1
|
Rerkamnuaychoke W, Sreevidya VS, Svoboda KR. Chloroxylenol and benzethonium chloride exposure alters spinal neuron development and behavior in developing zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:117993. [PMID: 40209347 DOI: 10.1016/j.ecoenv.2025.117993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/12/2025]
Abstract
Chloroxylenol (CHX) and benzethonium chloride (BEC) are replacement compounds being used after the ban (U.S. FDA) of triclosan and triclocarban in 2016 from personal care products. These two compounds are also recommended by the World Health Organization (WHO) as disinfectants against COVID-19. Toxicity data for both CHX and BEC are available, however, neurotoxicity studies for both compounds are still limited. Here, we determined the consequences of CHX and BEC exposure in a static exposure paradigm during embryogenesis on neurodevelopment using the zebrafish model (Danio rerio). CHX exposure (1-5 mg/L) dramatically impacted nervous system development without increasing mortality. The exposure altered embryonic motor output, primary motoneuron cell size, spinal interneuron cell size, primary motoneuron (PMN) axon pathfinding and secondary motoneuron (SMN) axon pathfinding. CHX exposure also altered slow muscle fiber development. Changes in neural activity as revealed by the induced changes in embryonic motor output (spontaneous coiling) may underlie the errors in PMN axon pathfinding as well as the changes in spinal interneuron morphology. Errors in SMN axon pathfinding resulting from CHX exposure were directly linked to errors in PMN axon pathfinding. Similar to CHX, BEC exposure (1-5 mg/L) altered embryonic motor output, spinal interneuron development, and slow muscle fiber development. In contrast to CHX, BEC exposure did not alter PMN or SMN axon pathfinding. Moreover, we found that BEC exposure (5 mg/L) from 5 to 96 hpf was lethal, resulting in almost 100 % mortality. Thus, these two triclosan replacement compounds exhibited markedly different modes of toxicity.
Collapse
Affiliation(s)
- Wuttiporn Rerkamnuaychoke
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Virinchipuram S Sreevidya
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
2
|
von Hellfeld R, Gade C, Leist M, Braunbeck T. Rearing conditions (isolated versus group rearing) affect rotenone-induced changes in the behavior of zebrafish (Danio rerio) embryos in the coiling assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55624-55635. [PMID: 39240433 DOI: 10.1007/s11356-024-34870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Under regulations such as REACH, testing of novel and established compounds for their (neuro)toxic potential is a legal requirement in many countries. These are largely based on animal-, cost-, and time-intensive in vivo models, not in line with the 3 Rs' principle of animal experimentation. Thus, the development of alternative test methods has also received increasing attention in neurotoxicology. Such methods focus either on physiological alterations in brain development and neuronal pathways or on behavioral changes. An example of a behavioral developmental neurotoxicity (DNT) assay is the zebrafish (Danio rerio) embryo coiling assay, which quantifies effects of compounds on the development of spontaneous movement of zebrafish embryos. While the importance of embryo-to-embryo contact prior to hatching in response to environmental contaminants or natural threats has been documented for many other clutch-laying fish species, little is known about the relevance of intra-clutch contacts for zebrafish. Here, the model neurotoxin rotenone was used to assess the effect of grouped versus separate rearing of the embryos on the expression of the coiling behavior. Some group-reared embryos reacted with hyperactivity to the exposure, to an extent that could not be recorded effectively with the utilized software. Separately reared embryos showed reduced activity, compared with group-reared individuals when assessing. However, even the control group embryos of the separately reared cohort showed reduced activity, compared with group-reared controls. Rotenone could thus be confirmed to induce neurotoxic effects in zebrafish embryos, yet modifying one parameter in an otherwise well-established neurotoxicity assay such as the coiling assay may lead to changes in behavior influenced by the proximity between individual embryos. This indicates a complex dependence of the outcome of behavior assays on a multitude of environmental parameters.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, 69120, Heidelberg, Germany.
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK.
| | - Christoph Gade
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, 69120, Heidelberg, Germany
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Constance, Germany
- CAAT Europe, University of Konstanz, 78457, Constance, Germany
| | - Thomas Braunbeck
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Lukowicz-Bedford RM, Eisen JS, Miller AC. Gap-junction-mediated bioelectric signaling required for slow muscle development and function in zebrafish. Curr Biol 2024; 34:3116-3132.e5. [PMID: 38936363 PMCID: PMC11265983 DOI: 10.1016/j.cub.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Bioelectric signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the connexins. The connexin gene family is large and complex, creating challenges in identifying specific connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for slow muscle development and function. Through mutant analysis and in vivo imaging, we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging, we find that spinal-cord-generated neural activity is transmitted to developing slow muscle cells, and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization and that disruption leads to defects in behavior. Our work reveals a molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role of GJ communication in coordinating bioelectric signaling during development.
Collapse
Affiliation(s)
| | - Judith S Eisen
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA
| | - Adam C Miller
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA.
| |
Collapse
|
4
|
Lukowicz-Bedford RM, Eisen JS, Miller AC. Gap junction mediated bioelectric coordination is required for slow muscle development, organization, and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572619. [PMID: 38187655 PMCID: PMC10769300 DOI: 10.1101/2023.12.20.572619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bioelectrical signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the Connexins. The connexin gene family is large and complex, presenting a challenge in identifying the specific Connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for appropriate slow muscle development and function. Through a combination of mutant analysis and in vivo imaging we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging we find that spinal cord generated neural activity is transmitted to developing slow muscle cells and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization, and that disruption leads to defects in behavior. Our work reveals the molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system_may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role played by GJ communication in coordinating bioelectric signaling during development.
Collapse
|
5
|
Bragato C, Pistocchi A, Bellipanni G, Confalonieri S, Balciunie J, Monastra FM, Carra S, Vitale G, Mantecca P, Cotelli F, Gaudenzi G. Zebrafish dnm1a gene plays a role in the formation of axons and synapses in the nervous tissue. J Neurosci Res 2023. [PMID: 37031448 DOI: 10.1002/jnr.25197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.
Collapse
Affiliation(s)
- Cinzia Bragato
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Jorune Balciunie
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Federica Maria Monastra
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Giovanni Vitale
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
6
|
Wang X, Shi X, Zheng S, Zhang Q, Peng J, Tan W, Wu K. Perfluorooctane sulfonic acid (PFOS) exposures interfere with behaviors and transcription of genes on nervous and muscle system in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157816. [PMID: 35931148 DOI: 10.1016/j.scitotenv.2022.157816] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) has been widely detected in environment and organisms. PFOS has been identified as the driving agent for the behavioral changes of zebrafish larvae, while the underlying molecular mechanism remains unclear. In this study, zebrafish embryos/larvae were exposed to 0, 0.04, 0.1, 0.4 and 1 μM PFOS for 166 h. The locomotor behaviors and the mRNA transcription of genes in neuromuscular system were detected. Exposure to PFOS did not affect the hatching/death rates and body length, but increased the heart beat rates and frequency of spontaneous tail coiling. Locomotor behavior in zebrafish larvae of 0.4 and 1 μM PFOS groups were increased in the light condition. Additionally, the levels of acetylcholine (Ach) in 0.4 μM PFOS group and dopamine (DA) in 0.1, 0.4 and 1 μM PFOS groups were found to be significantly increased. The expression of genes related to the synthesis and decomposition of ACh,the synthesis and receptor of DA, and fosab was increased in the different PFOS treatment groups, while the expression of all the other genes of the neuromuscular system were significantly reduced. The findings of this investigation demonstrated that PFOS exposure may alter the locomotor behavior of zebrafish through disrupting the expressions of genes in neuromuscular system. The disturbed process of neurotransmitter transmission and muscle contraction caused by PFOS may be the dominant mechanism of hyperactivity in zebrafish.
