1
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
2
|
Xu Y, Wan W. Autophagy regulates rRNA synthesis. Nucleus 2022; 13:203-207. [PMID: 35993412 PMCID: PMC9415535 DOI: 10.1080/19491034.2022.2114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autophagy has emerged as a key regulator of cell metabolism. Recently, we have demonstrated that autophagy is involved in RNA metabolism by regulating ribosomal RNA (rRNA) synthesis. We found that autophagy-deficient cells display much higher 47S precursor rRNA level, which is caused by the accumulation of SQSTM1/p62 (sequestosome 1) but not other autophagy receptors. Mechanistically, SQSTM1 accumulation potentiates the activation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) signaling, which facilitates the assembly of RNA polymerase I pre-initiation complex at ribosomal DNA (rDNA) promoter regions and leads to the activation of rDNA transcription. Finally, we showed that SQSTM1 accumulation is responsible for the increase in protein synthesis, cell growth and cell proliferation in autophagy-deficient cells. Taken together, our findings reveal a regulatory role of autophagy and autophagy receptor SQSTM1 in rRNA synthesis and may provide novel mechanisms for the hyperactivated rDNA transcription in autophagy-related human diseases.Abbreviations: 5-FUrd: 5-fluorouridine; LAP: MAP1LC3/LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PIC: pre-initiation complex; POLR1: RNA polymerase I; POLR1A: RNA polymerase I subunit A; rDNA: ribosomal DNA; RRN3: RRN3 homolog, RNA polymerase I transcription factor; rRNA: ribosomal RNA; SQSTM1/p62: sequestosome 1; TP53INP2: tumor protein p53 inducible nuclear protein 2; UBTF: upstream binding transcription factor.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, Hunan, China
| | - Wei Wan
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,CONTACT Wei Wan Research Building B, Room 716, Zhejiang University School of Medicine, 866 Yu-Hang-Tang Road, Hangzhou, Zhejiang310058, China
| |
Collapse
|
3
|
Chen Y, He R, Han Z, Wu Y, Wang Q, Zhu X, Huang Z, Ye J, Tang Y, Huang H, Chen J, Shan H, Xiao F. Cooperation of ATF4 and CTCF promotes adipogenesis through transcriptional regulation. Cell Biol Toxicol 2022; 38:741-763. [PMID: 33950334 DOI: 10.1007/s10565-021-09608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Adipogenesis is a multi-step process orchestrated by activation of numerous TFs, whose cooperation and regulatory network remain elusive. Activating transcription factor 4 (ATF4) is critical for adipogenesis, yet its regulatory network is unclarified. Here, we mapped genome-wide ATF4 binding landscape and its regulatory network by Chip-seq and RNA-seq and found ATF4 directly modulated transcription of genes enriching in fat cell differentiation. Motifs of TFs especially CTCF were found from ATF4 binding sites, suggesting a direct role of ATF4 in regulating adipogenesis associated with CTCF and other TFs. Deletion of CTCF attenuated adipogenesis while overexpression enhanced adipocyte differentiation, indicating CTCF is indispensable for adipogenesis. Intriguingly, combined analysis of Chip-seq data of these two TFs showed that ATF4 co-localized with CTCF in the promoters of key adipogenic genes including Cebpd and PPARg and co-regulated their transactivation. Moreover, ATF4 directly regulated CTCF expression and interacted with CTCF in differentiated 3T3-L1 cells. In vivo, downregulation of ATF4 suppressed the expression of CTCF, Cebpd, and PPARg, leading to reduced adipose tissue expansion in refeeding mice. Consistently, mRNA expression of ATF4 and CTCF was positively correlated with each other in human subcutaneous adipose tissue and inversely associated with BMI, indicating a possible involvement of these two TFs in adipose development. Taken together, our data propose for the first time that ATF4 and CTCF work cooperatively to control adipogenesis and adipose development via orchestrating transcription of adipogenic genes. Our findings reveal novel therapeutic targets in obesity treatment.
Collapse
Affiliation(s)
- Yingchun Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Rongquan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Zhiqiang Han
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yanyan Wu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Xiujuan Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Zhiguang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Juan Ye
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Yao Tang
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Hongbin Huang
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Jianxu Chen
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China.
| | - Fei Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China.
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China.
| |
Collapse
|
4
|
Sun X, Zhang J, Cao C. CTCF and Its Partners: Shaper of 3D Genome during Development. Genes (Basel) 2022; 13:genes13081383. [PMID: 36011294 PMCID: PMC9407368 DOI: 10.3390/genes13081383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
The 3D genome organization and its dynamic modulate genome function, playing a pivotal role in cell differentiation and development. CTCF and cohesin, acting as the core architectural components involved in chromatin looping and genome folding, can also recruit other protein or RNA partners to fine-tune genome structure during development. Moreover, systematic screening for partners of CTCF has been performed through high-throughput approaches. In particular, several novel protein and RNA partners, such as BHLHE40, WIZ, MAZ, Aire, MyoD, YY1, ZNF143, and Jpx, have been identified, and these partners are mostly implicated in transcriptional regulation and chromatin remodeling, offering a unique opportunity for dissecting their roles in higher-order chromatin organization by collaborating with CTCF and cohesin. Here, we review the latest advancements with an emphasis on features of CTCF partners and also discuss the specific functions of CTCF-associated complexes in chromatin structure modulation, which may extend our understanding of the functions of higher-order chromatin architecture in developmental processes.
Collapse
Affiliation(s)
- Xiaoyue Sun
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Zhang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunwei Cao
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Correspondence:
| |
Collapse
|
5
|
Zhang Y, Fang M, Li S, Xu H, Ren J, Tu L, Zuo B, Yao W, Liang G. BTApep-TAT peptide inhibits ADP-ribosylation of BORIS to induce DNA damage in cancer. Mol Cancer 2022; 21:158. [PMID: 35918747 PMCID: PMC9344678 DOI: 10.1186/s12943-022-01621-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brother of regulator of imprinted sites (BORIS) is expressed in most cancers and often associated with short survival and poor prognosis in patients. BORIS inhibits apoptosis and promotes proliferation of cancer cells. However, its mechanism of action has not been elucidated, and there is no known inhibitor of BORIS. METHODS A phage display library was used to find the BORIS inhibitory peptides and BTApep-TAT was identified. The RNA sequencing profile of BTApep-TAT-treated H1299 cells was compared with that of BORIS-knockdown cells. Antitumor activity of BTApep-TAT was evaluated in a non-small cell lung cancer (NSCLC) xenograft mouse model. BTApep-TAT was also used to investigate the post-translational modification (PTM) of BORIS and the role of BORIS in DNA damage repair. Site-directed mutants of BORIS were constructed and used for investigating PTM and the function of BORIS. RESULTS BTApep-TAT induced DNA damage in cancer cells and suppressed NSCLC xenograft tumor progression. Investigation of the mechanism of action of BTApep-TAT demonstrated that BORIS underwent ADP ribosylation upon double- or single-strand DNA damage. Substitution of five conserved glutamic acid (E) residues with alanine residues (A) between amino acids (AAs) 198 and 228 of BORIS reduced its ADP ribosylation. Inhibition of ADP ribosylation of BORIS by a site-specific mutation or by BTApep-TAT treatment blocked its interaction with Ku70 and impaired the function of BORIS in DNA damage repair. CONCLUSIONS The present study identified an inhibitor of BORIS, highlighted the importance of ADP ribosylation of BORIS, and revealed a novel function of BORIS in DNA damage repair. The present work provides a practical method for the future screening or optimization of drugs targeting BORIS.
