1
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
2
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Katsanos D, Barkoulas M. Targeted DamID in C. elegans reveals a direct role for LIN-22 and NHR-25 in antagonizing the epidermal stem cell fate. SCIENCE ADVANCES 2022; 8:eabk3141. [PMID: 35119932 PMCID: PMC8816332 DOI: 10.1126/sciadv.abk3141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Transcription factors are key players in gene networks controlling cell fate specification during development. In multicellular organisms, they display complex patterns of expression and binding to their targets, hence, tissue specificity is required in the characterization of transcription factor-target interactions. We introduce here targeted DamID (TaDa) as a method for tissue-specific transcription factor target identification in intact Caenorhabditis elegans animals. We use TaDa to recover targets in the epidermis for two factors, the HES1 homolog LIN-22, and the NR5A1/2 nuclear hormone receptor NHR-25. We demonstrate a direct link between LIN-22 and the Wnt signaling pathway through repression of the Frizzled receptor lin-17. We report a direct role for NHR-25 in promoting cell differentiation via repressing the expression of stem cell-promoting GATA factors. Our results expand our understanding of the epidermal gene network and highlight the potential of TaDa to dissect the architecture of tissue-specific gene regulatory networks.
Collapse
|
4
|
Katsanos D, Ferrando-Marco M, Razzaq I, Aughey G, Southall TD, Barkoulas M. Gene expression profiling of epidermal cell types in C. elegans using Targeted DamID. Development 2021; 148:dev199452. [PMID: 34397094 PMCID: PMC7613258 DOI: 10.1242/dev.199452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.
Collapse
Affiliation(s)
- Dimitris Katsanos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mar Ferrando-Marco
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Iqrah Razzaq
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Gabriel Aughey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Hintze M, Katsanos D, Shahrezaei V, Barkoulas M. Phenotypic Robustness of Epidermal Stem Cell Number in C. elegans Is Modulated by the Activity of the Conserved N-acetyltransferase nath-10/NAT10. Front Cell Dev Biol 2021; 9:640856. [PMID: 34084768 PMCID: PMC8168469 DOI: 10.3389/fcell.2021.640856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Individual cells and organisms experience perturbations from internal and external sources, yet manage to buffer these to produce consistent phenotypes, a property known as robustness. While phenotypic robustness has often been examined in unicellular organisms, it has not been sufficiently studied in multicellular animals. Here, we investigate phenotypic robustness in Caenorhabditis elegans seam cells. Seam cells are stem cell-like epithelial cells along the lateral edges of the animal, which go through asymmetric and symmetric divisions contributing cells to the hypodermis and neurons, while replenishing the stem cell reservoir. The terminal number of seam cells is almost invariant in the wild-type population, allowing the investigation of how developmental precision is achieved. We report here that a loss-of-function mutation in the highly conserved N-acetyltransferase nath-10/NAT10 increases seam cell number variance in the isogenic population. RNA-seq analysis revealed increased levels of mRNA transcript variability in nath-10 mutant populations, which may have an impact on the phenotypic variability observed. Furthermore, we found disruption of Wnt signaling upon perturbing nath-10 function, as evidenced by changes in POP-1/TCF nuclear distribution and ectopic activation of its GATA transcription factor target egl-18. These results highlight that NATH-10/NAT-10 can influence phenotypic variability partly through modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College, London, United Kingdom
| | | |
Collapse
|
6
|
Xiaoliang Hou, Sun J, Wang Y, Jiang X. Identification of Specific Genes and Pathways by a Comparative Transcriptomic Study of Hypodermal and Body Muscle Development. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041903007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abete-Luzi P, Eisenmann DM. Regulation of C. elegans L4 cuticle collagen genes by the heterochronic protein LIN-29. Genesis 2018; 56:10.1002/dvg.23106. [PMID: 29604168 PMCID: PMC8672679 DOI: 10.1002/dvg.23106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 11/09/2022]
Abstract
The cuticle, the outer covering of the nematode C. elegans, is synthesized five times during the worm's life by the underlying hypodermis. Cuticle collagens, the major cuticle component, are encoded by a large family of col genes and, interestingly, many of these genes express predominantly at a single developmental stage. This temporal preference motivated us to investigate the mechanisms underlying col gene expression and here we focus on a subset of col genes expressed in the L4 stage. We identified minimal promoter regions of <300 bp for col-38, col-49, and col-63. In these regions, we predicted cis-regulatory sequences and evaluated their function in vivo via mutagenesis of a col-38p::yfp reporter. We used RNAi to study the requirement for candidate transcription regulators ELT-1 and ELT-3, LIN-29, and the LIN-29 co-factor MAB-10, and found LIN-29 to be necessary for the expression of four L4-specific genes (col-38, col-49, col-63, and col-138). Temporal misexpression of LIN-29 was also sufficient to activate these genes at a different developmental stage. The LIN-29 DNA-binding domain bound the col-38, col-49, and col-63 minimal promoters in vitro. For col-38 we showed that the LIN-29 sites necessary for reporter expression in vivo are also bound in vitro: this is the first identification of specific binding sites for LIN-29 necessary for in vivo target gene expression.