Collapse
Affiliation(s)
- Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China; Medical Record Statistics Office, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
7
|
Haigis AC, Ottermanns R, Schiwy A, Hollert H, Legradi J. Getting more out of the zebrafish light dark transition test. CHEMOSPHERE 2022; 295:133863. [PMID: 35124091 DOI: 10.1016/j.chemosphere.2022.133863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In (eco-)toxicological studies the light/dark transition (LDT) test is one of the most frequently used behaviour assays with zebrafish eleutheroembryos. However, study results vary regarding data presentation and analysis and mostly focus on a limited amount of the recorded data. In this study, we investigated whether monitoring two behavioural outcomes (time and distance moved) together with analysing multiple parameters can improve test sensitivity and data interpretation. As a proof of principle 5-day old zebrafish (Danio rerio) eleutheroembryos exposed to either endocrine disruptors (EDs) or acetylcholine esterase (AChE) inhibitors were investigated. We analysed conventional parameters such as mean and sum and implemented additional endpoints such as minimum or maximum distance moved and new parameters assessing the bursting response of eleutheroembryos. Furthermore, changes in eleutheroembryonic behaviour during the moment of the light to dark transition were added. To improve data presentation control-normalised results were displayed in radar charts, enabling the simultaneous presentation of different parameters in relation to each other. This enabled us to identify parameters most relevant to a certain behavioural response. A cut off threshold using control data was applied to identify parameters that were altered in a biological relevant manner. Our approach was able to detect effects on different parameters that remained undetected when analysis was done using conventional bar graphs on - in most cases analysed - averaged, mean distance moved values. By combining the radar charts with additional parameters and by using control-based thresholds, we were able to increase the test sensitivity and promote a deeper understanding of the behaviour response of zebrafish eleutheroembryos in the LDT test and thereby increased its usability for behavioural toxicity studies.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Richard Ottermanns
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| | - Andreas Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Jessica Legradi
- Environment & Health, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Casey MA, Hill JT, Hoshijima K, Bryan CD, Gribble SL, Brown JT, Chien CB, Yost HJ, Kwan KM. Shutdown corner, a large deletion mutant isolated from a haploid mutagenesis screen in zebrafish. G3 (BETHESDA, MD.) 2022; 12:jkab442. [PMID: 35079792 PMCID: PMC9210284 DOI: 10.1093/g3journal/jkab442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022]
Abstract
Morphogenesis, the formation of three-dimensional organ structures, requires precise coupling of genetic regulation and complex cell behaviors. The genetic networks governing many morphogenetic systems, including that of the embryonic eye, are poorly understood. In zebrafish, several forward genetic screens have sought to identify factors regulating eye development. These screens often look for eye defects at stages after the optic cup is formed and when retinal neurogenesis is under way. This approach can make it difficult to identify mutants specific for morphogenesis, as opposed to neurogenesis. To this end, we carried out a forward genetic, small-scale haploid mutagenesis screen in zebrafish (Danio rerio) to identify factors that govern optic cup morphogenesis. We screened ∼100 genomes and isolated shutdown corner (sco), a mutant that exhibits multiple tissue defects and harbors a ∼10-Mb deletion that encompasses 89 annotated genes. Using a combination of live imaging and antibody staining, we found cell proliferation, cell death, and tissue patterning defects in the sco optic cup. We also observed other phenotypes, including paralysis, neuromuscular defects, and ocular vasculature defects. To date, the largest deletion mutants reported in zebrafish are engineered using CRISPR-Cas9 and are less than 300 kb. Because of the number of genes within the deletion interval, shutdown corner [Df(Chr05:sco)z207] could be a useful resource to the zebrafish community, as it may be helpful for gene mapping, understanding genetic interactions, or studying many genes lost in the mutant.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chase D Bryan
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Suzanna L Gribble
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Thomas Brown
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Won EJ, Byeon E, Lee YH, Jeong H, Lee Y, Kim MS, Jo HW, Moon JK, Wang M, Lee JS, Shin KH. Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants. MARINE POLLUTION BULLETIN 2022; 175:113396. [PMID: 35149311 PMCID: PMC8824532 DOI: 10.1016/j.marpolbul.2022.113396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/06/2023]
Abstract
The increased use of disinfectants due to the spread of the novel coronavirus infection (e.g. COVID-19) has caused burden in the environment but knowledge on its ecotoxicological impact on the estuary environment is limited. Here we report in vivo and molecular endpoints that we used to assess the effects of chloroxylenol (PCMX) and benzalkonium chloride (BAC), which are ingredients in liquid handwash, dish soap products, and sanitizers used by consumers and healthcare workers on the estuarine rotifer Brachionus koreanus. PCMX and BAC significantly affected the life table parameters of B. koreanus. These chemicals modulated the activities of antioxidant enzymes such as superoxide dismutase and catalase and increased reactive oxygen species even at low concentrations. Also, PCMX and BAC caused alterations in the swimming speed and rotation rate of B. koreanus. Furthermore, an RNA-seq-based ingenuity pathway analysis showed that PCMX affected several signaling pathways, allowing us to predict that a low concentration of PCMX will have deleterious effects on B. koreanus. The neurotoxic and mitochondrial dysfunction event scenario induced by PCMX reflects the underlying molecular mechanisms by which PCMX produces outcomes deleterious to aquatic organisms.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, South Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyeong-Wook Jo
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, South Korea
| | - Joon-Kwan Moon
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, South Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
10
|
Christou M, Fraser TWK, Berg V, Ropstad E, Kamstra JH. Calcium signaling as a possible mechanism behind increased locomotor response in zebrafish larvae exposed to a human relevant persistent organic pollutant mixture or PFOS. ENVIRONMENTAL RESEARCH 2020; 187:109702. [PMID: 32474314 DOI: 10.1016/j.envres.2020.109702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 μM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.
Collapse
Affiliation(s)
- Maria Christou
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway.
| | - Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Vidar Berg
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584, CM Utrecht, the Netherlands
| |
Collapse
|
11
|
He W, Su Y, Peng HB, Tong P. Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Mol Biol Cell 2020; 31:1380-1391. [PMID: 32348189 PMCID: PMC7353135 DOI: 10.1091/mbc.e19-08-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have carried out a comparative study of the lateral motion of ganglioside GM1, which is a glycosphingolipid residing on the outer leaflet of the plasma membrane, and acetylcholine receptor (AChR), which is a well-characterized ion channel. Both the lipid molecules and the transmembrane proteins reside on the plasma membranes of live Xenopus muscle cells. From a thorough analysis of a large volume of individual molecular trajectories obtained from more than 300 live cells over a wide range of sampling rates and long durations, we find that the GM1s and AChRs share the same dynamic heterogeneity and non-Gaussian statistics. Our measurements with the ATP-depleted cells reveal that the diffusion dynamics of the GM1s and AChRs is uniformly affected by the intracellular ATP level of the living muscle cells, further demonstrating that membrane diffusion is strongly coupled to the dynamics of the underlying cortical actin network, as predicted by the dynamic picket-fence model.