Collapse
Affiliation(s)
- Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Mengdie Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shouye Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, 311258, Zhejiang, China
| | - Hao Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Bowen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wanxin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Guang Liang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China. .,College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Xu Y, Wu Y, Wang L, Ren Z, Song L, Zhang H, Qian C, Wang Q, He Z, Wan W. Autophagy deficiency activates rDNA transcription. Autophagy 2021; 18:1338-1349. [PMID: 34612149 DOI: 10.1080/15548627.2021.1974178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy, a highly conserved lysosome-dependent degradation pathway, has been intensively studied in regulating cell metabolism by degradation of intracellular components. In this study, we link autophagy to RNA metabolism by uncovering a regulatory role of autophagy in ribosomal RNA (rRNA) synthesis. Autophagy-deficient cells exhibit much higher 47S precursor rRNA level, which is caused by the accumulation of SQSTM1/p62 (sequestosome 1) but not other autophagy receptors. Mechanistically, SQSTM1 accumulation potentiates the activation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) signaling and promotes the assembly of RNA polymerase I pre-initiation complex at ribosomal DNA (rDNA) promoters, which leads to an increase of 47S rRNA transcribed from rDNA. Functionally, autophagy deficiency promotes protein synthesis, cell growth and cell proliferation, both of which are dependent on SQSTM1 accumulation. Taken together, our findings suggest that autophagy deficiency is involved in RNA metabolism by activating rDNA transcription and provide novel mechanisms for the reprogramming of cell metabolism in autophagy-related diseases including multiple types of cancers.Abbreviations: 5-FUrd: 5-fluorouridine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; ChIP: chromatin immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PIC: pre-initiation complex; POLR1: RNA polymerase I; POLR1A/RPA194: RNA polymerase I subunit A; POLR2A: RNA polymerase II subunit A; rDNA: ribosomal DNA; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; rRNA: ribosomal RNA; RUBCN/Rubicon: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; SUnSET: surface sensing of translation; TAX1BP1: Tax1 binding protein 1; UBTF/UBF1: upstream binding transcription factor; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Yaosen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuo Ren
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Lijiang Song
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhang
- Department of Stomatology, the Second Affilliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuying Qian
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wan
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Wang S, Wong CC, Zhang Y, Huang J, Li C, Zhai J, Wang G, Wei H, Zhang X, He HH, Yu J. ZNF545 loss promotes ribosome biogenesis and protein translation to initiate colorectal tumorigenesis in mice. Oncogene 2021; 40:6590-6600. [PMID: 34615997 PMCID: PMC8639438 DOI: 10.1038/s41388-021-01938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
Ribosome biogenesis plays a pivotal role in tumorigenesis by supporting robust protein translation. We investigate the functional and molecular mechanism of Zinc finger protein 545 (ZNF545), a transcriptional repressor for ribosomal RNA (rRNA), in colorectal cancer (CRC). ZNF545 was silenced in CRC compared to adjacent normal tissues (P < 0.0001), implying a tumor-suppressive role. Colon-specific Znf545 knockout in mice accelerated CRC in ApcMin/+ and azoxymethane/dextran sulfate sodium-induced CRC. Mechanistically, we demonstrated that ZNF545 uses its two zinc finger clusters to bind to minimal rDNA promoter, where it assembled transcriptional repressor complex by interacting with KAP1. Znf545 deletion in mouse embryonic fibroblasts not only increased rRNA transcription rate and the nucleolar size and number but also altered the nucleolar composition and architecture with an increased number of fibrillar centers surrounded by net-like dense fibrillar components. Consequently, Znf545 deletion promoted the gene expression of translation machinery, protein translation, and cell growth. Consistent with its tumor-suppressive role, ZNF545 overexpression in CRC cells induced growth arrest and apoptosis. Finally, administration of rRNA synthesis inhibitor, CX-5461, inhibited CRC development in Znf545Δ/ΔApcMin/+ mice. In conclusion, ZNF545 suppresses CRC through repressing rRNA transcription and protein translation. Targeting rRNA biosynthesis in ZNF545-silenced tumors is a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Shiyan Wang
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanquan Zhang
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzhe Huang
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuangen Li
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianning Zhai
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoping Wang
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Wei
- grid.12981.330000 0001 2360 039XPrecision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueji Zhang
- grid.263488.30000 0001 0472 9649School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Housheng Hansen He
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Ontario, Canada
| | - Jun Yu
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
9
|
Lehman BJ, Lopez-Diaz FJ, Santisakultarm TP, Fang L, Shokhirev MN, Diffenderfer KE, Manor U, Emerson BM. Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress. PLoS Genet 2021; 17:e1009277. [PMID: 33411704 PMCID: PMC7790283 DOI: 10.1371/journal.pgen.1009277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Bettina J. Lehman
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fernando J. Lopez-Diaz
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Thom P. Santisakultarm
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Kenneth E. Diffenderfer
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Beverly M. Emerson
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| |
Collapse
|
10
|
Wu Q, Liu P, Wang L. Many facades of CTCF unified by its coding for three-dimensional genome architecture. J Genet Genomics 2020; 47:407-424. [PMID: 33187878 DOI: 10.1016/j.jgg.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
CCCTC-binding factor (CTCF) is a multifunctional zinc finger protein that is conserved in metazoan species. CTCF is consistently found to play an important role in many diverse biological processes. CTCF/cohesin-mediated active chromatin 'loop extrusion' architects three-dimensional (3D) genome folding. The 3D architectural role of CTCF underlies its multifarious functions, including developmental regulation of gene expression, protocadherin (Pcdh) promoter choice in the nervous system, immunoglobulin (Ig) and T-cell receptor (Tcr) V(D)J recombination in the immune system, homeobox (Hox) gene control during limb development, as well as many other aspects of biology. Here, we review the pleiotropic functions of CTCF from the perspective of its essential role in 3D genome architecture and topological promoter/enhancer selection. We envision the 3D genome as an enormous complex architecture, with tens of thousands of CTCF sites as connecting nodes and CTCF proteins as mysterious bonds that glue together genomic building parts with distinct articulation joints. In particular, we focus on the internal mechanisms by which CTCF controls higher order chromatin structures that manifest its many façades of physiological and pathological functions. We also discuss the dichotomic role of CTCF sites as intriguing 3D genome nodes for seemingly contradictory 'looping bridges' and 'topological insulators' to frame a beautiful magnificent house for a cell's nuclear home.
Collapse
Affiliation(s)
- Qiang Wu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China.
| | - Peifeng Liu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Leyang Wang
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
11
|
Cervantes M, Forné I, Ranjit S, Gratton E, Imhof A, Sassone-Corsi P. BMAL1 Associates with NOP58 in the Nucleolus and Contributes to Pre-rRNA Processing. iScience 2020; 23:101151. [PMID: 32450515 PMCID: PMC7256328 DOI: 10.1016/j.isci.2020.101151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
The transcription factor BMAL1 is a core element of the circadian clock that contributes to cyclic control of genes transcribed by RNA polymerase II. By using biochemical cellular fractionation and immunofluorescence analyses we reveal a previously uncharacterized nucleolar localization for BMAL1. We used an unbiased approach to determine the BMAL1 interactome by mass spectrometry and identified NOP58 as a prominent nucleolar interactor. NOP58, a core component of the box C/D small nucleolar ribonucleoprotein complex, associates with Snord118 to control specific pre-ribosomal RNA (pre-rRNA) processing steps. These results suggest a non-canonical role of BMAL1 in ribosomal RNA regulation. Indeed, we show that BMAL1 controls NOP58-associated Snord118 nucleolar levels and cleavage of unique pre-rRNA intermediates. Our findings identify an unsuspected function of BMAL1 in the nucleolus that appears distinct from its canonical role in the circadian clock system. BMAL1 displays a circadian-independent localization in the nucleolus Bmal1-deficient cells show altered nucleolar morphology Interactome proteomics reveals that BMAL1 associates with nucleolar proteins BMAL1 appears to play a non-canonical, non-circadian role in pre-rRNA processing
Collapse
Affiliation(s)
- Marlene Cervantes
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center, Ludwig Maximilian University of Munich, Munich 80539, Germany
| | - Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Axel Imhof
- Protein Analysis Unit, Biomedical Center, Ludwig Maximilian University of Munich, Munich 80539, Germany
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Wang AJ, Han Y, Jia N, Chen P, Minden MD. NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia. Leukemia 2019; 34:1278-1290. [PMID: 31831844 DOI: 10.1038/s41375-019-0681-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/10/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
Normal cytogenetic acute myeloid leukemia (AML) frequently harbor a TCTG insertion in exon 12 of Nucleophosmin 1 (NPM1); the resulting frameshift creates a nuclear export signal (NES) and cytoplasmic localization of NPM1c. However, how NPM1c causes AML is not completely understood. NPM1 participates in multiple protein-protein interactions one of which involves the CCCTC-binding factor (CTCF). Through binding of CTCF binding sites (CBS), CTCF mediates nuclear functions including DNA looping, regulation of gene expression, and RNA splicing. We hypothesized that mislocalization of CTCF into the cytoplasm by NPM1c reduces the functional level of nuclear CTCF and so alters gene expression. We verified the interaction of CTCF with NPM1 and showed that CTCF interacts with NPM1c, with redistribution of CTCF into the cytoplasm. The interaction of CTCF and NPM1c involves the amino terminus of CTCF and the last 50 amino acids of NPM1. By interfering with the interaction of CTCF and NPM1c, CTCF becomes relocalized into the nucleus.
