron on Intracellular Localization in Mosquito Cells. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:68. [PMID: 26078302 PMCID: PMC4535588 DOI: 10.1093/jisesa/iev049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/13/2015] [Indexed: 05/13/2023]
Abstract
Ferritin is a 24-subunit molecule, made up of heavy chain (HC) and light chain (LC) subunits, which stores and controls the release of dietary iron in mammals, plants, and insects. In mosquitoes, dietary iron taken in a bloodmeal is stored inside ferritin. Our previous work has demonstrated the transport of dietary iron to the ovaries via ferritin during oogenesis. We evaluated the localization of ferritin subunits inside CCL-125 [Aedes aegypti Linnaeus (Diptera: Culicidae), yellow fever mosquito] and 4a3b [Anopheles gambiae Giles (Diptera: Culicidae), African malaria mosquito] cells under various iron treatment conditions to further elucidate the regulation of iron metabolism in these important disease vectors and to observe the dynamics of the intracellular ferritin subunits following iron administration. Deconvolution microscopy captured 3D fluorescent images of iron-treated mosquito cells to visualize the ferritin HC and LC homologue subunits (HCH and LCH, respectively) in multiple focal planes. Fluorescent probes were used to illuminate cell organelles (i.e., Golgi apparatus, lysosomes, and nuclei) while secondary probes for specific ferritin subunits demonstrated abundance and co-localization within organelles. These images will help to develop a model for the biochemical regulation of ferritin under conditions of iron exposure, and to advance novel hypotheses for the crucial role of iron in mosquito vectors.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, AZ, 85721, USA
| | - Zachary R Conley
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, AZ, 85721, USA
| | - Jamie L Elliott
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, AZ, 85721, USA
| | - Jonathan J Mayo
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, AZ, 85721, USA
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
7
|
Cadmium-induced aggregation of iron regulatory protein-1. Toxicology 2014; 324:108-15. [DOI: 10.1016/j.tox.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 06/10/2014] [Accepted: 08/03/2014] [Indexed: 11/18/2022]
|
8
|
Viñas-Castells R, Frías Á, Robles-Lanuza E, Zhang K, Longmore GD, García de Herreros A, Díaz VM. Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability. Nucleic Acids Res 2013; 42:1079-94. [PMID: 24157836 PMCID: PMC3902928 DOI: 10.1093/nar/gkt935] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases β-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1.
Collapse
Affiliation(s)
- Rosa Viñas-Castells
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Parc de Recerca Biomèdica de Barcelona, Doctor Aiguader, 88, E-08003, Barcelona, Spain, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain, BRIGHT Institute, Washington University, St. Louis, MO 63110 USA, Departments of Cell Biology and Physiology, Washington University, St. Louis, MO 63110 USA and Department of Medicine, Washington University, St. Louis, MO 63110 USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Geiser DL, Zhou G, Mayo JJ, Winzerling JJ. The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti. INSECT SCIENCE 2013; 20:601-19. [PMID: 23956079 PMCID: PMC4554699 DOI: 10.1111/j.1744-7917.2012.01581.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 05/02/2023]
Abstract
Secreted ferritin is the major iron storage and transport protein in insects. Here, we characterize the message and protein expression profiles of yellow fever mosquito (Aedes aegypti) ferritin heavy chain homologue (HCH) and light chain homologue (LCH) subunits in response to iron and bacterial challenge. In vivo experiments demonstrated tissue-specific regulation of HCH and LCH expression over time post-blood meal (PBM). Transcriptional regulation of HCH and LCH was treatment specific, with differences in regulation for naïve versus mosquitoes challenged with heat-killed bacteria (HKB). Translational regulation by iron regulatory protein (IRP) binding activity for the iron-responsive element (IRE) was tissue-specific and time-dependent PBM. However, mosquitoes challenged with HKB showed little change in IRP/IRE binding activity compared to naïve animals. The changes in ferritin regulation and expression in vivo were confirmed with in vitro studies. We challenged mosquitoes with HKB followed by a blood meal to determine the effects on ferritin expression, and demonstrate a synergistic, time-dependent regulation of expression for HCH and LCH.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona, 85721, USA
| | | | | | | |
Collapse
|
10
|
Wang Q, Lin Y, Zhang W, Liu M, Chen Y, Chen J, Luo W. Lead induces dysregulation of iron regulatory protein 1 via the extracellular signal-regulated kinase pathway in human vascular endothelial cells. Brain Res 2012; 1455:19-27. [PMID: 22502979 DOI: 10.1016/j.brainres.2012.03.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
Abstract
Lead (Pb) can target the vascular system for both acute injury and disease promotion. Cellular iron (Fe) disruption may be implicated in Pb vascular toxicity. To investigate the potential involvement of iron response element 1 (IRP1) protein in the vascular endothelium during Pb exposure, human umbilical vein endothelial cells (HUVEC) were treated with different concentrations of lead nitrate, 30 μM iron sulfate, or 100 μM deferoxamine. PD98059, a specific inhibitor of the mitogen-activated protein kinase kinase (MEK) activator, was administered to block the ERK/MAPK pathway. Western blotting was used to detect the expression of IRP1 and p-ERK1/2, and microscopy, and co-immunoprecipitation was used to show the association between IRP1 and p-ERK1/2. In vitro measurements revealed a decrease in IRP1 and activated ERK1/2 in the membrane following Pb treatment. HUVEC treated with PD98059 enhanced the levels of membrane IRP1 and efficiently inhibited the effect of Pb on the levels of membrane IRP1. Partial IRP1 co-localization existed with p-ERK1/2 in the membrane, and Pb treatment produced an obvious decrease in the amount of IRP1 that co-localized with p-ERK1/2. Co-immunoprecipitation further revealed a possible association between IRP-1 and p-ERK1/2. Collectively, Pb specifically induced the dysregulation of IRP1 protein by activating the ERK1/2 signaling pathway in the plasma membrane, indicating a novel role for IRP1 and the ERK/MAPK pathway in vascular endothelial functions.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