Collapse
Affiliation(s)
- Patricia Abete-Luzi
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| |
Collapse
|
8
|
Milton AC, Okkema PG. Caenorhabditis elegans TBX-2 Directly Regulates Its Own Expression in a Negative Autoregulatory Loop. G3 (BETHESDA, MD.) 2015; 5:1177-86. [PMID: 25873636 PMCID: PMC4478547 DOI: 10.1534/g3.115.018101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/10/2015] [Indexed: 11/18/2022]
Abstract
T-box genes often exhibit dynamic expression patterns, and their expression levels can be crucial for normal function. Despite the importance of these genes, there is little known about T-box gene regulation. We have focused on the Caenorhabditis elegans gene tbx-2 to understand how T-box gene expression is regulated, and here we demonstrate TBX-2 itself directly represses its own expression in a negative autoregulatory loop. tbx-2 is essential for normal pharyngeal muscle development, and a tbx-2 promoter gfp fusion (Ptbx-2::gfp) is transiently expressed in the pharynx during embryogenesis and in a small number of head neurons in larvae and adults. Reduced tbx-2 function resulted in ectopic Ptbx-2::gfp expression in the seam cells and gut in larvae and adults. Mutation of potential T-box binding sites within the tbx-2 promoter resulted in a similar pattern of ectopic Ptbx-2::gfp expression, and chromatin immunoprecipitation analyses show TBX-2 binds these sites in vivo. This pattern of ectopic Ptbx-2::gfp expression in tbx-2 mutants was very similar to that observed in mutants affecting the NF-Y complex, and our results comparing tbx-2 and nfyb-1 single- and double mutants suggest TBX-2 and NF-Y function in a single pathway to repress the tbx-2 promoter. The tbx-2 promoter is the first direct target identified for TBX-2, and we used it to ask whether SUMOylation is essential for TBX-2 repression. RNAi knockdown of SUMOylation pathway components led to ectopic Ptbx-2::gfp expression in the seam cells and gut. Ectopic Ptbx-2::gfp also was observed in the syncytial hypodermis, suggesting either the tbx-2 promoter is repressed by other SUMOylation dependent mechanisms, or that decreased SUMOylation leads to stable changes in seam cell nuclei as they fuse with the syncytial hypodermis. We suggest negative autoregulation is an important mechanism that allows precise control of tbx-2 expression levels and may allow rapid changes in gene expression during development.
Collapse
Affiliation(s)
- Angenee C Milton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Peter G Okkema
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
9
|
Cohen ML, Kim S, Morita K, Kim SH, Han M. The GATA factor elt-1 regulates C. elegans developmental timing by promoting expression of the let-7 family microRNAs. PLoS Genet 2015; 11:e1005099. [PMID: 25816370 PMCID: PMC4376641 DOI: 10.1371/journal.pgen.1005099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/24/2015] [Indexed: 01/03/2023] Open
Abstract
Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241). DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP) data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation. In the nematode roundworm C. elegans, seam cells, a type of adult stem cell, divide in a completely predictable manner throughout post-embryonic development. Study of the control of the timing of these cells’ division and differentiation led to the discovery of the first microRNAs, which are small non-coding RNAs that regulate the expression of protein-coding mRNAs, but knowledge of the regulation of expression of microRNAs themselves within C. elegans stem cells remains incomplete. In this study, the GATA-family transcription factor elt-1, known to be important for the formation and maintenance of tissues during embryonic and post-embryonic development, is found to regulate the expression of let-7 family microRNAs in stem cells during late developmental stages. It is found to do so redundantly with daf-12, the only other transcription factor previously known to directly regulate microRNA expression in C. elegans. In addition, the presence of ELT-1 in vivo binding near microRNA coding DNA sequences suggests that its contribution to the regulation of microRNA expression is likely through direct regulation of transcription. Stem cells are important in development, tissue homeostasis, and malignancy, so additional knowledge of the mechanisms underlying their maintenance, renewal, and differentiation is of broad interest.