Collapse
Affiliation(s)
- Wei He
- Nano Science and Technology Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yun Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - H Benjamin Peng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
12
|
Han E, Ho Oh K, Park S, Chan Rah Y, Park HC, Koun S, Choi J. Analysis of behavioral changes in zebrafish (Danio rerio) larvae caused by aminoglycoside-induced damage to the lateral line and muscles. Neurotoxicology 2020; 78:134-142. [PMID: 32169463 DOI: 10.1016/j.neuro.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Zebrafish behavior is influenced by the lateral line hair cells and muscles. Drug-induced behavioral changes can serve as indicators in the evaluation of drug toxicity. The aminoglycoside family of antibiotics comprise a number of agents, including neomycin (NM) and gentamicin (GM). We hypothesized that NM and GM exert different effects on zebrafish larvae through their action on the lateral line and muscle fibers, inducing different swimming behavioral patterns such as locomotor behavior and the startle response. In this study, 125 μM NM and 5, 10, 20 μM GM induced hair cell damage in the anterior and posterior lateral lines of zebrafish larvae. However, unlike GM, 125 μM NM also caused muscle damage. Locomotor behavior was decreased in the 125 μM NM-exposed group compared to the group exposed to GM. Furthermore, 125 μM NM exposure induced significantly different patterns of various indices of startle behavior compared with the GM exposure groups. Additionally, the larvae exhibited different startle responses depending on the concentration of GM. These results suggest that GM may be the drug-of-choice for analyzing behavioral changes in zebrafish caused by damage to the lateral line alone. Our study highlights the importance of confirming muscle damage in behavioral analyses using zebrafish.
Collapse
Affiliation(s)
- Eunjung Han
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| |
Collapse
|
13
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
14
|
Arribat Y, Grepper D, Lagarrigue S, Richard J, Gachet M, Gut P, Amati F. Mitochondria in Embryogenesis: An Organellogenesis Perspective. Front Cell Dev Biol 2019; 7:282. [PMID: 31824944 PMCID: PMC6883342 DOI: 10.3389/fcell.2019.00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Organogenesis is well characterized in vertebrates. However, the anatomical and functional development of intracellular compartments during this phase of development remains unknown. Taking an organellogenesis point of view, we characterize the spatiotemporal adaptations of the mitochondrial network during zebrafish embryogenesis. Using state of the art microscopy approaches, we find that mitochondrial network follows three distinct distribution patterns during embryonic development. Despite of this constant morphological change of the mitochondrial network, electron transport chain supercomplexes occur at early stages of embryonic development and conserve a stable organization throughout development. The remodeling of the mitochondrial network and the conservation of its structural components go hand-in-hand with somite maturation; for example, genetic disruption of myoblast fusion impairs mitochondrial network maturation. Reciprocally, mitochondria quality represents a key factor to determine embryonic progression. Alteration of mitochondrial polarization and electron transport chain halts embryonic development in a reversible manner suggesting developmental checkpoints that depend on mitochondrial integrity. Our findings establish the subtle dialogue and co-dependence between organogenesis and mitochondria in early vertebrate development. They also suggest the importance of adopting subcellular perspectives to understand organelle-organ communications during embryogenesis.
Collapse
Affiliation(s)
- Yoan Arribat
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Joy Richard
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Mélanie Gachet
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Philipp Gut
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Chagovetz AA, Klatt Shaw D, Ritchie E, Hoshijima K, Grunwald DJ. Interactions among ryanodine receptor isotypes contribute to muscle fiber type development and function. Dis Model Mech 2019; 13:dmm.038844. [PMID: 31383689 PMCID: PMC6906632 DOI: 10.1242/dmm.038844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations affecting ryanodine receptor (RyR) calcium release channels commonly underlie congenital myopathies. Although these channels are known principally for their essential roles in muscle contractility, mutations in the human RYR1 gene result in a broad spectrum of phenotypes, including muscle weakness, altered proportions of fiber types, anomalous muscle fibers with cores or centrally placed nuclei, and dysmorphic craniofacial features. Currently, it is unknown which phenotypes directly reflect requirements for RyRs and which result secondarily to aberrant muscle function. To identify biological processes requiring RyR function, skeletal muscle development was analyzed in zebrafish embryos harboring protein-null mutations. RyR channels contribute to both muscle fiber development and function. Loss of some RyRs had modest effects, altering muscle fiber-type specification in the embryo without compromising viability. In addition, each RyR-encoding gene contributed to normal swimming behavior and muscle function. The RyR channels do not function in a simple additive manner. For example, although isoform RyR1a is sufficient for muscle contraction in the absence of RyR1b, RyR1a normally attenuates the activity of the co-expressed RyR1b channel in slow muscle. RyR3 also acts to modify the functions of other RyR channels. Furthermore, diminished RyR-dependent contractility affects both muscle fiber maturation and craniofacial development. These findings help to explain some of the heterogeneity of phenotypes that accompany RyR1 mutations in humans.
Collapse
Affiliation(s)
- Alexis A Chagovetz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin Ritchie
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
The glutathione degrading enzyme, Chac1, is required for calcium signaling in developing zebrafish: redox as an upstream activator of calcium. Biochem J 2019; 476:1857-1873. [PMID: 31189567 DOI: 10.1042/bcj20190077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
Calcium signaling is essential for embryonic development but the signals upstream of calcium are only partially understood. Here, we investigate the role of the intracellular glutathione redox potential in calcium signaling using the Chac1 protein of zebrafish. A member of the γ-glutamylcyclotransferase family of enzymes, the zebrafish Chac1 is a glutathione-degrading enzyme that acts only on reduced glutathione. The zebrafish chac1 expression was seen early in development, and in the latter stages, in the developing muscles, brain and heart. The chac1 knockdown was embryonic lethal, and the developmental defects were seen primarily in the myotome, brain and heart where chac1 was maximally expressed. The phenotypes could be rescued by the WT Chac1 but not by the catalytically inactive Chac1 that was incapable of degrading glutathione. The ability of chac1 to alter the intracellular glutathione redox potential in the live animals was examined using Grx1-roGFP2. The chac1 morphants lacked the increased degree of cellular oxidation seen in the WT zebrafish. As calcium is also known to be critical for the developing myotomes, brain and heart, we further investigated if the chac1 knockdown phenotypes were a consequence of the lack of calcium signals. We observed using GCaMP6s, that calcium transients normally seen in the developing embryos were strongly attenuated in these knockdowns. The study thus identifies Chac1 and the consequent change in intracellular glutathione redox potential as important upstream activators of calcium signaling during development.