Collapse
|
12
|
Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med 2011; 50:645-66. [PMID: 21185934 DOI: 10.1016/j.freeradbiomed.2010.12.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 10/24/2022]
Abstract
Constituting an integral part of a heme's porphyrin ring, iron is essential for supplying cells and tissues with oxygen. Given tight links between oxygen delivery and iron availability, it is not surprising that iron deprivation and oxygen deprivation (hypoxia) have very similar consequences at the molecular level. Under hypoxia, the expression of major iron homeostasis genes including transferrin, transferrin receptor, ceruloplasmin, and heme oxygenase-1 is activated by hypoxia-inducible factors to provide increased iron availability for erythropoiesis in an attempt to enhance oxygen uptake and delivery to hypoxic cells. Iron-response proteins (IRP1 and IRP2) and "cap-n-collar" bZIP transcriptional factors (NE-F2 p45; Nrf1, 2, and 3; Bach1 and 2) also control gene and protein expression of the key iron homeostasis proteins. In this article, we give an overview of the mechanisms by which iron pathways are regulated by hypoxia at multiple levels. In addition, potential clinical benefits of manipulating iron pathways in the hypoxia-related conditions anemia and ischemia are discussed.
Collapse
|
13
|
Recalcati S, Minotti G, Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal 2010; 13:1593-616. [PMID: 20214491 DOI: 10.1089/ars.2009.2983] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Eukaryotic cells require iron for survival but, as an excess of poorly liganded iron can lead to the catalytic production of toxic radicals that can damage cell structures, regulatory mechanisms have been developed to maintain appropriate cell and body iron levels. The interactions of iron responsive elements (IREs) with iron regulatory proteins (IRPs) coordinately regulate the expression of the genes involved in iron uptake, use, storage, and export at the post-transcriptional level, and represent the main regulatory network controlling cell iron homeostasis. IRP1 and IRP2 are similar (but not identical) proteins with partially overlapping and complementary functions, and control cell iron metabolism by binding to IREs (i.e., conserved RNA stem-loops located in the untranslated regions of a dozen mRNAs directly or indirectly related to iron metabolism). The discovery of the presence of IREs in a number of other mRNAs has extended our knowledge of the influence of the IRE/IRP regulatory network to new metabolic pathways, and it has been recently learned that an increasing number of agents and physiopathological conditions impinge on the IRE/IRP system. This review focuses on recent findings concerning the IRP-mediated regulation of iron homeostasis, its alterations in disease, and new research directions to be explored in the near future.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Human Morphology and Biomedical Sciences Città Studi, University of Milan, Milano, Italy
| | | | | |
Collapse
|
14
|
Hao T, Ma HW, Zhao XM, Goryanin I. Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 2010; 11:393. [PMID: 20649990 PMCID: PMC2918583 DOI: 10.1186/1471-2105-11-393] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 07/22/2010] [Indexed: 12/23/2022] Open
Abstract
Background Direct in vivo investigation of human metabolism is complicated by the distinct metabolic functions of various sub-cellular organelles. Diverse micro-environments in different organelles may lead to distinct functions of the same protein and the use of different enzymes for the same metabolic reaction. To better understand the complexity in the human metabolism, a compartmentalized human metabolic network with integrated sub-cellular location information is required. Results We extended the previously reconstructed Edinburgh Human Metabolic Network (EHMN) [Ma, et al. Molecular Systems Biology, 3:135, 2007] by integrating the sub-cellular location information for the reactions, adding transport reactions and refining the protein-reaction relationships based on the location information. Firstly, protein location information was obtained from Gene Ontology and complemented by a Swiss-Prot location keywords search. Then all the reactions in EHMN were assigned to a location based on the protein-reaction relationships to get a preliminary compartmentalized network. We investigated the localized sub-networks in each pathway to identify gaps and isolated reactions by connectivity analysis and refined the location information based on information from literature. As a result, location information for hundreds of reactions was revised and hundreds of incorrect protein-reaction relationships were corrected. Over 1400 transport reactions were added to link the location specific metabolic network. To validate the network, we have done pathway analysis to examine the capability of the network to synthesize or degrade certain key metabolites. Compared with a previously published human metabolic network (Human Recon 1), our network contains over 1000 more reactions assigned to clear cellular compartments. Conclusions By combining protein location information, network connectivity analysis and manual literature search, we have reconstructed a more complete compartmentalized human metabolic network. The whole network is available at http://www.ehmn.bioinformatics.ed.ac.uk and free for academic use.