Collapse
Affiliation(s)
- Max L. Cohen
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Sunhong Kim
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Incurable Disease Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Kiyokazu Morita
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Seong Heon Kim
- Incurable Disease Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Min Han
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hunter SE, Finnegan EF, Zisoulis DG, Lovci MT, Melnik-Martinez KV, Yeo GW, Pasquinelli AE. Functional genomic analysis of the let-7 regulatory network in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003353. [PMID: 23516374 PMCID: PMC3597506 DOI: 10.1371/journal.pgen.1003353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7–dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development. In the past decade, microRNAs (miRNAs) have become recognized as key regulators of gene expression in many biological pathways. These small, non-coding RNAs target specific protein-coding genes for repression. The specificity is mediated by partial base-pairing interactions between the 22 nucleotide miRNA and sequences in the target messenger RNA (mRNA). The use of imperfect base-pairing means that a single miRNA can regulate many different mRNAs, but it also means that identifying these targets is not straightforward. One of the first discovered miRNAs, let-7, generally promotes cellular differentiation pathways through a repertoire of targets that is yet to be fully described. Here we utilized molecular and genetic approaches to identify biologically relevant targets of the let-7 miRNA in Caenorhabditis elegans. Our analyses indicate that let-7 regulates a large cast of genes, both directly and indirectly. Loss of let-7 activity in C. elegans results in multiple developmental abnormalities and, ultimately, death. We uncovered new targets of let-7 that contribute to these phenotypes when they fail to be properly regulated. Given the highly conserved nature of let-7 from worms to humans, our studies highlight new genes and pathways potentially under let-7 regulation across species.
Collapse
Affiliation(s)
- Shaun E. Hunter
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Emily F. Finnegan
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Dimitrios G. Zisoulis
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Michael T. Lovci
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Katya V. Melnik-Martinez
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Amy E. Pasquinelli
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
The Caenorhabditis elegans nuclear RNA interference defective (Nrde) mutants were identified by their inability to silence polycistronic transcripts in enhanced RNAi (Eri) mutant backgrounds. Here, we report additional nrde-3-dependent RNAi phenomena that extend the mechanisms, roles, and functions of nuclear RNAi. We show that nrde-3 mutants are broadly RNAi deficient and that overexpressing NRDE-3 enhances RNAi. Consistent with NRDE-3 being a dose-dependent limiting resource for effective RNAi, we find that NRDE-3 is required for eri-dependent enhanced RNAi phenotypes, although only for a subset of target genes. We then identify pgl-1 as an additional limiting RNAi resource important for eri-dependent silencing of a nonoverlapping subset of target genes, so that an nrde-3; pgl-1; eri-1 triple mutant fails to show enhanced RNAi for any tested gene. These results suggest that nrde-3 and pgl-1 define separate and independent limiting RNAi resource pathways. Limiting RNAi resources are proposed to primarily act via endogenous RNA silencing pathways. Consistent with this, we find that nrde-3 mutants misexpress genes regulated by endogenous siRNAs and incompletely silence repetitive transgene arrays. Finally, we find that nrde-3 contributes to transitive RNAi, whereby amplified silencing triggers act in trans to silence sequence-similar genes. Because nrde-dependent silencing is thought to act in cis to limit the production of primary transcripts, this result reveals an unexpected role for nuclear processes in RNAi silencing.
