1
|
Stankovic S, Lazic A, Parezanovic M, Stevanovic M, Pavlovic S, Stojiljkovic M, Klaassen K. Transcriptome Profiling of Phenylalanine-Treated Human Neuronal Model: Spotlight on Neurite Impairment and Synaptic Connectivity. Int J Mol Sci 2024; 25:10019. [PMID: 39337507 PMCID: PMC11431966 DOI: 10.3390/ijms251810019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Phenylketonuria (PKU) is the most common inherited disorder of amino acid metabolism, characterized by high levels of phenylalanine (Phe) in the blood and brain, leading to cognitive impairment without treatment. Nevertheless, Phe-mediated brain dysfunction is not fully understood. The objective of this study was to address gene expression alterations due to excessive Phe exposure in the human neuronal model and provide molecular advances in PKU pathophysiology. Hence, we performed NT2/D1 differentiation in culture, and, for the first time, we used Phe-treated NT2-derived neurons (NT2/N) as a novel model for Phe-mediated neuronal impairment. NT2/N were treated with 1.25 mM, 2.5 mM, 5 mM, 10 mM, and 30 mM Phe and subjected to whole-mRNA short-read sequencing. Differentially expressed genes (DEGs) were analyzed and enrichment analysis was performed. Under three different Phe concentrations (2.5 mM, 5 mM, and 10 mM), DEGs pointed to the PREX1, LRP4, CDC42BPG, GPR50, PRMT8, RASGRF2, and CDH6 genes, placing them in the context of PKU for the first time. Enriched processes included dendrite and axon impairment, synaptic transmission, and membrane assembly. In contrast to these groups, the 30 mM Phe treatment group clearly represented the neurotoxicity of Phe, exhibiting enrichment in apoptotic pathways. In conclusion, we established NT2/N as a novel model for Phe-mediated neuronal dysfunction and outlined the Phe-induced gene expression changes resulting in neurite impairment and altered synaptic connectivity.
Collapse
Affiliation(s)
- Sara Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| |
Collapse
|
2
|
Ravala SK, Tesmer JJG. New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors. Mol Pharmacol 2024; 106:117-128. [PMID: 38902036 PMCID: PMC11331503 DOI: 10.1124/molpharm.124.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
3
|
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells. Cells 2021; 10:cells10092474. [PMID: 34572121 PMCID: PMC8469755 DOI: 10.3390/cells10092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.
Collapse
|
4
|
Modular and Distinct Plexin-A4/FARP2/Rac1 Signaling Controls Dendrite Morphogenesis. J Neurosci 2020; 40:5413-5430. [PMID: 32499377 DOI: 10.1523/jneurosci.2730-19.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Diverse neuronal populations with distinct cellular morphologies coordinate the complex function of the nervous system. Establishment of distinct neuronal morphologies critically depends on signaling pathways that control axonal and dendritic development. The Sema3A-Nrp1/PlxnA4 signaling pathway promotes cortical neuron basal dendrite arborization but also repels axons. However, the downstream signaling components underlying these disparate functions of Sema3A signaling are unclear. Using the novel PlxnA4KRK-AAA knock-in male and female mice, generated by CRISPR/cas9, we show here that the KRK motif in the PlxnA4 cytoplasmic domain is required for Sema3A-mediated cortical neuron dendritic elaboration but is dispensable for inhibitory axon guidance. The RhoGEF FARP2, which binds to the KRK motif, shows identical functional specificity as the KRK motif in the PlxnA4 receptor. We find that Sema3A activates the small GTPase Rac1, and that Rac1 activity is required for dendrite elaboration but not axon growth cone collapse. This work identifies a novel Sema3A-Nrp1/PlxnA4/FARP2/Rac1 signaling pathway that specifically controls dendritic morphogenesis but is dispensable for repulsive guidance events. Overall, our results demonstrate that the divergent signaling output from multifunctional receptor complexes critically depends on distinct signaling motifs, highlighting the modular nature of guidance cue receptors and its potential to regulate diverse cellular responses.SIGNIFICANCE STATEMENT The proper formation of axonal and dendritic morphologies is crucial for the precise wiring of the nervous system that ultimately leads to the generation of complex functions in an organism. The Semaphorin3A-Neuropilin1/Plexin-A4 signaling pathway has been shown to have multiple key roles in neurodevelopment, from axon repulsion to dendrite elaboration. This study demonstrates that three specific amino acids, the KRK motif within the Plexin-A4 receptor cytoplasmic domain, are required to coordinate the downstream signaling molecules to promote Sema3A-mediated cortical neuron dendritic elaboration, but not inhibitory axon guidance. Our results unravel a novel Semaphorin3A-Plexin-A4 downstream signaling pathway and shed light on how the disparate functions of axon guidance and dendritic morphogenesis are accomplished by the same extracellular ligand in vivo.