Collapse
|
17
|
Tsai JN, Sun CY, Ding YJ, Wang YH, Lo KC, Wen CC, Lin JW, Chang CF, Hsu LS, Chen HM, Fong TH, Chen YH. Embryonic exposure to 4-methylimidazole leads to zebrafish myofibril misalignment. ENVIRONMENTAL TOXICOLOGY 2018; 33:1321-1328. [PMID: 30259639 DOI: 10.1002/tox.22640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
4-methylimidazole (4-MI) is an imidazole-derived organic chemical compound that can be used as a raw material in the manufacture of diverse chemicals and has been identified as an ingredient of caramel color in soybean sauce, beers, and other soft drinks. The aim of the present study was to investigate the teratogenic effects of 4-MI during zebrafish embryogenesis. Zebrafish embryos were treated with different dosages of 4-MI (0-120 mM) for different exposure durations (12-60 hours). The percentages of embryos with malformed phenotypes increased as the exposure dosages and duration time of 4-MI increased. We also used immunofluorescence and transmission microscopy to evaluate the subtle changes in the myofibril alignment and ultrastructure of muscle organization. Our data showed that 4-MI treatment disturbs muscle fiber alignment. Electron microscopy data indicated that Z-lines were undetectable in the 4-MI-treated embryos. Although the thick and thin filaments were visible, they were all disorganized. In addition, zebrafish embryos treated by 4-MI exhibited aberrant expression of 2 muscle-specific genes, myod and myogenin. Taken together, we concluded that early exposure to 4-MI affects zebrafish myogenesis, especially in myofibril alignment.
Collapse
Affiliation(s)
- Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Ju Ding
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Kang-Chieh Lo
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Chi-Chung Wen
- Department of Mathematics, Tamkang University, Tamsui, New Taipei City, Taiwan
| | - Jia-Wei Lin
- Department of Chemical and Materials Engineering, Tamkang University, Taiwan
| | - Chiung-Fang Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Li-Sung Hsu
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Min Chen
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| |
Collapse
|
18
|
Kelu JJ, Webb SE, Galione A, Miller AL. Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Dev Biol 2018; 445:211-225. [PMID: 30447180 DOI: 10.1016/j.ydbio.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
We recently demonstrated the requirement of two-pore channel type 2 (TPC2)-mediated Ca2+ release during slow muscle cell differentiation and motor circuit maturation in intact zebrafish embryos. However, the upstream trigger(s) of TPC2/Ca2+ signaling during these developmental processes remains unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing messenger, which is suggested to target TPC2 in mediating the release of Ca2+ from acidic vesicles. Here, we report the molecular cloning of the zebrafish ADP ribosyl cyclase (ARC) homolog (i.e., ARC1-like), which is a putative enzyme for generating NAADP. We characterized the expression of the arc1-like transcript and the NAADP levels between ~ 16 h post-fertilization (hpf) and ~ 48 hpf in whole zebrafish embryos. We showed that if ARC1-like (when fused with either EGFP or tdTomato) was overexpressed it localized in the plasma membrane, and associated with intracellular organelles, such as the acidic vesicles, Golgi complex and sarcoplasmic reticulum, in primary muscle cell cultures. Morpholino (MO)-mediated knockdown of arc1-like or pharmacological inhibition of ARC1-like (via treatment with nicotinamide), led to an attenuation of Ca2+ signaling and disruption of slow muscle cell development. In addition, the injection of arc1-like mRNA into ARC1-like morphants partially rescued the Ca2+ signals and slow muscle cell development. Together, our data might suggest a link between ARC1-like, NAADP, TPC2 and Ca2+ signaling during zebrafish myogenesis.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
19
|
Xu QH, Guan P, Zhang T, Lu C, Li G, Liu JX. Silver nanoparticles impair zebrafish skeletal and cardiac myofibrillogenesis and sarcomere formation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:102-113. [PMID: 29729476 DOI: 10.1016/j.aquatox.2018.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Metal nanoparticles from industries contaminate the environment and affect the normal development of fish even human health. However, little is known about their biological effects on fish embryogenesis and the potential mechanisms. In this study, zebrafish embryos exposed to/injected with silver nanopaticles (AgNPs) exhibited shorter body, reduced heartbeats, and dysfunctional movements. Less, loose, and unassembled myofibrils were observed in AgNPs-treated embryos, and genes in myofibrillogenesis and sarcomere formation were found to be down-regulated in treated embryos. Down-regulated calcium (Ca2+) signaling and loci-specific DNA methylation in specific muscle genes, such as bves, shroom1, and arpc1a, occurred in AgNPs-treated embryos, which might result in the down-regulated expression of myofibrillogenesis genes and muscle dysfunctions in the treated embryos. Our results for the first time reveal that through down-regulating Ca2+ signaling and myogenic loci-specific DNA methylation in zebrafish embryos, AgNPs might induce defects of myofibril assembly and sarcomere formation via their particles mostly, which may subsequently cause heartbeat reduction and behavior dysfunctions.
Collapse
Affiliation(s)
- Qin-Han Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chang Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
20
|
Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells. Dev Cell 2018; 45:33-52.e12. [PMID: 29634935 DOI: 10.1016/j.devcel.2018.02.015] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/05/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.
Collapse
|
21
|
Kelu JJ, Webb SE, Galione A, Miller AL. TPC2-mediated Ca 2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Dev Biol 2018; 438:57-68. [PMID: 29577882 DOI: 10.1016/j.ydbio.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
During the development of the early spinal circuitry in zebrafish, spontaneous Ca2+ transients in the primary motor neurons (PMNs) are reported to transform from being slow and uncorrelated, to being rapid, synchronized and patterned. In this study, we demonstrated that in intact zebrafish, Ca2+ release via two-pore channel type 2 (TPC2) from acidic stores/endolysosomes is required for the establishment of synchronized activity in the PMNs. Using the SAIGFF213A;UAS:GCaMP7a double-transgenic zebrafish line, Ca2+ transients were visualized in the caudal PMNs (CaPs). TPC2 inhibition via molecular, genetic or pharmacological means attenuated the CaP Ca2+ transients, and decreased the normal ipsilateral correlation and contralateral anti-correlation, indicating a disruption in normal spinal circuitry maturation. Furthermore, treatment with MS-222 resulted in a complete (but reversible) inhibition of the CaP Ca2+ transients, as well as a significant decrease in the concentration of the Ca2+ mobilizing messenger, nicotinic acid adenine diphosphate (NAADP) in whole embryo extract. Together, our new data suggest a novel function for NAADP/TPC2-mediated Ca2+ signaling in the development, coordination, and maturation of the spinal network in zebrafish embryos.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
22
|
Hříbková H, Grabiec M, Klemová D, Slaninová I, Sun YM. Five steps to form neural rosettes: structure and function. J Cell Sci 2018; 131:jcs.206896. [DOI: 10.1242/jcs.206896] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022] Open
Abstract
Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of 5 types of cell movements: intercalation, constriction, polarization, elongation, and lumen formation. Ca2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, ACTIN, MYOSIN II, and TUBULIN during intercalation, constriction, and elongation. These in turn control the polarizing elements, ZO-1, PARD3, and β-CATENIN during polarization and lumen formation in neural rosette formation. We further demonstrated that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promoted neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development.