Collapse
|
12
|
Chisholm AD, Hsiao TI. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:861-78. [PMID: 23539299 DOI: 10.1002/wdev.79] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin of the nematode Caenorhabditis elegans is composed of a simple epidermal epithelium and overlying cuticle. The skin encloses the animal and plays central roles in body morphology and physiology; its simplicity and accessibility make it a tractable genetic model for several aspects of skin biology. Epidermal precursors are specified by a hierarchy of transcriptional regulators. Epidermal cells form on the dorsal surface of the embryo and differentiate to form the epidermal primordium, which then spreads out in a process of epiboly to enclose internal tissues. Subsequent elongation of the embryo into a vermiform larva is driven by cell shape changes and cell fusions in the epidermis. Most epidermal cells fuse in mid-embryogenesis to form a small number of multinucleate syncytia. During mid-embryogenesis the epidermis also becomes intimately associated with underlying muscles, performing a tendon-like role in transmitting muscle force. Post-embryonic development of the epidermis involves growth by addition of new cells to the syncytia from stem cell-like epidermal seam cells and by an increase in cell size driven by endoreplication of the chromosomes in epidermal nuclei.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
13
|
Abstract
The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes) but is excluded from the transcriptionally silent X chromosome (which does not). The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system. Stem cells give rise to the variety of specialized cell types within an organism. The decision to adopt a particular cell fate, a process known as specification or determination, requires the coordinated expression of all of the genes needed for that specialized cell to develop and function properly. Understanding the mechanisms that govern these patterns of gene expression is critical to our understanding of stem cell fate specification. We study this process in a nematode species that makes both sperm and eggs from the same stem cell population. We have identified a gene, named spe-44, that is required for the proper expression of sperm genes (but not egg genes). Mutation in spe-44 produces sterile sperm with developmental defects. spe-44 is controlled by factors that govern the sperm/egg decision, and its function in controlling sperm gene expression appears to be conserved in other nematode species.
Collapse
|
14
|
Brabin C, Appleford PJ, Woollard A. The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate. PLoS Genet 2011; 7:e1002200. [PMID: 21829390 PMCID: PMC3150447 DOI: 10.1371/journal.pgen.1002200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi) animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation. Stem cells can both produce differentiated cells and self-renew, producing more stem cells. Choosing between these opposing options is critical for development. Here, we have investigated the molecular genetics underlying this choice in the nematode worm, C. elegans, using the seam cells as a model of stem cell divisions. The transcription factor RNT-1 works together with BRO-1 (homologues of mammalian RUNX and CBFβ genes, respectively) to regulate proliferation of the seam cells, reflecting the roles of RUNX/CBFβ in mammalian stem cells. To better understand how bro-1 is regulated, we looked for conserved regions of non-coding DNA, likely to be of functional importance. We identified a 122 bp conserved non-coding element that is necessary and sufficient for bro-1 expression. Subsequent analysis suggested that the GATA transcription factor ELT-1 directly regulates bro-1. We have found that ELT-1 actually performs two distinct roles, promoting proliferation of seam cells while also preventing them from inappropriately fusing with surrounding tissue and losing their stem-like properties. Furthermore, we propose a link between the retention of stem cell properties and the maintenance of seam cells in a distinct compartment, in which they are protected from differentiation.
Collapse
Affiliation(s)
- Charles Brabin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter J. Appleford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Regulation of sperm gene expression by the GATA factor ELT-1. Dev Biol 2009; 333:397-408. [PMID: 19591818 DOI: 10.1016/j.ydbio.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/14/2009] [Accepted: 06/30/2009] [Indexed: 01/15/2023]
Abstract
Cell fate specification is mediated primarily through the expression of cell-type-specific genes. The regulatory pathway that governs the sperm/egg decision in the hermaphrodite germ line of Caenorhabditis elegans has been well characterized, but the transcription factors that drive these developmental programs remain unknown. We report the identification of ELT-1, a GATA transcription factor that specifies hypodermal fate in the embryo, as a regulator of sperm-specific transcription in the germ line. Computational analysis identified a conserved bipartite sequence element that is found almost exclusively in the promoters of a number of sperm genes. ELT-1 was recovered in a yeast one-hybrid screen for factors that bind to that sperm consensus site. In vitro assays defined the sperm consensus sequence as an optimal binding site for ELT-1. We determined that expression of elt-1 is elevated in the sperm-producing germ line, and that ELT-1 is required for sperm function. Deletion of the ELT-1 binding site from a sperm promoter abrogates sperm-specific expression of a reporter transgene. This work demonstrates a role for the ELT-1 transcription factor in sperm, and provides a critical link between the germ line sex determination program and gamete-specific gene expression.