Collapse
|
5
|
Sasaki K, Davies J, Doldán NG, Arao S, Ferdousi F, Szele FG, Isoda H. 3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice. Aging (Albany NY) 2020; 11:401-422. [PMID: 30654329 PMCID: PMC6366991 DOI: 10.18632/aging.101748] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Caffeoylquinic acid (CQA) is a natural polyphenol with evidence of antioxidant and neuroprotective effects and prevention of deficits in spatial learning and memory. We studied the cognitive-enhancing effect of 3,4,5-tricaffeoylquinic acid (TCQA) and explored its cellular and molecular mechanism in the senescence-accelerated mouse prone 8 (SAMP8) model of aging and Alzheimer's disease as well as in human neural stem cells (hNSCs). Mice were fed with 5 mg/kg of TCQA for 30 days and were tested in the Morris water maze (MWM). Brain tissues were collected for immunohistochemical detection of bromodeoxyuridine (BrdU) to detect activated stem cells and newborn neurons. TCQA-treated SAMP8 exhibited significantly improved cognitive performance in MWM compared to water-treated SAMP8. TCQA-treated SAMP8 mice also had significantly higher numbers of BrdU+/glial fibrillary acidic protein (GFAP+) and BrdU+/Neuronal nuclei (NeuN+) cells in the dentate gyrus (DG) neurogenic niche compared with untreated SAMP8. In hNSCs, TCQA induced cell cycle arrest at G0/G1, actin cytoskeleton organization, chromatin remodeling, neuronal differentiation, and bone morphogenetic protein signaling. The neurogenesis promoting effect of TCQA in the DG of SAMP8 mice might explain the cognition-enhancing influence of TCQA observed in our study, and our hNSCs in aggregate suggest a therapeutic potential for TCQA in aging-associated diseases.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8571, Japan
| | - Julie Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Noelia Geribaldi Doldán
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Sayo Arao
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| |
Collapse
|
6
|
The Rho guanine nucleotide exchange factor P-Rex1 as a potential drug target for cancer metastasis and inflammatory diseases. Pharmacol Res 2020; 153:104676. [PMID: 32006571 DOI: 10.1016/j.phrs.2020.104676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a guanine nucleotide exchange factor (GEF) for Rac small GTPases and the Rac-related GTPase RhoG. P-Rex1 plays an important role in cell migration and relays intracellular signals generated through activation of G protein-coupled receptors and receptor tyrosine kinases. Studies of mouse models have found that P-Rex1 expression and activation is associated with tumor cell migration, brain development and pathological changes such as lung edema. Since its initial discovery, P-Rex1 has been known for its large size and multiple activation mechanisms that involve not only PIP3 but also the βγ subunits of heterotrimeric G proteins and a regulatory subunit of cyclic AMP-dependent kinase, PKA RIα. At the core of the GEF activity is the tandem Dbl homology domain and the pleckstrin homology domain (DH/PH domains) that are masked until activation signals unwind the P-Rex1 structure. Understanding the activation mechanisms will help designing therapeutics that target P-Rex1 for cancer and other diseases.