Collapse
Affiliation(s)
- Atom J Wang
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Youqi Han
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Nanyang Jia
- Department of Computer Science, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Peikun Chen
- Department of Computer Science, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Mark D Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada. .,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
14
|
Yeo JH, Lam YW, Fraser ST. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev 2019; 11:873-894. [PMID: 31418139 PMCID: PMC6874942 DOI: 10.1007/s12551-019-00579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Red blood cells, or erythrocytes, make up approximately a quarter of all cells in the human body with over 2 billion new erythrocytes made each day in a healthy adult human. This massive cellular production system is coupled with a set of cell biological processes unique to mammals, in particular, the elimination of all organelles, and the expulsion and destruction of the condensed erythroid nucleus. Erythrocytes from birds, reptiles, amphibians and fish possess nuclei, mitochondria and other organelles: erythrocytes from mammals lack all of these intracellular components. This review will focus on the dynamic changes that take place in developing erythroid cells that are interacting with specialized macrophages in multicellular clusters termed erythroblastic islands. Proerythroblasts enter the erythroblastic niche as large cells with active nuclei, mitochondria producing heme and energy, and attach to the central macrophage via a range of adhesion molecules. Proerythroblasts then mature into erythroblasts and, following enucleation, in reticulocytes. When reticulocytes exit the erythroblastic island, they are smaller cells, without nuclei and with few mitochondria, possess some polyribosomes and have a profoundly different surface molecule phenotype. Here, we will review, step-by-step, the biophysical mechanisms that regulate the remarkable process of erythropoiesis with a particular focus on the events taking place in the erythroblastic island niche. This is presented from the biological perspective to offer insight into the elements of red blood cell development in the erythroblastic island niche which could be further explored with biophysical modelling systems.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- School of Chemistry, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Stuart T Fraser
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia.
- University of Sydney Nano Institute, Sydney, Australia.
| |
Collapse
|
15
|
Suppression of BCL6 function by HDAC inhibitor mediated acetylation and chromatin modification enhances BET inhibitor effects in B-cell lymphoma cells. Sci Rep 2019; 9:16495. [PMID: 31712669 PMCID: PMC6848194 DOI: 10.1038/s41598-019-52714-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple genetic aberrations in the regulation of BCL6, including in acetyltransferase genes, occur in clinically aggressive B-cell lymphomas and lead to higher expression levels and activity of this transcriptional repressor. BCL6 is, therefore, an attractive target for therapy in aggressive lymphomas. In this study romidepsin, a potent histone deacetylase inhibitor (HDACi), induced apoptosis and cell cycle arrest in Burkitt and diffuse large B-cell lymphoma cell lines, which are model cells for studying the mechanism of action of BCL6. Romidepsin caused BCL6 acetylation at early timepoints inhibiting its function, while at later timepoints BCL6 expression was reduced and target gene expression increased due to chromatin modification. MYC contributes to poor prognosis in aggressive lymphoma. MYC function is reduced by inhibition of chromatin readers of the bromodomain and extra-terminal repeat (BET) family, which includes BRD4. The novel combination of romidepsin and JQ1, a BRD4 inhibitor was investigated and showed synergy. Collectively we suggest that the combination of HDACi and BRD4i should be pursued in further pre-clinical testing.
Collapse
|
16
|
Braccioli L, de Wit E. CTCF: a Swiss-army knife for genome organization and transcription regulation. Essays Biochem 2019; 63:157-165. [PMID: 30940740 DOI: 10.1042/ebc20180069] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Orchestrating vertebrate genomes require a complex interplay between the linear composition of the genome and its 3D organization inside the nucleus. This requires the function of specialized proteins, able to tune various aspects of genome organization and gene regulation. The CCCTC-binding factor (CTCF) is a DNA binding factor capable of regulating not only the 3D genome organization, but also key aspects of gene expression, including transcription activation and repression, RNA splicing, and enhancer/promoter insulation. A growing body of evidence proposes that CTCF, together with cohesin contributes to DNA loop formation and 3D genome organization. CTCF binding sites are mutation hotspots in cancer, while mutations in CTCF itself lead to intellectual disabilities, emphasizing its importance in disease etiology. In this review we cover various aspects of CTCF function, revealing the polyvalence of this factor as a highly diversified tool for vertebrate genome organization and transcription regulation.
Collapse
Affiliation(s)
- Luca Braccioli
- Oncode Institute and Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Elzo de Wit
- Oncode Institute and Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| |
Collapse
|
17
|
Del Rosario BC, Kriz AJ, Del Rosario AM, Anselmo A, Fry CJ, White FM, Sadreyev RI, Lee JT. Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition. eLife 2019; 8:e42341. [PMID: 30676316 PMCID: PMC6361588 DOI: 10.7554/elife.42341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 01/05/2023] Open
Abstract
The zinc finger CCCTC-binding protein (CTCF) carries out many functions in the cell. Although previous studies sought to explain CTCF multivalency based on sequence composition of binding sites, few examined how CTCF post-translational modification (PTM) could contribute to function. Here, we performed CTCF mass spectrometry, identified a novel phosphorylation site at Serine 224 (Ser224-P), and demonstrate that phosphorylation is carried out by Polo-like kinase 1 (PLK1). CTCF Ser224-P is chromatin-associated, mapping to at least a subset of known CTCF sites. CTCF Ser224-P accumulates during the G2/M transition of the cell cycle and is enriched at pericentric regions. The phospho-obviation mutant, S224A, appeared normal. However, the phospho-mimic mutant, S224E, is detrimental to mouse embryonic stem cell colonies. While ploidy and chromatin architecture appear unaffected, S224E mutants differentially express hundreds of genes, including p53 and p21. We have thus identified a new CTCF PTM and provided evidence of biological function.
Collapse
Affiliation(s)
- Brian C Del Rosario
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Andrea J Kriz
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Amanda M Del Rosario
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - Anthony Anselmo
- Department of Molecular BiologyMassachusetts General HospitalBostonUnited States
| | | | - Forest M White
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - Ruslan I Sadreyev
- Department of Molecular BiologyMassachusetts General HospitalBostonUnited States
| | - Jeannie T Lee
- Department of Molecular BiologyHoward Hughes Medical Institute, Massachusetts General HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| |
Collapse
|
18
|
Bughio F, Maggert KA. The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance. Chromosome Res 2018; 27:19-30. [PMID: 30511202 DOI: 10.1007/s10577-018-9591-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Abstract
Our goal is to draw a line-hypothetical in its totality but experimentally supported at each individual step-connecting the ribosomal DNA and the phenomenon of transgenerational epigenetic inheritance of induced phenotypes. The reasonableness of this hypothesis is offset by its implication, that many (or most) (or all) of the cases of induced-and-inherited phenotypes that are seen to persist for generations are instead unmapped induced polymorphisms in the ribosomal DNA, and thus are the consequence of the peculiar and enduringly fascinating genetics of the highly transcribed repeat DNA structure at that locus.