Collapse
|
16
|
Chikina MD, Huttenhower C, Murphy CT, Troyanskaya OG. Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Comput Biol 2009; 5:e1000417. [PMID: 19543383 PMCID: PMC2692103 DOI: 10.1371/journal.pcbi.1000417] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 05/14/2009] [Indexed: 01/09/2023] Open
Abstract
Tissue-specific gene expression plays a fundamental role in metazoan biology and is an important aspect of many complex diseases. Nevertheless, an organism-wide map of tissue-specific expression remains elusive due to difficulty in obtaining these data experimentally. Here, we leveraged existing whole-animal Caenorhabditis elegans microarray data representing diverse conditions and developmental stages to generate accurate predictions of tissue-specific gene expression and experimentally validated these predictions. These patterns of tissue-specific expression are more accurate than existing high-throughput experimental studies for nearly all tissues; they also complement existing experiments by addressing tissue-specific expression present at particular developmental stages and in small tissues. We used these predictions to address several experimentally challenging questions, including the identification of tissue-specific transcriptional motifs and the discovery of potential miRNA regulation specific to particular tissues. We also investigate the role of tissue context in gene function through tissue-specific functional interaction networks. To our knowledge, this is the first study producing high-accuracy predictions of tissue-specific expression and interactions for a metazoan organism based on whole-animal data. In animals, a crucial facet of any gene's function is the tissue or cell type in which that gene is expressed and the proteins that it interacts with in that cell. However, genome-wide identification of expression across the multitude of tissues of varying size and complexity is difficult to achieve experimentally. In this paper, we show that microararray data collected from whole animals can be analyzed to yield high-quality predictions of tissue-specific expression. These predictions are of better or comparable accuracy to tissue-specific expression determined from high-throughput experiments. Our results provide a global view of tissue-specific expression in Caenorhabditis elegans, allowing us to address the question of how expression patterns are regulated and to analyze how the functions of genes that are expressed in several tissues are influenced by the cellular context.
Collapse
Affiliation(s)
- Maria D Chikina
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | |
Collapse
|
17
|
GATA transcription factors directly regulate the Parkinson's disease-linked gene alpha-synuclein. Proc Natl Acad Sci U S A 2008; 105:10907-12. [PMID: 18669654 DOI: 10.1073/pnas.0802437105] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased alpha-synuclein gene (SNCA) dosage due to locus multiplication causes autosomal dominant Parkinson's disease (PD). Variation in SNCA expression may be critical in common, genetically complex PD but the underlying regulatory mechanism is unknown. We show that SNCA and the heme metabolism genes ALAS2, FECH, and BLVRB form a block of tightly correlated gene expression in 113 samples of human blood, where SNCA naturally abounds (validated P = 1.6 x 10(-11), 1.8 x 10(-10), and 6.6 x 10(-5)). Genetic complementation analysis revealed that these four genes are co-induced by the transcription factor GATA-1. GATA-1 specifically occupies a conserved region within SNCA intron-1 and directly induces a 6.9-fold increase in alpha-synuclein. Endogenous GATA-2 is highly expressed in substantia nigra vulnerable to PD, occupies intron-1, and modulates SNCA expression in dopaminergic cells. This critical link between GATA factors and SNCA may enable therapies designed to lower alpha-synuclein production.
Collapse
|
18
|
Kanamori T, Inoue T, Sakamoto T, Gengyo-Ando K, Tsujimoto M, Mitani S, Sawa H, Aoki J, Arai H. Beta-catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions. EMBO J 2008; 27:1647-57. [PMID: 18497747 PMCID: PMC2396877 DOI: 10.1038/emboj.2008.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022] Open
Abstract
Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/beta-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as beta-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A(1) (PLA(1)), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of beta-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA(1) gene, cortical beta-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of beta-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of beta-catenin.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Cellular Biochemistry, RIKEN, Saitama, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Taro Sakamoto
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Keiko Gengyo-Ando
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | | | - Shohei Mitani
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hitoshi Sawa
- Laboratory for Cell Fate Decision, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Junken Aoki
- Department of Molecular & Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
19
|
Pairing of competitive and topologically distinct regulatory modules enhances patterned gene expression. Mol Syst Biol 2008; 4:163. [PMID: 18277379 PMCID: PMC2267734 DOI: 10.1038/msb.2008.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/08/2008] [Indexed: 11/08/2022] Open
Abstract
Biological networks are inherently modular, yet little is known about how modules are assembled to enable coordinated and complex functions. We used RNAi and time series, whole-genome microarray analyses to systematically perturb and characterize components of a Caenorhabditis elegans lineage-specific transcriptional regulatory network. These data are supported by selected reporter gene analyses and comprehensive yeast one-hybrid and promoter sequence analyses. Based on these results, we define and characterize two modules composed of muscle- and epidermal-specifying transcription factors that function together within a single cell lineage to robustly specify multiple cell types. The expression of these two modules, although positively regulated by a common factor, is reliably segregated among daughter cells. Our analyses indicate that these modules repress each other, and we propose that this cross-inhibition coupled with their relative time of induction function to enhance the initial asymmetry in their expression patterns, thus leading to the observed invariant gene expression patterns and cell lineage. The coupling of asynchronous and topologically distinct modules may be a general principle of module assembly that functions to potentiate genetic switches.