Collapse
|
7
|
Li Q, Wang L, Ma Y, Yue W, Zhang D, Li J. P-Rex1 Overexpression Results in Aberrant Neuronal Polarity and Psychosis-Related Behaviors. Neurosci Bull 2019; 35:1011-1023. [PMID: 31286410 DOI: 10.1007/s12264-019-00408-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Neuronal polarity is involved in multiple developmental stages, including cortical neuron migration, multipolar-to-bipolar transition, axon initiation, apical/basal dendrite differentiation, and spine formation. All of these processes are associated with the cytoskeleton and are regulated by precise timing and by controlling gene expression. The P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1) gene for example, is known to be important for cytoskeletal reorganization, cell motility, and migration. Deficiency of P-Rex1 protein leads to abnormal neuronal migration and synaptic plasticity, as well as autism-related behaviors. Nonetheless, the effects of P-Rex1 overexpression on neuronal development and higher brain functions remain unclear. In the present study, we explored the effect of P-Rex1 overexpression on cerebral development and psychosis-related behaviors in mice. In utero electroporation at embryonic day 14.5 was used to assess the influence of P-Rex1 overexpression on cell polarity and migration. Primary neuron culture was used to explore the effects of P-Rex1 overexpression on neuritogenesis and spine morphology. In addition, P-Rex1 overexpression in the medial prefrontal cortex (mPFC) of mice was used to assess psychosis-related behaviors. We found that P-Rex1 overexpression led to aberrant polarity and inhibited the multipolar-to-bipolar transition, leading to abnormal neuronal migration. In addition, P-Rex1 overexpression affected the early development of neurons, manifested as abnormal neurite initiation with cytoskeleton change, reduced the axon length and dendritic complexity, and caused excessive lamellipodia in primary neuronal culture. Moreover, P-Rex1 overexpression decreased the density of spines with increased height, width, and head area in vitro and in vivo. Behavioral tests showed that P-Rex1 overexpression in the mouse mPFC caused anxiety-like behaviors and a sensorimotor gating deficit. The appropriate P-Rex1 level plays a critical role in the developing cerebral cortex and excessive P-Rex1 might be related to psychosis-related behaviors.
Collapse
Affiliation(s)
- Qiongwei Li
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Lifang Wang
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Yuanlin Ma
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Weihua Yue
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Dai Zhang
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Jun Li
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.
| |
Collapse
|
8
|
Cash JN, Sharma PV, Tesmer JJ. Structural and biochemical characterization of the pleckstrin homology domain of the RhoGEF P-Rex2 and its regulation by PIP 3. J Struct Biol X 2018; 1:100001. [PMID: 34958187 PMCID: PMC7337056 DOI: 10.1016/j.yjsbx.2018.100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
P-Rex family Rho guanine-nucleotide exchange factors are important regulators of cell motility through their activation of a subset of small GTPases. Both P-Rex1 and P-Rex2 have also been implicated in the progression of certain cancers, including breast cancer and melanoma. Although these molecules display a high level of homology, differences exist in tissue distribution, physiological function, and regulation at the molecular level. Here, we sought to compare the P-Rex2 pleckstrin homology (PH) domain structure and ability to interact with PIP3 with those of P-Rex1. The 1.9 Å crystal structure of the P-Rex2 PH domain reveals conformational differences in the loop regions, yet biochemical studies indicate that the interaction of the P-Rex2 PH domain with PIP3 is very similar to that of P-Rex1. Binding of the PH domain to PIP3 is critical for P-Rex2 activity but not membrane localization, as previously demonstrated for P-Rex1. These studies serve as a starting point in the identification of P-Rex structural features that are divergent between isoforms and could be exploited for the design of P-Rex selective compounds.
Collapse
Key Words
- DEP, dishevelled, Egl-10, and pleckstrin
- DH, Dbl homology
- DSF, differential scanning fluorimetry
- DTT, dithiothreitol
- EDTA, ethylenediaminetetraacetic
- Gβγ, G protein β and γ subunits
- IP4P, inositol polyphosphate 4-phosphatase
- Ins(1,3,4,5)P4, inositol-1,3,4,5-tetrakisphosphate
- MBP, maltose binding protein
- P-Rex
- P-Rex, phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger
- PDZ, post-synaptic density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein
- PH, pleckstrin homology
- PIP3, phosphatidylinositol 3,4,5-trisphosphate
- PMSF, phenylmethylsulfonyl fluoride
- PTEN, phosphatase and tensin homolog
- Phosphatidylinositol 3,4,5-trisphosphate
- Pleckstrin homology domain
- Rho guanine nucleotide exchange factor
- RhoGEF, Rho guanine-nucleotide exchange factor
Collapse
Affiliation(s)
- Jennifer N. Cash
- Department of Pharmacology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA,Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Prateek V. Sharma
- Department of Pharmacology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA,Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - John J.G. Tesmer
- Department of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47904, USA,Corresponding author.