Collapse
Affiliation(s)
- Tong Hao
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | | | | | | |
Collapse
|
15
|
Qin Z, Reszka KJ, Fukai T, Weintraub NL. Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res 2008; 151:68-78. [PMID: 18201674 PMCID: PMC4230486 DOI: 10.1016/j.trsl.2007.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 12/29/2022]
Abstract
Extracellular superoxide dismutase (ecSOD) is the major extracellular scavenger of superoxide (O(2)(.-)) and a main regulator of nitric oxide (NO) bioactivity in the blood vessel wall, heart, lungs, kidney, and placenta. Involvement of O(2)(.-) has been implicated in many pathological processes, and removal of extracellular O(2)(.-) by ecSOD gene transfer has emerged as a promising experimental technique to treat vascular disorders associated with increased oxidant stress. In addition, recent studies have clarified mechanisms that regulate ecSOD expression, tissue binding, and activity, and they have provided new insight into how ecSOD interacts with other factors that regulate vascular function. Finally, studies of a common gene variant in humans associated with disruption of ecSOD tissue binding suggest that displacement of the enzyme from the blood vessel wall may contribute to vascular diseases. The purpose of this review is to summarize recent research findings related to ecSOD function and gene transfer and to stimulate other investigations into the role of this unique antioxidant enzyme in vascular pathophysiology and therapeutics.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Cardiovascular Disease, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | |
Collapse
|
16
|
Meguro R, Asano Y, Odagiri S, Li C, Shoumura K. Cellular and subcellular localizations of nonheme ferric and ferrous iron in the rat brain: a light and electron microscopic study by the perfusion-Perls and -Turnbull methods. ACTA ACUST UNITED AC 2008; 71:205-22. [DOI: 10.1679/aohc.71.205] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reiko Meguro
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
| | - Saori Odagiri
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
| | - Chengtai Li
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
| | - Kazuhiko Shoumura
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
| |
Collapse
|
17
|
Sammarco MC, Ditch S, Banerjee A, Grabczyk E. Ferritin L and H subunits are differentially regulated on a post-transcriptional level. J Biol Chem 2007; 283:4578-87. [PMID: 18160403 DOI: 10.1074/jbc.m703456200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ferritin plays an important role in the storage and release of iron, an element utilized in cellular processes such as respiration, gene regulation, and DNA replication and repair. Ferritin in animals is composed of 24 ferritin L (FTL) and ferritin H (FTH) subunits in ratios that vary in different cell types. Because the subunits are not functionally interchangeable, both L and H units are critical for maintaining iron homeostasis and protecting against iron overload. FTL and FTH are regulated primarily at a post-transcriptional level in response to cellular iron concentrations. Individual regulation of FTL and FTH is of much interest, and although transcriptional differences between FTL and FTH have been shown, differences in their post-transcriptional regulation have not been evaluated. We report here that FTL and FTH are differentially regulated in 1% oxygen on a post-transcriptional level. We have designed a quantitative assay system sensitive enough to detect differences between FTL and FTH iron regulatory elements (IREs) that a standard electrophoretic mobility shift assay does not. The FTL IRE is the primary responder in the presence of an iron donor in hypoxic conditions, and this response is reflected in endogenous FTL protein levels. These results provide evidence that FTL and FTH subunits respond independently to cellular iron concentrations and underscore the importance of evaluating FTL and FTH IREs separately.