Collapse
Affiliation(s)
- Farah Bughio
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Keith A Maggert
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
19
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
20
|
Pavlaki I, Docquier F, Chernukhin I, Kita G, Gretton S, Clarkson CT, Teif VB, Klenova E. Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:718-730. [PMID: 29981477 PMCID: PMC6074063 DOI: 10.1016/j.bbagrm.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
CTCF is an evolutionarily conserved and ubiquitously expressed architectural protein regulating a plethora of cellular functions via different molecular mechanisms. CTCF can undergo a number of post-translational modifications which change its properties and functions. One such modifications linked to cancer is poly(ADP-ribosyl)ation (PARylation). The highly PARylated CTCF form has an apparent molecular mass of 180 kDa (referred to as CTCF180), which can be distinguished from hypo- and non-PARylated CTCF with the apparent molecular mass of 130 kDa (referred to as CTCF130). The existing data accumulated so far have been mainly related to CTCF130. However, the properties of CTCF180 are not well understood despite its abundance in a number of primary tissues. In this study we performed ChIP-seq and RNA-seq analyses in human breast cells 226LDM, which display predominantly CTCF130 when proliferating, but CTCF180 upon cell cycle arrest. We observed that in the arrested cells the majority of sites lost CTCF, whereas fewer sites gained CTCF or remain bound (i.e. common sites). The classical CTCF binding motif was found in the lost and common, but not in the gained sites. The changes in CTCF occupancies in the lost and common sites were associated with increased chromatin densities and altered expression from the neighboring genes. Based on these results we propose a model integrating the CTCF130/180 transition with CTCF-DNA binding and gene expression changes. This study also issues an important cautionary note concerning the design and interpretation of any experiments using cells and tissues where CTCF180 may be present.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - France Docquier
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Igor Chernukhin
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Georgia Kita
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Svetlana Gretton
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Christopher T Clarkson
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Vladimir B Teif
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Elena Klenova
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| |
Collapse
|
21
|
Abstract
CTCF, Zinc-finger protein, has been identified as a multifunctional transcription factor that regulates gene expression through various mechanisms, including recruitment of other co-activators and binding to promoter regions of target genes. Furthermore, it has been proposed to be an insulator protein that contributes to the establishment of functional three-dimensional chromatin structures. It can disrupt transcription through blocking the connection between an enhancer and a promoter. Previous studies revealed that the onset of various diseases, including breast cancer, could be attributed to the aberrant expression of CTCF itself or one or more of its target genes. In this review, we will describe molecular dysfunction involving CTCF that induces tumorigenesis and summarize the functional roles of CTCF in breast cancer.
Collapse
Affiliation(s)
- Sumin Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Chaeun Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
22
|
Vanaja GR, Ramulu HG, Kalle AM. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun Signal 2018; 16:20. [PMID: 29716651 PMCID: PMC5930436 DOI: 10.1186/s12964-018-0231-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/13/2018] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) are involved in epigenetic gene regulation via deacetylation of acetylated lysine residues of both histone and non-histone proteins. Among the 18 HDACs identified in humans, HDAC8, a class I HDAC, is best understood structurally and enzymatically. However, its precise subcellular location, function in normal cellular physiology, its protein partners and substrates still remain elusive. METHODS The subcellular localization of HDAC8 was studied using immunofluorescence and confocal imaging. The binding parterns were identified employing immunoprecipitation (IP) followed by MALDI-TOF analysis and confirmed using in-silico protein-protein interaction studies, HPLC-based in vitro deacetylation assay, intrinsic fluorescence spectrophotometric analysis, Circular dichroism (CD) and Surface Plasmon Resonance (SPR). Functional characterization of the binding was carried out using immunoblot and knockdown by siRNA. Using one way ANOVA statistical significance (n = 3) was determined. RESULTS Here, we show that HDAC8 and its phosphorylated form (pHDAC8) localized predominantly in the cytoplasm in cancerous, HeLa, and non-cancerous (normal), HEK293T, cells, although nucleolar localization was observed in HeLa cells. The study identified Alpha tubulin as a novel interacting partner of HDAC8. Further, the results indicated binding and deacetylation of tubulin at ac-lys40 by HDAC8. Knockdown of HDAC8 by siRNA, inhibition of HDAC8 and/or HDAC6 by PCI-34051 and tubastatin respectively, cell-migration, cell morphology and cell cycle analysis clearly explained HDAC8 as tubulin deacetylase in HeLa cells and HDAC6 in HEK 293 T cells. CONCLUSIONS HDAC8 shows functional redundancy with HDAC6 when overexpressed in cervical cancer cells, HeLa, and deacetylaes ac-lys40 of alpha tubulin leading to cervical cancer proliferation and progression.
Collapse
Affiliation(s)
- G R Vanaja
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS, 500046, India
| | | | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS, 500046, India.
| |
Collapse
|
23
|
Zhao X, Li D, Huang D, Song H, Mei H, Fang E, Wang X, Yang F, Zheng L, Huang K, Tong Q. Retracted: Risk-Associated Long Noncoding RNA FOXD3-AS1 Inhibits Neuroblastoma Progression by Repressing PARP1-Mediated Activation of CTCF. Mol Ther 2018; 26:755-773. [PMID: 29398485 PMCID: PMC5910666 DOI: 10.1016/j.ymthe.2017.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in childhood. Recent studies have implicated the emerging roles of long noncoding RNAs (lncRNAs) in tumorigenesis and aggressiveness. However, the functions and targets of risk-associated lncRNAs in NB progression still remain to be determined. Herein, through mining of public microarray datasets, we identify lncRNA forkhead box D3 antisense RNA 1 (FOXD3-AS1) as an independent prognostic marker for favorable outcome of NB patients. FOXD3-AS1 is downregulated in NB tissues and cell lines, and ectopic expression of FOXD3-AS1 induces neuronal differentiation and decreases the aggressiveness of NB cells in vitro and in vivo. Mechanistically, as a nuclear lncRNA, FOXD3-AS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1) to inhibit the poly(ADP-ribosyl)ation and activation of CCCTC-binding factor (CTCF), resulting in derepressed expression of downstream tumor-suppressive genes. Rescue experiments indicate that FOXD3-AS1 harbors tumor-suppressive properties by inhibiting the oncogenic roles of PARP1 or CTCF and plays crucial roles in all-trans-retinoic-acid-mediated therapeutic effects on NB. Administration of FOXD3-AS1 construct or siRNAs against PARP1 or CTCF reduces the tumor growth and prolongs the survival of nude mice. These findings suggest that as a risk-associated lncRNA, FOXD3-AS1 inhibits the progression of NB through repressing PARP1-mediated CTCF activation.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dandan Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
24
|
Lafita-Navarro MDC, Blanco R, Mata-Garrido J, Liaño-Pons J, Tapia O, García-Gutiérrez L, García-Alegría E, Berciano MT, Lafarga M, León J. MXD1 localizes in the nucleolus, binds UBF and impairs rRNA synthesis. Oncotarget 2018; 7:69536-69548. [PMID: 27588501 PMCID: PMC5342496 DOI: 10.18632/oncotarget.11766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
MXD1 is a protein that interacts with MAX, to form a repressive transcription factor. MXD1-MAX binds E-boxes. MXD1-MAX antagonizes the transcriptional activity of the MYC oncoprotein in most models. It has been reported that MYC overexpression leads to augmented RNA synthesis and ribosome biogenesis, which is a relevant activity in MYC-mediated tumorigenesis. Here we describe that MXD1, but not MYC or MNT, localizes to the nucleolus in a wide array of cell lines derived from different tissues (carcinoma, leukemia) as well as in embryonic stem cells. MXD1 also localizes in the nucleolus of primary tissue cells as neurons and Sertoli cells. The nucleolar localization of MXD1 was confirmed by co-localization with UBF. Co-immunoprecipitation experiments showed that MXD1 interacted with UBF and proximity ligase assays revealed that this interaction takes place in the nucleolus. Furthermore, chromatin immunoprecipitation assays showed that MXD1 was bound in the transcribed rDNA chromatin, where it co-localizes with UBF, but also in the ribosomal intergenic regions. The MXD1 involvement in rRNA synthesis was also suggested by the nucleolar segregation upon rRNA synthesis inhibition by actinomycin D. Silencing of MXD1 with siRNAs resulted in increased synthesis of pre-rRNA while enforced MXD1 expression reduces it. The results suggest a new role for MXD1, which is the control of ribosome biogenesis. This new MXD1 function would be important to curb MYC activity in tumor cells.