| |
Collapse
|
9
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
10
|
P-Rex1 and P-Rex2 RacGEFs and cancer. Biochem Soc Trans 2017; 45:963-77. [PMID: 28710285 DOI: 10.1042/bst20160269] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger (P-Rex) proteins are RacGEFs that are synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and Gβγ subunits of G-protein-coupled receptors. P-Rex1 and P-Rex2 share similar amino acid sequence homology, domain structure, and catalytic function. Recent evidence suggests that both P-Rex proteins may play oncogenic roles in human cancers. P-Rex1 and P-Rex2 are altered predominantly via overexpression and mutation, respectively, in various cancer types, including breast cancer, prostate cancer, and melanoma. This review compares the similarities and differences between P-Rex1 and P-Rex2 functions in human cancers in terms of cellular effects and signalling mechanisms. Emerging clinical data predict that changes in expression or mutation of P-Rex1 and P-Rex2 may lead to changes in tumour outcome, particularly in breast cancer and melanoma.
Collapse
|
11
|
Chang JH, Tsai PH, Chen W, Chiou SH, Mou CY. Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons. J Mater Chem B 2017; 5:3012-3023. [DOI: 10.1039/c7tb00351j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Nurr1 plasmid and Rex1 siRNA were complexed with positively charged FITC-conjugated mesoporous silica nanoparticles. The pNurr1–siRex1–FMSN(+) was delivered to induced pluripotent stem cells to enhance their differentiation into dopaminergic neurons.
Collapse
Affiliation(s)
- Jen-Hsuan Chang
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research and Education
- Taipei Veterans General Hospital
- Taipei 112
- Taiwan
| | - Wei Chen
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research and Education
- Taipei Veterans General Hospital
- Taipei 112
- Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| |
Collapse
|
12
|
Barrows D, He JZ, Parsons R. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs). J Biol Chem 2016; 291:20042-54. [PMID: 27481946 DOI: 10.1074/jbc.m116.723882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and the Department of Pharmacology, Columbia University, New York, New York 10032
| | - John Z He
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| |
Collapse
|
13
|
Identification of P-Rex1 as an anti-inflammatory and anti-fibrogenic target for pulmonary fibrosis. Sci Rep 2016; 6:25785. [PMID: 27173636 PMCID: PMC4865757 DOI: 10.1038/srep25785] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/13/2016] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis (PF) leads to progressive and often irreversible loss of lung functions, posing a health threat with no effective cure. We examined P-Rex1, a PI3K- and G protein βγ-regulated guanine nucleotide exchange factor (GEF) of the Rac small GTPase, for its potential involvement in PF. In a bleomycin-induced PF model, mice deficient in p-rex1 had well-preserved alveolar structure and survived significantly better than their wild type (WT) littermates. The p-rex1−/− mice expressed significantly less proinflammatory cytokines and chemokines and had reduced leukocyte infiltration in the lung tissue than their WT littermates. P-Rex1 was detected in lung fibroblasts of WT mice, and its genetic deletion attenuated TGFβ-1-stimulated lung fibroblast migration, Rac1 activation and p38 MAPK phosphorylation. The p-rex1−/− mice showed significantly reduced pathological changes including the expression of α-smooth muscle actin, fibronectin and TGFβ-1 compared with their WT controls. Expression of a GEF-deficient P-Rex1 mutant effectively blocked Smads-dependent transcriptional activation, suggesting that P-Rex1 is a downstream mediator of TGFβ-1 signaling. These findings identify P-Rex1 as a novel player of PF, suggesting that targeting P-Rex1 may simultaneously block the inflammatory and fibrogenic processes of PF.
Collapse
|
14
|
Chávez-Vargas L, Adame-García SR, Cervantes-Villagrana RD, Castillo-Kauil A, Bruystens JGH, Fukuhara S, Taylor SS, Mochizuki N, Reyes-Cruz G, Vázquez-Prado J. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING. J Biol Chem 2016; 291:6182-99. [PMID: 26797121 DOI: 10.1074/jbc.m115.712216] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.