Collapse
Affiliation(s)
- Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marta Grabiec
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dobromila Klemová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yuh-Man Sun
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Kelu JJ, Webb SE, Parrington J, Galione A, Miller AL. Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Dev Biol 2017; 425:109-129. [PMID: 28390800 DOI: 10.1016/j.ydbio.2017.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/14/2023]
Abstract
We recently demonstrated a critical role for two-pore channel type 2 (TPC2)-mediated Ca2+ release during the differentiation of slow (skeletal) muscle cells (SMC) in intact zebrafish embryos, via the introduction of a translational-blocking morpholino antisense oligonucleotide (MO). Here, we extend our study and demonstrate that knockdown of TPC2 with a non-overlapping splice-blocking MO, knockout of TPC2 (via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing), or the pharmacological inhibition of TPC2 action with bafilomycin A1 or trans-ned-19, also lead to a significant attenuation of SMC differentiation, characterized by a disruption of SMC myofibrillogenesis and gross morphological changes in the trunk musculature. When the morphants were injected with tpcn2-mRNA or were treated with IP3/BM or caffeine (agonists of the inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR), respectively), many aspects of myofibrillogenesis and myotomal patterning (and in the case of the pharmacological treatments, the Ca2+ signals generated in the SMCs), were rescued. STED super-resolution microscopy revealed a close physical relationship between clusters of RyR in the terminal cisternae of the sarcoplasmic reticulum (SR), and TPC2 in lysosomes, with a mean estimated separation of ~52-87nm. Our data therefore add to the increasing body of evidence, which indicate that localized Ca2+ release via TPC2 might trigger the generation of more global Ca2+ release from the SR via Ca2+-induced Ca2+ release.
Collapse
MESH Headings
- Animals
- Base Sequence
- Behavior, Animal/drug effects
- Body Patterning/drug effects
- CRISPR-Cas Systems/genetics
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cell Death/drug effects
- Cells, Cultured
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Gene Knockdown Techniques
- Gene Knockout Techniques
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinesins/metabolism
- Macrolides/pharmacology
- Models, Biological
- Morpholinos/pharmacology
- Motor Activity/drug effects
- Muscle Cells/cytology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Development/drug effects
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcomeres/drug effects
- Sarcomeres/metabolism
- Zebrafish/embryology
- Zebrafish/metabolism
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China; Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
24
|
|
25
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
26
|
Sun Y, Huang Y, Hu G, Zhang X, Ruan Z, Zhao X, Guo C, Tang Z, Li X, You X, Lin H, Zhang Y, Shi Q. Comparative Transcriptomic Study of Muscle Provides New Insights into the Growth Superiority of a Novel Grouper Hybrid. PLoS One 2016; 11:e0168802. [PMID: 28005961 PMCID: PMC5179234 DOI: 10.1371/journal.pone.0168802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Grouper (Epinephelus spp.) is a group of fish species with great economic importance in Asian countries. A novel hybrid grouper, generated by us and called the Hulong grouper (Hyb), has better growth performance than its parents, E. fuscoguttatus (Efu, ♀) and E. lanceolatus (Ela, ♂). We previously reported that the GH/IGF (growth hormone/insulin-like growth factor) system in the brain and liver contributed to the superior growth of the Hyb. In this study, using transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR), we analyzed RNA expression levels of comprehensive genes in the muscle of the hybrid and its parents. Our data showed that genes involved in glycolysis and calcium signaling in addition to troponins are up-regulated in the Hyb. The results suggested that the activity of the upstream GH/IGF system in the brain and liver, along with the up-regulated glycolytic genes as well as ryanodine receptors (RyRs) and troponins related to the calcium signaling pathway in muscle, led to enhanced growth in the hybrid grouper. Muscle contraction inducing growth could be the major contributor to the growth superiority in our novel hybrid grouper, which may be a common mechanism for hybrid superiority in fishes.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Guojun Hu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Chuanyu Guo
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Zhujing Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (Hl); (YZ); (QS)
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (Hl); (YZ); (QS)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
- Center for Marine Research, School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- * E-mail: (Hl); (YZ); (QS)
| |
Collapse
|
27
|
Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow. Gene 2016; 594:229-237. [PMID: 27613141 DOI: 10.1016/j.gene.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023]
Abstract
Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting.
Collapse
|
28
|
Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int J Mol Sci 2016; 17:E1941. [PMID: 27869769 PMCID: PMC5133936 DOI: 10.3390/ijms17111941] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Anna Lewicka
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Krzysztof Jagla
- GReD-Genetics, Reproduction and Development Laboratory, INSERM U1103, CNRS UMR6293, University of Clermont-Auvergne, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
29
|
Kelu JJ, Chan HLH, Webb SE, Cheng AHH, Ruas M, Parrington J, Galione A, Miller AL. Two-Pore Channel 2 activity is required for slow muscle cell-generated Ca(2+) signaling during myogenesis in intact zebrafish. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2016; 59:313-25. [PMID: 26679948 DOI: 10.1387/ijdb.150206am] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have recently characterized essential inositol 1,4,5-trisphosphate receptor (IP 3R) and ryanodine receptor (RyR)-mediated Ca(2+) signals generated during the differentiation of slow muscle cells (SMCs) in intact zebrafish embryos. Here, we show that the lysosomal two-pore channel 2 (TPC2) also plays a crucial role in generating, and perhaps triggering, these essential Ca(2+) signals, and thus contributes to the regulation of skeletal muscle myogenesis. We used a transgenic line of zebrafish that expresses the bioluminescent Ca(2+) reporter, aequorin, specifically in skeletal muscle, in conjunction with morpholino (MO)-based and pharmacological inhibition of TPC2, in both intact embryos and isolated SMCs. MO-based knock-down of TPC2 resulted in a dramatic attenuation of the Ca(2+) signals, whereas the introduction of TPCN2-MO and TPCN2 mRNA together partially rescued the Ca(2+) signaling signature. Embryos treated with trans-ned-19 or bafilomycin A1, a specific NAADP receptor inhibitor and vacuolar-type H(+)ATPase inhibitor, respectively, also displayed a similar disruption of SMC Ca(2+) signaling. TPC2 and lysosomes were shown via immunohistochemistry and confocal laser scanning microscopy to be localized in perinuclear and striated cytoplasmic domains of SMCs, coincident with patterns of IP 3R and RyR expression. These data together imply that TPC2-mediated Ca(2+) release from lysosomes acts upstream from RyR- and IP 3R-mediated Ca(2+) release, suggesting that the former might act as a sensitive trigger to initiate the SR-mediated Ca(2+)-induced-Ca(2+)-release essential for SMC myogenesis and function.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PRC
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li VWT, Tsui MPM, Chen X, Hui MNY, Jin L, Lam RHW, Yu RMK, Murphy MB, Cheng J, Lam PKS, Cheng SH. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8275-8285. [PMID: 26888529 DOI: 10.1007/s11356-016-6180-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects.
Collapse
Affiliation(s)
- Vincent Wai Tsun Li
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Mei Po Mirabelle Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Xueping Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Michelle Nga Yu Hui
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Ling Jin
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Raymond H W Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Margaret B Murphy
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Jinping Cheng
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Paul Kwan Sing Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Shuk Han Cheng
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China.
- Department of Biomedical Science, City University of Hong Kong, 83 Tat Chee Avenue SAR, Hong Kong, China.
| |
Collapse
|
31
|
Mazelet L, Parker MO, Li M, Arner A, Ashworth R. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle. Front Physiol 2016; 7:91. [PMID: 27065876 PMCID: PMC4814503 DOI: 10.3389/fphys.2016.00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 01/13/2023] Open
Abstract
Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1 (ts25) ) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric position, capping the actin pointed ends and ultimately regulating actin length. This study demonstrates that both contraction and contractile-independent mechanisms are important for the regulation of myofibril organization, which in turn is necessary for establishing proper skeletal muscle structure and function during development in vivo in zebrafish.