Collapse
|
20
|
Gillis WJ, Bowerman B, Schneider SQ. Ectoderm- and endomesoderm-specific GATA transcription factors in the marine annelid Platynereis dumerilli. Evol Dev 2007; 9:39-50. [PMID: 17227365 DOI: 10.1111/j.1525-142x.2006.00136.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The GATA family of transcription factors appears to retain conserved roles in early germ layer patterning in most, if not all, animals; however, the number and structure of GATA factor genes varies substantially when different animal genomes are compared. Thus, the origin and relationships of invertebrate and vertebrate GATA factors, and their involvement in animal germ layer evolution, are unclear. We identified two highly conserved GATA factor genes in a marine annelid, the polychaete Platynereis dumerilii. A phylogenetic analysis indicates that the two Platynereis GATA factors are orthologous to the GATA1/2/3 and GATA4/5/6 subfamilies present in vertebrates. We also identified conserved motifs within each GATA class, and assigned the divergent Caenorhabditiselegans and Drosophila melanogaster GATA factor genes to the vertebrate classes. Similar to their vertebrate homologs, PdGATA123 mRNA expression was restricted to ectoderm, whereas PdGATA456 was detected only in endomesoderm. Finally, we identified in genome databases one GATA factor gene in each of two distantly related cnidarians that include motifs from both bilaterian GATA factor classes. Our results show that distinct orthologs of the two vertebrate GATA factor classes exist in a protostome invertebrate, suggesting that bilaterian GATA factors originated from GATA1/2/3 and 4/5/6 ancestral orthologs. Moreover, our results indicate that the GATA gene duplication and the functional divergence that led to these two ancestral GATA factor genes occurred after the split of the bilaterian stem group from the cnidarians.
Collapse
Affiliation(s)
- William J Gillis
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
21
|
McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA, Baillie DL, Kohara Y, Marra MA, Jones SJM, Moerman DG, Robertson AG. The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 2006; 302:627-45. [PMID: 17113066 DOI: 10.1016/j.ydbio.2006.10.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/08/2006] [Accepted: 10/14/2006] [Indexed: 12/18/2022]
Abstract
A SAGE library was prepared from hand-dissected intestines from adult Caenorhabditis elegans, allowing the identification of >4000 intestinally-expressed genes; this gene inventory provides fundamental information for understanding intestine function, structure and development. Intestinally-expressed genes fall into two broad classes: widely-expressed "housekeeping" genes and genes that are either intestine-specific or significantly intestine-enriched. Within this latter class of genes, we identified a subset of highly-expressed highly-validated genes that are expressed either exclusively or primarily in the intestine. Over half of the encoded proteins are candidates for secretion into the intestinal lumen to hydrolyze the bacterial food (e.g. lysozymes, amoebapores, lipases and especially proteases). The promoters of this subset of intestine-specific/intestine-enriched genes were analyzed computationally, using both a word-counting method (RSAT oligo-analysis) and a method based on Gibbs sampling (MotifSampler). Both methods returned the same over-represented site, namely an extended GATA-related sequence of the general form AHTGATAARR, which agrees with experimentally determined cis-acting control sequences found in intestine genes over the past 20 years. All promoters in the subset contain such a site, compared to <5% for control promoters; moreover, our analysis suggests that the majority (perhaps all) of genes expressed exclusively or primarily in the worm intestine are likely to contain such a site in their promoters. There are three zinc-finger GATA-type factors that are candidates to bind this extended GATA site in the differentiating C. elegans intestine: ELT-2, ELT-4 and ELT-7. All evidence points to ELT-2 being the most important of the three. We show that worms in which both the elt-4 and the elt-7 genes have been deleted from the genome are essentially wildtype, demonstrating that ELT-2 provides all essential GATA-factor functions in the intestine. The SAGE analysis also identifies more than a hundred other transcription factors in the adult intestine but few show an RNAi-induced loss-of-function phenotype and none (other than ELT-2) show a phenotype primarily in the intestine. We thus propose a simple model in which the ELT-2 GATA factor directly participates in the transcription of all intestine-specific/intestine-enriched genes, from the early embryo through to the dying adult. Other intestinal transcription factors would thus modulate the action of ELT-2, depending on the worm's nutritional and physiological needs.
Collapse
Affiliation(s)
- James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|