Collapse
Affiliation(s)
| | - Sendi Rafael Adame-García
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Alejandro Castillo-Kauil
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Susan S Taylor
- Departments of Chemistry and Biochemistry and Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Guadalupe Reyes-Cruz
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | |
Collapse
|
15
|
Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior. Proc Natl Acad Sci U S A 2015; 112:E6964-72. [PMID: 26621702 DOI: 10.1073/pnas.1512913112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of highly inheritable mental disorders associated with synaptic dysfunction, but the underlying cellular and molecular mechanisms remain to be clarified. Here we report that autism in Chinese Han population is associated with genetic variations and copy number deletion of P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1). Genetic deletion or knockdown of P-Rex1 in the CA1 region of the hippocampus in mice resulted in autism-like social behavior that was specifically linked to the defect of long-term depression (LTD) in the CA1 region through alteration of AMPA receptor endocytosis mediated by the postsynaptic PP1α (protein phosphase 1α)-P-Rex1-Rac1 (Ras-related C3 botulinum toxin substrate 1) signaling pathway. Rescue of the LTD in the CA1 region markedly alleviated autism-like social behavior. Together, our findings suggest a vital role of P-Rex1 signaling in CA1 LTD that is critical for social behavior and cognitive function and offer new insight into the etiology of ASDs.
Collapse
|
16
|
Lucato CM, Halls ML, Ooms LM, Liu HJ, Mitchell CA, Whisstock JC, Ellisdon AM. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells. J Biol Chem 2015; 290:20827-20840. [PMID: 26112412 DOI: 10.1074/jbc.m115.660456] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 12/16/2022] Open
Abstract
The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site.
Collapse
Affiliation(s)
- Christina M Lucato
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lisa M Ooms
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Heng-Jia Liu
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | - Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
17
|
Abstract
The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.
Collapse
|
18
|
Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632450. [PMID: 25879033 PMCID: PMC4388020 DOI: 10.1155/2015/632450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
Collapse
|
19
|
Dirat B, Ader I, Golzio M, Massa F, Mettouchi A, Laurent K, Larbret F, Malavaud B, Cormont M, Lemichez E, Cuvillier O, Tanti JF, Bost F. Inhibition of the GTPase Rac1 mediates the antimigratory effects of metformin in prostate cancer cells. Mol Cancer Ther 2014; 14:586-96. [PMID: 25527635 DOI: 10.1158/1535-7163.mct-14-0102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is a critical step in the progression of prostate cancer to the metastatic state, the lethal form of the disease. The antidiabetic drug metformin has been shown to display antitumoral properties in prostate cancer cell and animal models; however, its role in the formation of metastases remains poorly documented. Here, we show that metformin reduces the formation of metastases to fewer solid organs in an orthotopic metastatic prostate cancer cell model established in nude mice. As predicted, metformin hampers cell motility in PC3 and DU145 prostate cancer cells and triggers a radical reorganization of the cell cytoskeleton. The small GTPase Rac1 is a master regulator of cytoskeleton organization and cell migration. We report that metformin leads to a major inhibition of Rac1 GTPase activity by interfering with some of its multiple upstream signaling pathways, namely P-Rex1 (a Guanine nucleotide exchange factor and activator of Rac1), cAMP, and CXCL12/CXCR4, resulting in decreased migration of prostate cancer cells. Importantly, overexpression of a constitutively active form of Rac1, or P-Rex, as well as the inhibition of the adenylate cyclase, was able to reverse the antimigratory effects of metformin. These results establish a novel mechanism of action for metformin and highlight its potential antimetastatic properties in prostate cancer.
Collapse
Affiliation(s)
- Béatrice Dirat
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Isabelle Ader
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Muriel Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Fabienne Massa
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Amel Mettouchi
- Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France. INSERM, C3M, U1065, Equipe Labellisée Ligue Contre le Cancer, Team Microtoxins in Host Pathogens Interactions, Nice, France
| | - Kathiane Laurent
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Frédéric Larbret
- University of Nice Sophia Antipolis, EA6302, Flow Cytometry Facility, Hôpital l'Archet 1, Nice, France
| | - Bernard Malavaud
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France. Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Mireille Cormont
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Emmanuel Lemichez
- Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France. INSERM, C3M, U1065, Equipe Labellisée Ligue Contre le Cancer, Team Microtoxins in Host Pathogens Interactions, Nice, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Jean François Tanti
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Frédéric Bost
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France.