Collapse
Affiliation(s)
- Maria Del Carmen Lafita-Navarro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, and Department of Molecular Biology, University of Cantabria, Santander, Spain.,Present address: Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, and Department of Molecular Biology, University of Cantabria, Santander, Spain
| | - Jorge Mata-Garrido
- Department of Anatomy and Cell Biology and Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Judit Liaño-Pons
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, and Department of Molecular Biology, University of Cantabria, Santander, Spain
| | - Olga Tapia
- Department of Anatomy and Cell Biology and Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, and Department of Molecular Biology, University of Cantabria, Santander, Spain
| | - Eva García-Alegría
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, and Department of Molecular Biology, University of Cantabria, Santander, Spain.,Present address: Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - María T Berciano
- Department of Anatomy and Cell Biology and Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, and Department of Molecular Biology, University of Cantabria, Santander, Spain
| |
Collapse
|
25
|
Posavec Marjanović M, Crawford K, Ahel I. PARP, transcription and chromatin modeling. Semin Cell Dev Biol 2017; 63:102-113. [PMID: 27677453 DOI: 10.1016/j.semcdb.2016.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Compaction mode of chromatin and chromatin highly organised structures regulate gene expression. Posttranslational modifications, histone variants and chromatin remodelers modulate the compaction, structure and therefore function of specific regions of chromatin. The generation of poly(ADP-ribose) (PAR) is emerging as one of the key signalling events on sites undergoing chromatin structure modulation. PAR is generated locally in response to stresses. These include genotoxic stress but also differentiation signals, metabolic and hormonal cues. A pictures emerges in which transient PAR formation is essential to orchestrate chromatin remodelling and transcription factors allowing the cell to adapt to alteration in its environment. This review summarizes the diverse factors of ADP-ribosylation in the adaptive regulation of chromatin structure and transcription.
Collapse
Affiliation(s)
| | - Kerryanne Crawford
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd, Oxford OX1 3RE, UK,.
| |
Collapse
|
26
|
Ciccarone F, Zampieri M, Caiafa P. PARP1 orchestrates epigenetic events setting up chromatin domains. Semin Cell Dev Biol 2016; 63:123-134. [PMID: 27908606 DOI: 10.1016/j.semcdb.2016.11.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/05/2016] [Accepted: 11/24/2016] [Indexed: 01/18/2023]
Abstract
Epigenetic events include reversible modifications of DNA and histone tails driving chromatin organization and thus transcription. The epigenetic regulation is a highly integrated process underlying the plasticity of the genomic information both in the context of complex physiological and pathological processes. The global regulatory aspects of epigenetic events are largely unknown. PARylation and PARP1 are recently emerging as multi-level regulatory effectors that modulate the topology of chromatin by orchestrating very different processes. This review focuses in particular on the role of PARP1 in epigenetics, trying to build a comprehensive perspective of its involvement in the regulation of epigenetic modifications of histones and DNA, contextualizing it in the global organization of chromatin domains in the nucleus.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, Faculty of Mathematics, Physics and Natural Sciences, University of Rome 'Tor Vergata', Rome, Italy
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Haematology, Faculty of Pharmacy and Medicine, 'Sapienza' University of Rome, Rome, Italy; Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Haematology, Faculty of Pharmacy and Medicine, 'Sapienza' University of Rome, Rome, Italy; Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy.
| |
Collapse
|
27
|
Xu Y, Wan W, Shou X, Huang R, You Z, Shou Y, Wang L, Zhou T, Liu W. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters. Autophagy 2016; 12:1118-28. [PMID: 27172002 DOI: 10.1080/15548627.2016.1175693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.
Collapse
Affiliation(s)
- Yinfeng Xu
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Wei Wan
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Xin Shou
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Rui Huang
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Zhiyuan You
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Yanhong Shou
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Lingling Wang
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Tianhua Zhou
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Wei Liu
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
28
|
Abstract
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
Collapse
|
29
|
Xu B, Gogol M, Gaudenz K, Gerton JL. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genomics 2016; 17:25. [PMID: 26729373 PMCID: PMC4700579 DOI: 10.1186/s12864-015-2354-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Background Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. Results In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. Conclusions Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2354-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Karin Gaudenz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
30
|
Analysis of histone modifications at human ribosomal DNA in liver cancer cell. Sci Rep 2015; 5:18100. [PMID: 26657029 PMCID: PMC4676023 DOI: 10.1038/srep18100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/11/2015] [Indexed: 01/25/2023] Open
Abstract
Human liver cancer is the cancer commonly seen clinically. The transcription of ribosomal DNA (rDNA) is a critical step for cells, and epigenetic marks such as post-translational histone modifications have been involved in the regulation of rDNA transcription. But less is known about the pathogenesis of the liver cancers concerning the rDNA transcription regulation. Here we aligned the ChIP-seq data of histone modification markers and CTCF to the human genome assembly which contains a single rDNA repeat in human liver cancer cell and validated their distribution with ChIP-QPCR. Human liver cancer cell possesses a higher enrichment of H3K4me1 and H3K27me3 at ~28 kb within the intergenic spacer (IGS) of rDNA and a higher enrichment of H3K4me3 and H3K27ac upstream of TSS. Furtherly, we studied whether UBF could affect histone modification markers and CTCF at rDNA in human liver cancer cell. UBF depletion leads to a decrease of gene activation mark H3K4me3 across the rDNA promoter. And other histone modification marks and CTCF were not altered after UBF depletion. Taken together, our data showed a high resolution map of histone modification marks at rDNA in human liver cancer cell and provide novel evidence to decipher chromatin-mediated regulation of rDNA in liver cancer.
Collapse
|
31
|
Ryu KW, Kim DS, Kraus WL. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 2015; 115:2453-81. [PMID: 25575290 PMCID: PMC4378458 DOI: 10.1021/cr5004248] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Keun Woo Ryu
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dae-Seok Kim
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - W. Lee Kraus
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
32
|
Schoborg T, Labrador M. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function. Cell Mol Life Sci 2014; 71:4089-113. [PMID: 25012699 PMCID: PMC11113341 DOI: 10.1007/s00018-014-1672-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/31/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
- Present Address: Laboratory of Molecular Machines and Tissue Architecture, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Dr Rm 2122, Bethesda, MD 20892 USA
| | - Mariano Labrador
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| |
Collapse
|
33
|
Batlle-López A, Cortiguera MG, Rosa-Garrido M, Blanco R, del Cerro E, Torrano V, Wagner SD, Delgado MD. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus. Oncogene 2013; 34:246-56. [PMID: 24362533 DOI: 10.1038/onc.2013.535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/01/2013] [Accepted: 11/01/2013] [Indexed: 12/14/2022]
Abstract
BCL6 is a zinc-finger transcriptional repressor, which is highly expressed in germinal centre B-cells and is essential for germinal centre formation and T-dependent antibody responses. Constitutive BCL6 expression is sufficient to produce lymphomas in mice. Deregulated expression of BCL6 due to chromosomal rearrangements, mutations of a negative autoregulatory site in the BCL6 promoter region and aberrant post-translational modifications have been detected in a number of human lymphomas. Tight lineage and temporal regulation of BCL6 is, therefore, required for normal immunity, and abnormal regulation occurs in lymphomas. CCCTC-binding factor (CTCF) is a multi-functional chromatin regulator, which has recently been shown to bind in a methylation-sensitive manner to sites within the BCL6 first intron. We demonstrate a novel CTCF-binding site in BCL6 exon1A within a potential CpG island, which is unmethylated both in cell lines and in primary lymphoma samples. CTCF binding, which was found in BCL6-expressing cell lines, correlated with the presence of histone variant H2A.Z and active histone marks, suggesting that CTCF induces chromatin modification at a transcriptionally active BCL6 locus. CTCF binding to exon1A was required to maintain BCL6 expression in germinal centre cells by avoiding BCL6-negative autoregulation. Silencing of CTCF in BCL6-expressing cells reduced BCL6 mRNA and protein expression, which is sufficient to induce B-cell terminal differentiation toward plasma cells. Moreover, lack of CTCF binding to exon1A shifts the BCL6 local chromatin from an active to a repressive state. This work demonstrates that, in contexts in which BCL6 is expressed, CTCF binding to BCL6 exon1A associates with epigenetic modifications indicative of transcriptionally open chromatin.