Collapse
Affiliation(s)
- Mimi C Sammarco
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Iron is required for key cellular functions, and there is a strong link between iron metabolism and important metabolic processes, such as cell growth, apoptosis and inflammation. Diseases that are directly or indirectly related to iron metabolism represent major health problems. Iron-regulatory proteins (IRPs) 1 and 2 are key controllers of vertebrate iron metabolism and post-transcriptionally regulate expression of the major iron homeostasis genes. Here we discuss how dysregulation of the IRP system can result from both iron-related and unrelated effectors and explain how this can have important pathological consequences in several human disorders.
Collapse
Affiliation(s)
- Gaetano Cairo
- Institute of General Pathology, University of Milan School of Medicine, Milan, Italy.
| | | |
Collapse
|
19
|
Christova T, Templeton DM. Effect of hypoxia on the binding and subcellular distribution of iron regulatory proteins. Mol Cell Biochem 2007; 301:21-32. [PMID: 17200797 DOI: 10.1007/s11010-006-9393-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Iron regulatory proteins 1 and 2 (IRP1, IRP2) are key determinants of uptake and storage of iron by the liver, and are responsive to oxidative stress and hypoxia potentially at the level of both protein concentration and mRNA-binding activity. We examined the effect of hypoxia (1% O(2)) on IRP1 and IRP2 levels (Western blots) and mRNA-binding activity (gel shift assays) in human hepatoma HepG2 cells, and compared them with HEK 293 cells, a renal cell line known to respond to hypoxia. Total IRP binding to an iron responsive element (IRE) mRNA probe was increased several fold by hypoxia in HEK 293 cells, maximally at 4-8 h. An earlier and more modest increase (1.5- to 2-fold, peaking at 2 h and then declining) was seen in HepG2 cells. In both cell lines, IRP1 made a greater contribution to IRE-binding activity than IRP2. IRP1 protein levels were increased slightly by hypoxia in HEK 293 but not in HepG2 cells. IRP1 was distributed between cytosolic and membrane-bound fractions, and in both cells hypoxia increased both the amount and IRE-binding activity of the membrane-associated IRP1 fraction. Further density gradient fractionation of HepG2 membranes revealed that hypoxia caused an increase in total membrane IRP1, with a shift in the membrane-bound fraction from Golgi to an endoplasmic reticulum (ER)-enriched fraction. Translocation of IRP to the ER has previously been shown to stabilize transferrin receptor mRNA, thus increasing iron availability to the cell. Iron depletion with deferoxamine also caused an increase in ER-associated IRP1. Phorbol ester caused serine phosphorylation of IRP1 and increased its association with the ER. The calcium ionophore ionomycin likewise increased ER-associated IRP1, without affecting total IRE-binding activity. We conclude that IRP1 is translocated to the ER by multiple signals in HepG2 cells, including hypoxia, thereby facilitating its role in regulation of hepatic gene expression.
Collapse
Affiliation(s)
- Tania Christova
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
20
|
Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. Deposition of iron and beta-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J Neurochem 2006; 99:438-49. [PMID: 17029598 DOI: 10.1111/j.1471-4159.2006.04079.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hypercholesterolemia is a potential trigger of Alzheimer's disease, and is thought to increase brain levels of beta-amyloid (Abeta) and iron. However, animal models to address the mechanisms by which Abeta and iron accumulation may cause neuronal damage are poorly defined. To address this question, we fed adult rabbits a 1% cholesterol-enriched diet for 7 months. This diet was associated with increased regional deposition of both iron and Abeta peptide in the brain. Iron preferentially accumulated around Abeta plaques in the adjacent cortex, but was not found in the hippocampus. Co-localization of iron and Abeta was accompanied by apoptosis, DNA damage, blood-brain barrier (BBB) disruption, as well as dysregulation in the level of the iron-regulatory proteins, ferritin and heme-oxygenase-1. We further demonstrate that the cholesterol diet-induced apoptosis is mediated by the activation of the endoplasmic reticulum stress pathway, involving the down-regulation of the endoplasmic reticulum chaperones, calreticulin, grp78 and grp94, and the activation of the growth and arrest DNA damage protein, gadd153. Our results suggest that BBB damage and disturbances in iron metabolism may render the cortex more vulnerable than the hippocampus to the cholesterol-induced cellular stress.
Collapse
Affiliation(s)
- Othman Ghribi
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, 58202, USA.
| | | | | | | | | |
Collapse
|