| |
Collapse
|
20
|
Namekata K, Kimura A, Kawamura K, Harada C, Harada T. Dock GEFs and their therapeutic potential: neuroprotection and axon regeneration. Prog Retin Eye Res 2014; 43:1-16. [PMID: 25016980 DOI: 10.1016/j.preteyeres.2014.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022]
Abstract
The dedicator of cytokinesis (Dock) family is composed of atypical guanine exchange factors (GEFs) that activate the Rho GTPases Rac1 and Cdc42. Rho GTPases are best documented for their roles in actin polymerization and they regulate important cellular functions, including morphogenesis, migration, neuronal development, and cell division and adhesion. To date, 11 Dock family members have been identified and their roles have been reported in diverse contexts. There has been increasing interest in elucidating the roles of Dock proteins in recent years and studies have revealed that they are potential therapeutic targets for various diseases, including glaucoma, Alzheimer's disease, cancer, attention deficit hyperactivity disorder and combined immunodeficiency. Among the Dock proteins, Dock3 is predominantly expressed in the central nervous system and recent studies have revealed that Dock3 plays a role in protecting retinal ganglion cells from neurotoxicity and oxidative stress as well as in promoting optic nerve regeneration. In this review, we discuss the current understanding of the 11 Dock GEFs and their therapeutic potential, with a particular focus on Dock3 as a novel target for the treatment of glaucoma and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kazuto Kawamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
21
|
Dimidschstein J, Passante L, Dufour A, van den Ameele J, Tiberi L, Hrechdakian T, Adams R, Klein R, Lie D, Jossin Y, Vanderhaeghen P. Ephrin-B1 Controls the Columnar Distribution of Cortical Pyramidal Neurons by Restricting Their Tangential Migration. Neuron 2013; 79:1123-35. [DOI: 10.1016/j.neuron.2013.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
22
|
Sherry DM, Blackburn BA. P-Rex2, a Rac-guanine nucleotide exchange factor, is expressed selectively in ribbon synaptic terminals of the mouse retina. BMC Neurosci 2013; 14:70. [PMID: 23844743 PMCID: PMC3716592 DOI: 10.1186/1471-2202-14-70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 07/10/2013] [Indexed: 12/16/2022] Open
Abstract
Background Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac Exchanger 2 (P-Rex2) is a guanine nucleotide exchange factor (GEF) that specifically activates Rac GTPases, important regulators of actin cytoskeleton remodeling. P-Rex2 is known to modulate cerebellar Purkinje cell architecture and function, but P-Rex2 expression and function elsewhere in the central nervous system is unclear. To better understand potential roles for P-Rex2 in neuronal cytoskeletal remodeling and function, we performed widefield and confocal microscopy of specimens double immunolabeled for P-Rex2 and cell- and synapse-specific markers in the mouse retina. Results P-Rex2 was restricted to the plexiform layers of the retina and colocalized extensively with Vesicular Glutamate Transporter 1 (VGluT1), a specific marker for photoreceptor and bipolar cell terminals. Double labeling for P-Rex2 and peanut agglutinin, a cone terminal marker, confirmed that P-Rex2 was present in both rod and cone terminals. Double labeling with markers for specific bipolar cell types showed that P-Rex2 was present in the terminals of rod bipolar cells and multiple ON- and OFF-cone bipolar cell types. In contrast, P-Rex2 was not expressed in the processes or conventional synapses of amacrine or horizontal cells. Conclusions P-Rex2 is associated specifically with the glutamatergic ribbon synaptic terminals of photoreceptors and bipolar cells that transmit visual signals vertically through the retina. The Rac-GEF function of P-Rex2 implies a specific role for P-Rex2 and Rac-GTPases in regulating the actin cytoskeleton in glutamatergic ribbon synaptic terminals of retinal photoreceptors and bipolar cells and appears to be ideally positioned to modulate the adaptive plasticity of these terminals.