Collapse
Affiliation(s)
- A Batlle-López
- 1] Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain [2] Servicio de Hematología, Hospital U. Marqués de Valdecilla, and IFIMAV-FMV, Santander, Spain
| | - M G Cortiguera
- 1] Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain [2] Servicio de Hematología, Hospital U. Marqués de Valdecilla, and IFIMAV-FMV, Santander, Spain
| | - M Rosa-Garrido
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| | - R Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| | - E del Cerro
- Servicio de Hematología, Hospital U. Marqués de Valdecilla, and IFIMAV-FMV, Santander, Spain
| | - V Torrano
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| | - S D Wagner
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - M D Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| |
Collapse
|
34
|
Marshall AD, Bailey CG, Rasko JEJ. CTCF and BORIS in genome regulation and cancer. Curr Opin Genet Dev 2013; 24:8-15. [PMID: 24657531 DOI: 10.1016/j.gde.2013.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 10/25/2022]
Abstract
CTCF plays a vital role in chromatin structure and function. CTCF is ubiquitously expressed and plays diverse roles in gene regulation, imprinting, insulation, intra/interchromosomal interactions, nuclear compartmentalisation, and alternative splicing. CTCF has a single paralogue, the testes-specific CTCF-like gene (CTCFL)/BORIS. CTCF and BORIS can be deregulated in cancer. The tumour suppressor gene CTCF can be mutated or deleted in cancer, or CTCF DNA binding can be altered by epigenetic changes. BORIS is aberrantly expressed frequently in cancer, leading some to propose a pro-tumourigenic role for BORIS. However, BORIS can inhibit cell proliferation, and is mutated in cancer similarly to CTCF suggesting BORIS activation in cancer may be due to global genetic or epigenetic changes typical of malignant transformation.
Collapse
Affiliation(s)
- Amy D Marshall
- Gene and Stem Cell Therapy Program, Centenary Institute, Missenden Road, Camperdown 2050, NSW, Australia; Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, Missenden Road, Camperdown 2050, NSW, Australia; Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, Missenden Road, Camperdown 2050, NSW, Australia; Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, NSW, Australia.
| |
Collapse
|
35
|
Ouboussad L, Kreuz S, Lefevre PF. CTCF depletion alters chromatin structure and transcription of myeloid-specific factors. J Mol Cell Biol 2013; 5:308-22. [PMID: 23933634 DOI: 10.1093/jmcb/mjt023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Differentiation is a multistep process tightly regulated and controlled by complex transcription factor networks. Here, we show that the rate of differentiation of common myeloid precursor cells increases after depletion of CTCF, a protein emerging as a potential key factor regulating higher-order chromatin structure. We identified CTCF binding in the vicinity of important transcription factors regulating myeloid differentiation and showed that CTCF depletion impacts on the expression of these genes in concordance with the observed acceleration of the myeloid commitment. Furthermore, we observed a loss of the histone variant H2A.Z within the selected promoter regions and an increase in non-coding RNA transcription upstream of these genes. Both abnormalities suggest a global chromatin structure destabilization and an associated increase of non-productive transcription in response to CTCF depletion but do not drive the CTCF-mediated transcription alterations of the neighbouring genes. Finally, we detected a transient eviction of CTCF at the Egr1 locus in correlation with Egr1 peak of expression in response to lipopolysaccharide (LPS) treatment in macrophages. This eviction is also correlated with the expression of an antisense non-coding RNA transcribing through the CTCF-binding region indicating that non-coding RNA transcription could be the cause and the consequence of CTCF eviction.
Collapse
Affiliation(s)
- Lylia Ouboussad
- Section of Experimental Haematology, Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
36
|
Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, Yao H. Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 2013; 288:26067-26077. [PMID: 23884423 DOI: 10.1074/jbc.m113.486175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CCCTC-binding factor (CTCF) is a ubiquitously expressed "master weaver" and plays multiple functions in the genome, including transcriptional activation/repression, chromatin insulation, imprinting, X chromosome inactivation, and high-order chromatin organization. It has been shown that CTCF facilitates the recruitment of the upstream binding factor onto ribosomal DNA (rDNA) and regulates the local epigenetic state of rDNA repeats. However, the mechanism by which CTCF modulates rRNA gene transcription has not been well understood. Here we found that wild-type CTCF augments the pre-rRNA level, cell size, and cell growth in cervical cancer cells. In contrast, RNA interference-mediated knockdown of CTCF reduced pre-rRNA transcription. CTCF positively regulates rRNA gene transcription in a RNA polymerase I-dependent manner. We identified an RRGR motif as a putative nucleolar localization sequence in the C-terminal region of CTCF that is required for activating rRNA gene transcription. Using mass spectrometry, we identified SMC2 and SMC4, two subunits of condensin complexes that interact with CTCF. Condensin negatively regulates CTCF-mediated rRNA gene transcription. Knockdown of SMC2 expression significantly facilitates the loading of CTCF and the upstream binding factor onto the rDNA locus and increases histone acetylation across the rDNA locus. Taken together, our study suggests that condensin competes with CTCF in binding to a specific rDNA locus and negatively regulates CTCF-mediated rRNA gene transcription.
Collapse
Affiliation(s)
- Kaimeng Huang
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,; the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Jinping Jia
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wu
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingze Yao
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Min Li
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jingji Jin
- the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Cizhong Jiang
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Cai
- the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Duanqing Pei
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangjin Pan
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,.
| | - Hongjie Yao
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,.
| |
Collapse
|
37
|
Tiffen JC, Bailey CG, Marshall AD, Metierre C, Feng Y, Wang Q, Watson SL, Holst J, Rasko JEJ. The cancer-testis antigen BORIS phenocopies the tumor suppressor CTCF in normal and neoplastic cells. Int J Cancer 2013; 133:1603-13. [PMID: 23553099 DOI: 10.1002/ijc.28184] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/15/2013] [Indexed: 11/10/2022]
Abstract
BORIS and CTCF are paralogous, multivalent 11-zinc finger transcription factors that play important roles in organizing higher-order chromatin architecture. BORIS is a cancer-testis antigen with a poorly defined function in cancer, although it has been hypothesized to exhibit oncogenic properties. CTCF, however, has been postulated as a candidate tumor suppressor. We collated the genetic lesions in BORIS and CTCF from multiple cancers identified using high-throughput genomics. In BORIS, nonsense and missense mutations are evenly distributed. In CTCF, recurrent mutations are mostly clustered in the conserved zinc finger domain and at residues critical for contacting DNA and zinc ion co-ordination. Three missense mutations are common to both proteins. We used an inducible lentivector to express wildtype BORIS or CTCF in primary cells and cancer cell lines in order to define their functional differences. Both BORIS and CTCF caused a significant decrease in cell proliferation and clonogenic capacity, without alteration of specific cell cycle phases. Both BORIS and CTCF conferred protective effects in primary cells and some cancer cells during UV damage-induced apoptosis. Using a bioluminescent MCF-7 orthotopic breast cancer model in vivo, we demonstrated that CTCF and BORIS suppressed breast cancer growth. These findings provide further evidence that CTCF behaves as a tumor suppressor, and show BORIS has a similar growth inhibitory effect in vitro and in vivo. Hence, acquired zinc finger mutations may disrupt these functions, thereby contributing to tumor growth and development.
Collapse
Affiliation(s)
- Jessamy C Tiffen
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW 2050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang R, Shen J, Huang P, Zhu X. CCCTC-binding factor controls its own nuclear transport via regulating the expression of importin 13. Mol Cells 2013; 35:388-95. [PMID: 23620300 PMCID: PMC3887860 DOI: 10.1007/s10059-013-2283-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/07/2013] [Accepted: 03/15/2013] [Indexed: 11/25/2022] Open
Abstract
CCCTC-binding factor (CTCF), a multivalent zinc-finger protein, is involved in different aspects of regulation including promoter activation or repression, gene silencing, chromatin insulation, gene imprinting, X-chromosome inactivation, cell growth or differentiation and tumor genesis. However, the molecular mechanisms of CTCF nuclear import remains unclear. In this study, we showed that the expression of CTCF influenced the intracellular distribution of itself, which might go through transport receptor - import 13 (IPO13). We further confirmed that there is a CTCF target site in ipo13 -774∼-573 bp promoter region and CTCF regulates the expression of IPO13. Besides, GST pull-down and Co-IP experiments demonstrated that CTCF interacts with IPO13. Immunofluorescence staining showed that IPO13 influenced intracellular distribution of CTCF. In all, we conclude that CTCF regulates the expression of IPO13, which, in turn, mediates the nuclear import of CTCF.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| | - Jingjing Shen
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| | - Peitang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| | - Xudong Zhu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| |
Collapse
|
39
|
ADP-ribose polymer depletion leads to nuclear Ctcf re-localization and chromatin rearrangement(1). Biochem J 2013; 449:623-30. [PMID: 23116180 DOI: 10.1042/bj20121429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ctcf (CCCTC-binding factor) directly induces Parp [poly(ADP-ribose) polymerase] 1 activity and its PARylation [poly(ADPribosyl)ation] in the absence of DNA damage. Ctcf, in turn, is a substrate for this post-synthetic modification and as such it is covalently and non-covalently modified by PARs (ADP-ribose polymers). Moreover, PARylation is able to protect certain DNA regions bound by Ctcf from DNA methylation. We recently reported that de novo methylation of Ctcf target sequences due to overexpression of Parg [poly(ADP-ribose)glycohydrolase] induces loss of Ctcf binding. Considering this, we investigate to what extent PARP activity is able to affect nuclear distribution of Ctcf in the present study. Notably, Ctcf lost its diffuse nuclear localization following PAR (ADP-ribose polymer) depletion and accumulated at the periphery of the nucleus where it was linked with nuclear pore complex proteins remaining external to the perinuclear Lamin B1 ring. We demonstrated that PAR depletion-dependent perinuclear localization of Ctcf was due to its blockage from entering the nucleus. Besides Ctcf nuclear delocalization, the outcome of PAR depletion led to changes in chromatin architecture. Immunofluorescence analyses indicated DNA redistribution, a generalized genomic hypermethylation and an increase of inactive compared with active chromatin marks in Parg-overexpressing or Ctcf-silenced cells. Together these results underline the importance of the cross-talk between Parp1 and Ctcf in the maintenance of nuclear organization.