Collapse
Affiliation(s)
- Lise Mazelet
- School of Biological and Chemical Sciences, Queen Mary, University of London London, UK
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth Portsmouth, UK
| | - Mei Li
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Rachel Ashworth
- The Blizard Institute/Institute of Health Sciences Education, Barts and The London School of Medicine and Dentistry London, UK
| |
Collapse
|
32
|
Cheng H, Ellis J, Kleinow KM. Expression and functionality of transient receptor potential melastatin 4 (TRPM4)-like channels during development of the zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:33-44. [PMID: 26432160 DOI: 10.1016/j.cbpc.2015.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 11/28/2022]
Abstract
Calcium signaling, from localized spikes to coordinated waves, are linked to cleavage, patterning, differentiation, and growth during embryonic development. The basis for control of these Ca(2+) signals is poorly defined. In this study, the expression and functionality of the transient receptor potential melastatin 4 protein (TRPM4), an ion channel that controls Ca(2+) entry into cells, was examined in the zebrafish embryo and adult. Originating with the human TRPM4 gene, Ensembl ortholog, NCBI BLAST, and Homologene searches identified a zebrafish TRPM4 "like" gene encoding a predicted protein of 1199 amino acids and sharing a 42-43% sequence identity with the mouse, rat, and human. Custom-designed zebrafish primers identified TRPM4 transcripts throughout the 0-123h period of embryonic development with greatest and lowest relative expression at 12 and 123h post-fertilization, respectively. Perforated patch clamp recordings in 27h embryonic cells revealed Ca(2+)-activated currents with the characteristics of those described for mammalian TRPM4. Similarly, TRPM4-like expression and functionality was observed in brain and liver cells from adult fish. These findings suggest that a TRPM4-like channel is available for Ca(2+) regulation during early development of the zebrafish.
Collapse
Affiliation(s)
- Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jayne Ellis
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kevin M Kleinow
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
33
|
Sun J, Pan C, Chew T, Liang F, Burmeister M, Low B. BNIP-H Recruits the Cholinergic Machinery to Neurite Terminals to Promote Acetylcholine Signaling and Neuritogenesis. Dev Cell 2015; 34:555-68. [DOI: 10.1016/j.devcel.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/13/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022]
|
34
|
Ferrari L, Pistocchi A, Libera L, Boari N, Mortini P, Bellipanni G, Giordano A, Cotelli F, Riva P. FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation. Oncotarget 2015; 5:5712-24. [PMID: 25071022 PMCID: PMC4170636 DOI: 10.18632/oncotarget.2145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset.
Collapse
Affiliation(s)
- Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy; These authors contribute equally in this study
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy; Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26 20133 Milan, Italy; These authors contribute equally in this study
| | - Laura Libera
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy
| | - Nicola Boari
- Dipartimento di Neurochirurgia, Università Vita-Salute IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Pietro Mortini
- Dipartimento di Neurochirurgia, Università Vita-Salute IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA; Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA; Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26 20133 Milan, Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy
| |
Collapse
|
35
|
Menelaou E, Paul LT, Perera SN, Svoboda KR. Motoneuron axon pathfinding errors in zebrafish: differential effects related to concentration and timing of nicotine exposure. Toxicol Appl Pharmacol 2015; 284:65-78. [PMID: 25668718 PMCID: PMC4567840 DOI: 10.1016/j.taap.2015.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15-30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Latoya T Paul
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Surangi N Perera
- Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
36
|
Wu HJ, Fong TH, Chen SL, Wei JC, Wang IJ, Wen CC, Chang CY, Chen XG, Chen WY, Chen HM, Horng JL, Wang YH, Chen YH. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment. J Appl Toxicol 2014; 35:287-94. [PMID: 25186829 DOI: 10.1002/jat.3057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023]
Abstract
The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment.
Collapse
Affiliation(s)
- Hsin-Ju Wu
- Department of Chemistry, Tamkang University, No. 151, Ying-chuan Road, Tamsui, New Taipei City, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Buchanan-Kilbey G, Djumpah J, Papadopoulou MV, Bloomer W, Hu L, Wilkinson SR, Ashworth R. Evaluating the developmental toxicity of trypanocidal nitroaromatic compounds on zebrafish. Acta Trop 2013; 128:701-5. [PMID: 23916507 DOI: 10.1016/j.actatropica.2013.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/08/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Current therapies against African and American trypanosomiasis are problematic and with no immediate prospect of a vaccine there is an urgent need for cheap, more effective treatments. To aid the drug discovery pipeline, we report a novel in vivo screening approach using zebrafish (Danio rerio) embryos as a means of rapidly assessing a compounds developmental toxicity. This technique, amenable to high-throughput screening, was validated using several trypanocidal nitroaromatic prodrugs including nifurtimox and benznidazole.
Collapse
|
38
|
Characterization of Ca(2+) signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1641-56. [PMID: 23142640 DOI: 10.1016/j.bbamcr.2012.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/24/2022]
Abstract
Preferential loading of the complementary bioluminescent (f-aequorin) and fluorescent (Calcium Green-1 dextran) Ca(2+) reporters into the yolk syncytial layer (YSL) of zebrafish embryos, revealed the generation of stochastic patterns of fast, short-range, and slow, long-range Ca(2+) waves that propagate exclusively through the external YSL (E-YSL). Starting abruptly just after doming (~4.5h post-fertilization: hpf), and ending at the shield stage (~6.0hpf) these distinct classes of waves propagated at mean velocities of ~50 and ~4μm/s, respectively. Although the number and pattern of these waves varied between embryos, their initiation site and arcs of propagation displayed a distinct dorsal bias, suggesting an association with the formation and maintenance of the nascent dorsal-ventral axis. Wave initiation coincided with a characteristic clustering of YSL nuclei (YSN), and their associated perinuclear ER, in the E-YSL. Furthermore, the inter-YSN distance (IND) appeared to be critical such that Ca(2+) wave propagation occurred only when this was <~8μm; an IND >~8μm was coincidental with wave termination at shield stage. Treatment with the IP3R antagonist, 2-APB, the Ca(2+) buffer, 5,5'-dibromo BAPTA, and the SERCA-pump inhibitor, thapsigargin, resulted in a significant disruption of the E-YSL Ca(2+) waves, whereas exposure to the RyR antagonists, ryanodine and dantrolene, had no significant effect. These findings led us to propose that the E-YSL Ca(2+) waves are generated mainly via Ca(2+) release from IP3Rs located in the perinuclear ER, and that the clustering of the YSN is an essential step in providing a CICR pathway required for wave propagation. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
39
|