Collapse
Affiliation(s)
- David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-553, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
23
|
Guibinga GH, Murray F, Barron N, Pandori W, Hrustanovic G. Deficiency of the purine metabolic gene HPRT dysregulates microRNA-17 family cluster and guanine-based cellular functions: a role for EPAC in Lesch-Nyhan syndrome. Hum Mol Genet 2013; 22:4502-15. [PMID: 23804752 DOI: 10.1093/hmg/ddt298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan syndrome (LNS) is a neurodevelopmental disorder caused by mutations in the gene encoding the purine metabolic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). A series of motor, cognitive and neurobehavioral anomalies characterize this disease phenotype, which is still poorly understood. The clinical manifestations of this syndrome are believed to be the consequences of deficiencies in neurodevelopmental pathways that lead to disordered brain function. We have used microRNA array and gene ontology analysis to evaluate the gene expression of differentiating HPRT-deficient human neuron-like cell lines. We set out to identify dysregulated genes implicated in purine-based cellular functions. Our approach was based on the premise that HPRT deficiency affects preeminently the expression and the function of purine-based molecular complexes, such as guanine nucleotide exchange factors (GEFs) and small GTPases. We found that several microRNAs from the miR-17 family cluster and genes encoding GEF are dysregulated in HPRT deficiency. Most notably, our data show that the expression of the exchange protein activated by cAMP (EPAC) is blunted in HPRT-deficient human neuron-like cell lines and fibroblast cells from LNS patients, and is altered in the cortex, striatum and midbrain of HPRT knockout mouse. We also show a marked impairment in the activation of small GTPase RAP1 in the HPRT-deficient cells, as well as differences in cytoskeleton dynamics that lead to increased motility for HPRT-deficient neuron-like cell lines relative to control. We propose that the alterations in EPAC/RAP1 signaling and cell migration in HPRT deficiency are crucial for neuro-developmental events that may contribute to the neurological dysfunctions in LNS.
Collapse
|
24
|
Abstract
P-Rex proteins are Rho/Rac guanine nucleotide exchange factors that participate in the regulation of several cancer-related cellular functions such as proliferation, motility, and invasion. Expectedly, a significant portion of these actions of P-Rex proteins must be related to their Rac regulatory properties. In addition, P-Rex proteins control signaling by the phosphoinositide 3-kinase (PI3K) route by interacting with PTEN and mTOR. The interaction with PTEN inhibits its phosphatase activity, leading to AKT activation. The interaction with mTOR may be important in nutrient-stimulated Rac activation and migration. In humans, several studies have implicated P-Rex proteins in the pathophysiology of various neoplasias. Thus, overexpression of P-Rex proteins has been linked to poor patient outcome in breast cancer and may facilitate metastatic dissemination of prostate cancer cells. In addition, whole-genome sequencing described P-Rex2 as a significantly mutated gene in melanoma. Furthermore, expression in melanocytes of mutated forms of P-Rex2 found in patients with melanoma showed the protumorigenic role of these P-Rex mutations in melanoma genesis. These findings open interesting opportunities for P-Rex targeting in cancer. Moreover, the implication of P-Rex partner proteins such as Rac, mTOR, or PTEN in cancer has opened the possibility of acting on P-Rex to restrict protumorigenic signaling through these pathways.
Collapse
Affiliation(s)
- Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Spain.
| | | |
Collapse
|
25
|
Roffé M, Hajj GNM, Azevedo HF, Alves VS, Castilho BA. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth. J Biol Chem 2013; 288:10860-9. [PMID: 23447528 DOI: 10.1074/jbc.m113.461970] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system.
Collapse
Affiliation(s)
- Martín Roffé
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, 04023-062, Brazil
| | | | | | | | | |
Collapse
|
26
|
Miller MB, Yan Y, Eipper BA, Mains RE. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 2013; 19:255-73. [PMID: 23401188 DOI: 10.1177/1073858413475486] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the mammalian brain, the majority of excitatory synapses are housed in micron-sized dendritic protrusions called spines, which can undergo rapid changes in shape and number in response to increased or decreased synaptic activity. These dynamic alterations in dendritic spines require precise control of the actin cytoskeleton. Within spines, multidomain Rho guanine nucleotide exchange factors (Rho GEFs) coordinate activation of their target Rho GTPases by a variety of pathways. In this review, we focus on the handful of disease-related Rho GEFs (Kalirin; Trio; Tiam1; P-Rex1,2; RasGRF1,2; Collybistin) localized at synapses and known to affect electrophysiology, spine morphology, and animal behavior. The goal is to integrate structure/function studies with measurements of synaptic function and behavioral phenotypes in animal models.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | |
Collapse
|
27
|
Woo S, Housley MP, Weiner OD, Stainier DYR. Nodal signaling regulates endodermal cell motility and actin dynamics via Rac1 and Prex1. ACTA ACUST UNITED AC 2013; 198:941-52. [PMID: 22945937 PMCID: PMC3432772 DOI: 10.1083/jcb.201203012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nodal, acting through Prex1 and Rac1, promotes dynamic actin and random motility in endodermal cells during early gastrulation. Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions.