Collapse
|
40
|
Beneke S. Regulation of chromatin structure by poly(ADP-ribosyl)ation. Front Genet 2012; 3:169. [PMID: 22969794 PMCID: PMC3432497 DOI: 10.3389/fgene.2012.00169] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/17/2012] [Indexed: 12/23/2022] Open
Abstract
The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose) has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose), the zinc-finger protein poly(ADP-ribose) polymerase-1 (PARP1), was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.
Collapse
Affiliation(s)
- Sascha Beneke
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
41
|
Rosa-Garrido M, Ceballos L, Alonso-Lecue P, Abraira C, Delgado MD, Gandarillas A. A cell cycle role for the epigenetic factor CTCF-L/BORIS. PLoS One 2012; 7:e39371. [PMID: 22724006 PMCID: PMC3378572 DOI: 10.1371/journal.pone.0039371] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/19/2012] [Indexed: 11/19/2022] Open
Abstract
CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like, or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly, BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, down-regulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results altogether suggest a role for BORIS in coordinating S phase events with mitosis.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | - Cristina Abraira
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
- Institut National de la Santé et de la Recherche Médicale, ADR Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
42
|
Hernández-Hernández A, Soto-Reyes E, Ortiz R, Arriaga-Canon C, Echeverría-Martinez OM, Vázquez-Nin GH, Recillas-Targa F. Changes of the nucleolus architecture in absence of the nuclear factor CTCF. Cytogenet Genome Res 2012; 136:89-96. [PMID: 22286186 DOI: 10.1159/000335752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 01/24/2023] Open
Abstract
CTCF is a multifunctional nuclear factor involved in many cellular processes like gene regulation, chromatin insulation and genomic organization. Recently, CTCF has been shown to be involved in the transcriptional regulation of ribosomal genes and nucleolar organization in Drosophila cells and different murine cell types, including embryonic stem cells. Moreover, it has been suggested that CTCF could be associated to the nucleolus of human erythroleukemic K562 cells. In the present work, we took advantage of efficient small hairpin RNA interference against human CTCF to analyze nucleolar organization in HeLa cells. We have found that key components of the nucleolar architecture are altered. As a consequence of such alterations, an upregulation of ribosomal gene transcription was observed. We propose that CTCF contributes to the structural organization of the nucleolus and, through epigenetic mechanisms, to the regulation of the ribosomal gene expression.
Collapse
Affiliation(s)
- A Hernández-Hernández
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City, México
| | | | | | | | | | | | | |
Collapse
|
43
|
Weth O, Renkawitz R. CTCF function is modulated by neighboring DNA binding factors. Biochem Cell Biol 2011; 89:459-68. [PMID: 21895576 DOI: 10.1139/o11-033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The zinc-finger protein CTCF was originally identified in the context of gene silencing and gene repression (Baniahmad et al. 1990; Lobanenkov et al. 1990). CTCF was later shown to be involved in several transcriptional mechanisms such as gene activation (Vostrov et al. 2002) and enhancer blocking (Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000; Lutz et al. 2003; Szabó et al. 2000; Tanimoto et al. 2003; Phillips and Corces 2009; Bell et al. 1999; Zlatanova and Caiafa 2009a, 2009b). Insulators block the action of enhancers when positioned between enhancer and promoter. CTCF was found to be required in almost all cases of enhancer blocking tested in vertebrates. This CTCF-mediated enhancer blocking is in many instances conferred by constitutive CTCF action. For some examples however, a modulation of the enhancer blocking activity was documented (Lutz et al. 2003; Weth et al. 2010). One mechanism is achieved by regulation of binding to DNA. It was shown that CTCF is not able to bind to those binding-sites containing methylated CpG sequences. At the imprinting control region (ICR) of the Igf2/H19 locus the binding-site for CTCF on the paternal allele is methylated. This prevents DNA-binding of CTCF, resulting in the loss of enhancer blocking (Bell and Felsenfeld 2000; Chao et al. 2002; Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000, 2002; Szabó et al. 2000; Takai et al. 2001). Not only can DNA methylation interfere with CTCF binding to DNA, it was also shown in one report that RNA transcription through the CTCF binding site results in CTCF eviction (Lefevre et al. 2008). In contrast to these cases most of the DNA sites are not differentially bound by CTCF. Even CTCF interaction with its cofactor cohesin does not seem to differ in different cell types (Schmidt et al. 2010). These results indicate that regulation of CTCF activity might be achieved by neighboring factors bound to DNA. In fact, whole genome analyses of CTCF binding sites identified several classes of neighboring sequences (Dickson et al. 2010; Boyle et al. 2010; Essien et al. 2009). Therefore, in this review we will summarize those results for which a combined action of CTCF with factors bound adjacently was found. These neighboring factors include the RNA polymerases I, II and III, another zinc finger factor VEZF1 and the factors YY1, SMAD, TR and Oct4. Each of these seems to influence, modulate or determine the function of CTCF. Thereby, at least some of the pleiotropic effects of CTCF can be explained.
Collapse
Affiliation(s)
- Oliver Weth
- Institute for Genetics, Justus-Liebig-University Giessen, D35392 Giessen, Germany.
| | | |
Collapse
|
44
|
Jones TA, Ogunkolade BW, Szary J, Aarum J, Mumin MA, Patel S, Pieri CA, Sheer D. Widespread expression of BORIS/CTCFL in normal and cancer cells. PLoS One 2011; 6:e22399. [PMID: 21811597 PMCID: PMC3139640 DOI: 10.1371/journal.pone.0022399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/21/2011] [Indexed: 01/23/2023] Open
Abstract
BORIS (CTCFL) is the paralog of CTCF (CCCTC-binding factor; NM_006565), a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a “cancer-testis” antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function.
Collapse
Affiliation(s)
- Tania A. Jones
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Babatunji W. Ogunkolade
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Jaroslaw Szary
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Johan Aarum
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Muhammad A. Mumin
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Shyam Patel
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Christopher A. Pieri
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Denise Sheer
- Queen Mary University of London, Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC. Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 2011; 39:4949-60. [PMID: 21355038 PMCID: PMC3130253 DOI: 10.1093/nar/gkq1326] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transcription of ribosomal RNA (rRNA) is critical to life. Despite its importance, ribosomal DNA (rDNA) is not included in current genome assemblies and, consequently, genomic analyses to date have excluded rDNA. Here, we show that short sequence reads can be aligned to a genome assembly containing a single rDNA repeat. Integrated analysis of ChIP-seq, DNase-seq, MNase-seq and RNA-seq data reveals several novel findings. First, the coding region of active rDNA is contained within nucleosome-depleted open chromatin that is highly transcriptionally active. Second, histone modifications are located not only at the rDNA promoter but also at novel sites within the intergenic spacer. Third, the distributions of active modifications are more similar within and between different cell types than repressive modifications. Fourth, UBF, a positive regulator of rRNA transcription, binds to sites throughout the genome. Lastly, the insulator binding protein CTCF associates with the spacer promoter of rDNA, suggesting that transcriptional insulation plays a role in regulating the transcription of rRNA. Taken together, these analyses confirm and expand the results of previous ChIP studies of rDNA and provide novel avenues for exploration of chromatin-mediated regulation of rDNA.