Webb SE, Cheung CCY, Chan CM, Love DR, Miller AL. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions. Clin Exp Pharmacol Physiol 2012; 39:78-86. [PMID: 21824171 DOI: 10.1111/j.1440-1681.2011.05582.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Evidence is accumulating for a role for Ca²⁺ signalling in the differentiation and development of embryonic skeletal muscle. 2. Imaging of intact, normally developing transgenic zebrafish that express the protein component of the Ca²⁺-sensitive complex aequorin, specifically in skeletal muscle, show that two distinct periods of spontaneous synchronised Ca²⁺ transients occur in the trunk: one at approximately 17.5-19.5 h post-fertilization (h.p.f.; termed signalling period SP1) and the other after approximately 23 h.p.f. (termed SP2). These periods of intense Ca²⁺ signalling activity are separated by a quiet period. 3. Higher-resolution confocal imaging of embryos loaded with the fluorescent Ca²⁺ reporter calcium green-1 dextran shows that the Ca²⁺ signals are generated almost exclusively in the slow muscle cells, the first muscle cells to differentiate, with distinct nuclear and cytoplasmic components. 4. Here, we show that coincidental with the SP1 Ca²⁺ signals, dystrophin becomes localized to the vertical myoseptae of the myotome. Introduction of a dmd morpholino (dmd-MO) resulted in no dystrophin being expressed in the vertical myoseptae, as well as a disruption of myotome morphology and sarcomere organization. In addition, the Ca²⁺ signalling signatures of dmd-MO-injected embryos or homozygous sapje mutant embryos were abnormal such that the frequency, amplitude and timing of the Ca²⁺ signals were altered compared with controls. 5. Our new data suggest that, in addition to a structural role, dystrophin may function in the regulation of [Ca²⁺](i) during the early stages of slow muscle cell differentiation when the Ca²⁺ signals generated in these cells coincide with the first spontaneous contractions of the trunk.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and Key State Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
40
|
Kettunen P. Calcium imaging in the zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1039-71. [PMID: 22453983 DOI: 10.1007/978-94-007-2888-2_48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The zebrafish (Danio rerio) has emerged as a new model system during the last three decades. The fact that the zebrafish larva is transparent enables sophisticated in vivo imaging. While being the vertebrate, the reduced complexity of its nervous system and small size make it possible to follow large-scale activity in the whole brain. Its genome is sequenced and many genetic and molecular tools have been developed that simplify the study of gene function. Since the mid 1990s, the embryonic development and neuronal function of the larval, and later, adult zebrafish have been studied using calcium imaging methods. The choice of calcium indicator depends on the desired number of cells to study and cell accessibility. Dextran indicators have been used to label cells in the developing embryo from dye injection into the one-cell stage. Dextrans have also been useful for retrograde labeling of spinal cord neurons and cells in the olfactory system. Acetoxymethyl (AM) esters permit labeling of larger areas of tissue such as the tectum, a region responsible for visual processing. Genetically encoded calcium indicators have been expressed in various tissues by the use of cell-specific promoters. These studies have contributed greatly to our understanding of basic biological principles during development and adulthood, and of the function of disease-related genes in a vertebrate system.
Collapse
Affiliation(s)
- Petronella Kettunen
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
41
|
Klüver N, Yang L, Busch W, Scheffler K, Renner P, Strähle U, Scholz S. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression. PLoS One 2011; 6:e29063. [PMID: 22205996 PMCID: PMC3242778 DOI: 10.1371/journal.pone.0029063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/20/2011] [Indexed: 01/13/2023] Open
Abstract
Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe) mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.
Collapse
Affiliation(s)
- Nils Klüver
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development. BMC Res Notes 2011; 4:541. [PMID: 22168922 PMCID: PMC3262159 DOI: 10.1186/1756-0500-4-541] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/14/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Calcium signals ([Ca2+]i) direct many aspects of embryo development but their regulation is not well characterised. Ryanodine receptors (RyRs) are a family of intracellular Ca2+ release channels that control the flux of Ca2+ from internal stores into the cytosol. RyRs are primarily known for their role in excitation-contraction coupling in adult striated muscle and ryr gene mutations are implicated in several human diseases. Current evidence suggests that RyRs do not have a major role to play prior to organogenesis but regulate tissue differentiation. FINDINGS The sequences of the five zebrafish ryr genes were confirmed, their evolutionary relationship established and the primary sequences compared to other vertebrates, including humans. RyRs are differentially expressed in slow (ryr1a), fast (ryr3) and both types (ryr1b) of developing skeletal muscle. There are two ryr2 genes (ryr2a and ryr2b) which are expressed exclusively in developing CNS and cardiac tissue, respectively. In addition, ryr3 and ryr2a mRNA is detectable in the initial stages of development, prior to embryonic axis formation. CONCLUSIONS Our work reveals that zebrafish ryr genes are differentially expressed throughout the developing embryo from cleavage onwards. The data suggests that RyR-regulated Ca2+ signals are associated with several aspects of embryonic development, from organogenesis through to the differentiation of the musculoskeletal, cardiovascular and nervous system. These studies will facilitate further work to explore the developmental function of RyRs in each of these tissue types.
Collapse
|
43
|
Jayasinghe BS, Volz DC. Aberrant Ligand-Induced Activation of G Protein–Coupled Estrogen Receptor 1 (GPER) Results in Developmental Malformations During Vertebrate Embryogenesis. Toxicol Sci 2011; 125:262-73. [DOI: 10.1093/toxsci/kfr269] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Webb SE, Miller AL. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004325. [PMID: 21421918 DOI: 10.1101/cshperspect.a004325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynamic changes in cytosolic and nuclear Ca(2+) concentration are reported to play a critical regulatory role in different aspects of skeletal muscle development and differentiation. Here we review our current knowledge of the spatial dynamics of Ca(2+) signals generated during muscle development in mouse, rat, and Xenopus myocytes in culture, in the exposed myotome of dissected Xenopus embryos, and in intact normally developing zebrafish. It is becoming clear that subcellular domains, either membrane-bound or otherwise, may have their own Ca(2+) signaling signatures. Thus, to understand the roles played by myogenic Ca(2+) signaling, we must consider: (1) the triggers and targets within these signaling domains; (2) interdomain signaling, and (3) how these Ca(2+) signals integrate with other signaling networks involved in myogenesis. Imaging techniques that are currently available to provide direct visualization of these Ca(2+) signals are also described.
Collapse
Affiliation(s)
- Sarah E Webb
- Section of Biochemistry and Cell Biology, and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
45
|
Dupuy F, Casas J, Bagnères AG, Lazzari CR. OpenFluo: a free open-source software for optophysiological data analyses. J Neurosci Methods 2009; 183:195-201. [PMID: 19583983 DOI: 10.1016/j.jneumeth.2009.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/17/2009] [Accepted: 06/27/2009] [Indexed: 11/19/2022]
Abstract
Optophysiological imaging methods can be used to record the activity in vivo of groups of neurons from particular areas of the nervous system (e.g. the brain) or of cell cultures. Such methods are used, for example, in the spatio-temporal coding and processing of sensory information. However, the data generated by optophysiological methods must be processed carefully if relevant results are to be obtained. The raw fluorescence data must be digitally filtered and analyzed appropriately to obtain activity maps and fluorescence time course for single spots. We used a Matlab environment to implement the necessary procedures in a user-friendly manner. We developed OpenFluo, a program for people inexperienced in optophysiological methods and for advanced users wishing to perform simple, rapid data analyses without the need for complex, time-consuming programming procedures. This program will be made available as stand-alone software and as an open-source Matlab tool. It will therefore be possible for experienced users to integrate their own routines. We validated this software by assessing its ability to process both artificial recordings and real biological data corresponding to recordings of the honeybee brain.
Collapse
Affiliation(s)
- Fabienne Dupuy
- Institut de Recherche sur la Biologie de l'Insecte, UMR 6035, CNRS-Université François Rabelais, Parc Grandmont, 37200 Tours, France.
| | | | | | | |
Collapse
|
46
|
Leung CF, Miller AL, Korzh V, Chong SW, Sleptsova-Freidrich I, Webb SE. Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos. Dev Growth Differ 2009; 51:617-37. [DOI: 10.1111/j.1440-169x.2009.01123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Lam PY, Webb SE, Leclerc C, Moreau M, Miller AL. Inhibition of stored Ca2+ release disrupts convergence-related cell movements in the lateral intermediate mesoderm resulting in abnormal positioning and morphology of the pronephric anlagen in intact zebrafish embryos. Dev Growth Differ 2009; 51:429-42. [PMID: 19382938 DOI: 10.1111/j.1440-169x.2009.01106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ca(2+) is a highly versatile intra- and intercellular signal that has been reported to regulate a variety of different pattern-forming processes during early development. To investigate the potential role of Ca(2+) signaling in regulating convergence-related cell movements, and the positioning and morphology of the pronephric anlagen, we treated zebrafish embryos from 11.5 h postfertilization (hpf; i.e. just before the pronephric anlagen are morphologically distinguishable in the lateral intermediate mesoderm; LIM) to 16 hpf, with a variety of membrane permeable pharmacological reagents known to modulate [Ca(2+)](i). The effect of these treatments on pronephric anlagen positioning and morphology was determined in both fixed and live embryos via in situ hybridization using the pronephic-specific probes, cdh17, pax2.1 and sim1, and confocal imaging of BODIPY FL C(5)-ceramide-labeled embryos, respectively. We report that Ca(2+) released from intracellular stores via inositol 1,4,5-trisphosphate receptors plays a significant role in the positioning and morphology of the pronephric anlagen, but does not affect the fate determination of the LIM cells that form these primordia. Our data suggest that when Ca(2+) release is inhibited, the resulting effects on the pronephric anlagen are a consequence of the disruption of normal convergence-related movements of LIM cells toward the embryonic midline.
Collapse
Affiliation(s)
- Pui Ying Lam
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
48
|
Chong SW, Korzh V, Jiang YJ. Myogenesis and molecules - insights from zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2009; 74:1693-1755. [PMID: 20735668 DOI: 10.1111/j.1095-8649.2009.02174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis.
Collapse
Affiliation(s)
- S-W Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, A STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
49
|
Chabas JF, Alluin O, Rao G, Garcia S, Lavaut MN, Risso JJ, Legre R, Magalon G, Khrestchatisky M, Marqueste T, Decherchi P, Feron F. Vitamin D2 potentiates axon regeneration. J Neurotrauma 2009; 25:1247-56. [PMID: 18986226 DOI: 10.1089/neu.2008.0593] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To date, the use of autograft tissue remains the "gold standard" technique for repairing transected peripheral nerves. However, the recovery is suboptimal, and neuroactive molecules are required. In the current study, we focused our attention on vitamin D, an FDA-approved molecule whose neuroprotective and neurotrophic actions are increasingly recognized. We assessed the therapeutic potential of ergocalciferol--the plant-derived form of vitamin D, named vitamin D2--in a rat model of peripheral nerve injury and repair. The left peroneal nerve was cut out on a length of 10 mm and immediately autografted in an inverted position. After surgery, animals were treated with ergocalciferol (100 IU/kg/day) and compared to untreated animals. Functional recovery of hindlimb was measured weekly, during 10 weeks post-surgery, using a walking track apparatus and a numerical camcorder. At the end of this period, motor and sensitive responses of the regenerated axons were calculated and histological analysis was performed. We observed that vitamin D2 significantly (i) increased axogenesis and axon diameter; (ii) improved the responses of sensory neurons to metabolites such as KCl and lactic acid; and (iii) induced a fast-to-slow fiber type transition of the Tibialis anterior muscle. In addition, functional recovery was not impaired by vitamin D supplementation. Altogether, these data indicate that vitamin D potentiates axon regeneration. Pharmacological studies with various concentrations of the two forms of vitamin D (ergocalciferol vs. cholecalciferol) are now required before recommending this molecule as a potential supplemental therapeutic approach following nerve injury.
Collapse
Affiliation(s)
- Jean-François Chabas
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, CNRS UMR 6184, Université de la Méditerranée, Service de Chirurgie de la Main, Hopitaux de Marseille, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chabas JF, Alluin O, Rao G, Garcia S, Lavaut MN, Legré R, Magalon G, Marqueste T, Feron F, Decherchi P. FK506 Induces Changes in Muscle Properties and Promotes Metabosensitive Nerve Fiber Regeneration. J Neurotrauma 2009; 26:97-108. [DOI: 10.1089/neu.2008.0695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jean-François Chabas
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (UMR CNRS 6184), Université de la Méditerranée (Aix-Marseille II), Faculté de Médecine Nord, Institut Fédératif de Recherche Jean Roche, Marseille, France
- Services de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique–Hôpitaux de Marseille, Hôpital de la Conception, Marseille, France
| | - Olivier Alluin
- Institut des Sciences du Mouvement: Etienne-Jules Marey (UMR CNRS 6233), Université de la Méditerranée (Aix-Marseille II), Parc Scientifique et Technologique de Luminy–Faculté des Sciences du Sport de Marseille, France
| | - Guillaume Rao
- Institut des Sciences du Mouvement: Etienne-Jules Marey (UMR CNRS 6233), Université de la Méditerranée (Aix-Marseille II), Parc Scientifique et Technologique de Luminy–Faculté des Sciences du Sport de Marseille, France
| | - Stéphane Garcia
- Service Hospitalier d'Anatomie et Cytologie Pathologiques Humaines, Université de la Méditerranée (Aix-Marseille II), Assistance Publique–Hôpitaux de Marseille, Institut de Cancérologie et d'Immunologie de Marseille, Faculté de Médecine Nord, Marseille, France
| | - Marie-Noëlle Lavaut
- Service Hospitalier d'Anatomie et Cytologie Pathologiques Humaines, Université de la Méditerranée (Aix-Marseille II), Assistance Publique–Hôpitaux de Marseille, Institut de Cancérologie et d'Immunologie de Marseille, Faculté de Médecine Nord, Marseille, France
| | - Régis Legré
- Services de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique–Hôpitaux de Marseille, Hôpital de la Conception, Marseille, France
| | - Guy Magalon
- Services de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique–Hôpitaux de Marseille, Hôpital de la Conception, Marseille, France
| | - Tanguy Marqueste
- Institut des Sciences du Mouvement: Etienne-Jules Marey (UMR CNRS 6233), Université de la Méditerranée (Aix-Marseille II), Parc Scientifique et Technologique de Luminy–Faculté des Sciences du Sport de Marseille, France
| | - François Feron
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (UMR CNRS 6184), Université de la Méditerranée (Aix-Marseille II), Faculté de Médecine Nord, Institut Fédératif de Recherche Jean Roche, Marseille, France
| | - Patrick Decherchi
- Institut des Sciences du Mouvement: Etienne-Jules Marey (UMR CNRS 6233), Université de la Méditerranée (Aix-Marseille II), Parc Scientifique et Technologique de Luminy–Faculté des Sciences du Sport de Marseille, France
| |
Collapse
|