Collapse
Affiliation(s)
- Gabriel E Zentner
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
46
|
Guerrero PA, Maggert KA. The CCCTC-binding factor (CTCF) of Drosophila contributes to the regulation of the ribosomal DNA and nucleolar stability. PLoS One 2011; 6:e16401. [PMID: 21283722 PMCID: PMC3024428 DOI: 10.1371/journal.pone.0016401] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/15/2010] [Indexed: 01/14/2023] Open
Abstract
In the repeat array of ribosomal DNA (rDNA), only about half of the genes are actively transcribed while the others are silenced. In arthropods, transposable elements interrupt a subset of genes, often inactivating transcription of those genes. Little is known about the establishment or separation of juxtaposed active and inactive chromatin domains, or preferential inactivation of transposable element interrupted genes, despite identity in promoter sequences. CTCF is a sequence-specific DNA binding protein which is thought to act as a transcriptional repressor, block enhancer-promoter communication, and delimit juxtaposed domains of active and inactive chromatin; one or more of these activities might contribute to the regulation of this repeated gene cluster. In support of this hypothesis, we show that the Drosophila nucleolus contains CTCF, which is bound to transposable element sequences within the rDNA. Reduction in CTCF gene activity results in nucleolar fragmentation and reduced rDNA silencing, as does disruption of poly-ADP-ribosylation thought to be necessary for CTCF nucleolar localization. Our data establish a role for CTCF as a component necessary for proper control of transposable element-laden rDNA transcription and nucleolar stability.
Collapse
Affiliation(s)
- Paola A. Guerrero
- Department of Biochemistry/Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Keith A. Maggert
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Generation of poly(ADP-ribosyl)ation deficient mutants of the transcription factor, CTCF. Methods Mol Biol 2011; 780:293-312. [PMID: 21870268 DOI: 10.1007/978-1-61779-270-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Generation of the mutated versions of proteins deficient for poly(ADP-ribosyl)ation (PARylation) is a major challenge because there is no clearly defined consensus site for PARylation. In this chapter, we describe possible strategies to produce such mutants, demonstrated by the example of CTCF, a transcription factor. To achieve this in our study, the protein domain modified by PARylation was mapped and the amino acids, which can be potentially PARylated, selected. Mutations of such individual amino acids as either single or combinatorial mutations were introduced by site-directed mutagenesis, using mutagenic primers and the wild-type sequences as a template. Mutants were validated by DNA sequencing and assessed for the presence of the PARylation mark. The latter was achieved by ectopic expression of mutated proteins in cells, followed by immunoprecipitation with the polyclonal anti-PAR antibody and Western analysis with a protein-specific antibody. The PARylation-deficient CTCF mutant was identified and compared with the wild-type protein. Based on several general characteristics (nuclear distribution/localisation, stability and levels of expression in the cell), the PARylation-deficient mutant was comparable with the wild-type CTCF.
Collapse
|
48
|
van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V, Grosveld F, Delgado MD, Renkawitz R, Galjart N, Sleutels F. CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics Chromatin 2010; 3:19. [PMID: 21059229 PMCID: PMC2993708 DOI: 10.1186/1756-8935-3-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/08/2010] [Indexed: 02/06/2023] Open
Abstract
Background CCCTC binding factor (CTCF) is a highly conserved zinc finger protein, which is involved in chromatin organization, local histone modifications, and RNA polymerase II-mediated gene transcription. CTCF may act by binding tightly to DNA and recruiting other proteins to mediate its various functions in the nucleus. To further explore the role of this essential factor, we used a mass spectrometry-based approach to screen for novel CTCF-interacting partners. Results Using biotinylated CTCF as bait, we identified upstream binding factor (UBF) and multiple other components of the RNA polymerase I complex as potential CTCF-interacting partners. Interestingly, CTCFL, the testis-specific paralog of CTCF, also binds UBF. The interaction between CTCF(L) and UBF is direct, and requires the zinc finger domain of CTCF(L) and the high mobility group (HMG)-box 1 and dimerization domain of UBF. Because UBF is involved in RNA polymerase I-mediated ribosomal (r)RNA transcription, we analyzed CTCF binding to the rDNA repeat. We found that CTCF bound to a site upstream of the rDNA spacer promoter and preferred non-methylated over methylated rDNA. DNA binding by CTCF in turn stimulated binding of UBF. Absence of CTCF in cultured cells resulted in decreased association of UBF with rDNA and in nucleolar fusion. Furthermore, lack of CTCF led to reduced binding of RNA polymerase I and variant histone H2A.Z near the rDNA spacer promoter, a loss of specific histone modifications, and diminished transcription of non-coding RNA from the spacer promoter. Conclusions UBF is the first common interaction partner of CTCF and CTCFL, suggesting a role for these proteins in chromatin organization of the rDNA repeats. We propose that CTCF affects RNA polymerase I-mediated events globally by controlling nucleolar number, and locally by regulating chromatin at the rDNA spacer promoter, similar to RNA polymerase II promoters. CTCF may load UBF onto rDNA, thereby forming part of a network that maintains rDNA genes poised for transcription.
Collapse
|
49
|
Nuclear targeting of a bacterial integrase that mediates site-specific recombination between bacterial and human target sequences. Appl Environ Microbiol 2010; 77:201-10. [PMID: 21037296 DOI: 10.1128/aem.01371-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TrwC is a bacterial protein involved in conjugative transfer of plasmid R388. It is transferred together with the DNA strand into the recipient bacterial cell, where it can integrate the conjugatively transferred DNA strand into its target sequence present in the recipient cell. Considering that bacterial conjugation can occur between bacteria and eukaryotic cells, this protein has great biotechnological potential as a site-specific integrase. We have searched for possible TrwC target sequences in the human genome. Recombination assays showed that TrwC efficiently catalyzes recombination between its natural target sequence and a discrete number of sequences, located in noncoding sites of the human genome, which resemble this target. We have determined the cellular localization of TrwC and derivatives in human cells by immunofluorescence and also by an indirect yeast-based assay to detect both nuclear import and export signals. The results indicate that the recombinase domain of TrwC (N600) has nuclear localization, but full-length TrwC locates in the cytoplasm, apparently due to the presence of a nuclear export signal in its C-terminal domain. The recombinase domain of TrwC can be transported to recipient cells by conjugation in the presence of the helicase domain of TrwC, but with very low efficiency. We mutagenized the trwC gene and selected for mutants with nuclear localization. We obtained one such mutant with a point A904T mutation and an extra peptide at its C terminus, which maintained its functionality in conjugation and recombination. This TrwC mutant could be useful for future TrwC-mediated site-specific integration assays in mammalian cells.
Collapse
|
50
|
Furlan-Magaril M, Rebollar E, Guerrero G, Fernández A, Moltó E, González-Buendía E, Cantero M, Montoliu L, Recillas-Targa F. An insulator embedded in the chicken α-globin locus regulates chromatin domain configuration and differential gene expression. Nucleic Acids Res 2010; 39:89-103. [PMID: 20813760 PMCID: PMC3017597 DOI: 10.1093/nar/gkq740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genome organization into transcriptionally active domains denotes one of the first levels of gene expression regulation. Although the chromatin domain concept is generally accepted, only little is known on how domain organization impacts the regulation of differential gene expression. Insulators might hold answers to address this issue as they delimit and organize chromatin domains. We have previously identified a CTCF-dependent insulator with enhancer-blocking activity embedded in the 5′ non-coding region of the chicken α-globin domain. Here, we demonstrate that this element, called the αEHS-1.4 insulator, protects a transgene against chromosomal position effects in stably transfected cell lines and transgenic mice. We found that this insulator can create a regulated chromatin environment that coincides with the onset of adult α-globin gene expression. Furthermore, such activity is in part dependent on the in vivo regulated occupancy of CTCF at the αEHS-1.4 element. Insulator function is also regulated by CTCF poly(ADP-ribosyl)ation. Our results suggest that the αEHS-1.4 insulator contributes in organizing the chromatin structure of the α-globin gene domain and prevents activation of adult α-globin gene expression at the erythroblast stage via CTCF.
Collapse
Affiliation(s)
- Mayra Furlan-Magaril
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, México D.F., México
| | | | | | | | | | | | | | | | | |
Collapse
|