Collapse
Affiliation(s)
- Stephanie Woo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
28
|
Naikawadi RP, Cheng N, Vogel SM, Qian F, Wu D, Malik AB, Ye RD. A critical role for phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 in endothelial junction disruption and vascular hyperpermeability. Circ Res 2012; 111:1517-27. [PMID: 22965143 DOI: 10.1161/circresaha.112.273078] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE The small GTPase Rac is critical to vascular endothelial functions, yet its regulation in endothelial cells remains unclear. Understanding the upstream pathway may delineate Rac activation mechanisms and its role in maintaining vascular endothelial barrier integrity. OBJECTIVE By investigating phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 (P-Rex1), one of the Rac-specific guanine nucleotide exchange factors previously known for G protein-coupled receptor signaling, we sought to determine whether Rac-guanine nucleotide exchange factor is nodal for signal integration and potential target for drug intervention. METHODS AND RESULTS Using gene deletion and small interference RNA silencing approach, we investigated the role of P-Rex1 in human lung microvascular endothelial cells. Tumor necrosis factor α (TNF-α) exposure led to disruption of endothelial junctions, and silencing P-Rex1 protected junction integrity. TNF-α stimulated Rac activation and reactive oxygen species production in a P-Rex1-dependent manner. Removal of P-Rex1 significantly reduced intercellular adhesion molecule-1 expression, polymorphonuclear leukocyte transendothelial migration, and leukocyte sequestration in TNF-α-challenged mouse lungs. The P-Rex1 knockout mice were also refractory to lung vascular hyperpermeability and edema in a lipopolysaccharide-induced sepsis model. CONCLUSIONS These results demonstrate for the first time that P-Rex1 expressed in endothelial cells is activated downstream of TNF-α, which is not a G protein-coupled receptor agonist. Our data identify P-Rex1 as a critical mediator of vascular barrier disruption. Targeting P-Rex1 may effectively protect against TNF-α- and lipopolysaccharide-induced endothelial junction disruption and vascular hyperpermeability.
Collapse
Affiliation(s)
- Ram P Naikawadi
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
The guanine-nucleotide-exchange factor P-Rex1 is activated by protein phosphatase 1α. Biochem J 2012; 443:173-83. [PMID: 22242915 DOI: 10.1042/bj20112078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
P-Rex1 is a GEF (guanine-nucleotide-exchange factor) for the small G-protein Rac that is activated by PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and Gβγ subunits and inhibited by PKA (protein kinase A). In the present study we show that PP1α (protein phosphatase 1α) binds P-Rex1 through an RVxF-type docking motif. PP1α activates P-Rex1 directly in vitro, both independently of and additively to PIP3 and Gβγ. PP1α also substantially activates P-Rex1 in vivo, both in basal and PDGF (platelet-derived growth factor)- or LPA (lysophosphatidic acid)-stimulated cells. The phosphatase activity of PP1α is required for P-Rex1 activation. PP1β, a close homologue of PP1α, is also able to activate P-Rex1, but less effectively. PP1α stimulates P-Rex1-mediated Rac-dependent changes in endothelial cell morphology. MS analysis of wild-type P-Rex1 and a PP1α-binding-deficient mutant revealed that endogenous PP1α dephosphorylates P-Rex1 on at least three residues, Ser834, Ser1001 and Ser1165. Site-directed mutagenesis of Ser1165 to alanine caused activation of P-Rex1 to a similar degree as did PP1α, confirming Ser1165 as a dephosphorylation site important in regulating P-Rex1 Rac-GEF activity. In summary, we have identified a novel mechanism for direct activation of P-Rex1 through PP1α-dependent dephosphorylation.
Collapse
|
30
|
Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG. Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 2012; 24:353-362. [PMID: 21893191 PMCID: PMC3312797 DOI: 10.1016/j.cellsig.2011.08.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/20/2011] [Indexed: 11/28/2022]
Abstract
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.
Collapse
Affiliation(s)
- Eva Wertheimer
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Alvaro Gutierrez-Uzquiza
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cinthia Rosemblit
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cynthia Lopez-Haber
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Maria Soledad Sosa
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Marcelo G Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
31
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
32
|
Rynkiewicz NK, Liu HJ, Balamatsias D, Mitchell CA. INPP4A/INPP4B and P-Rex proteins: related but different? Adv Biol Regul 2012; 52:265-279. [PMID: 21925199 DOI: 10.1016/j.advenzreg.2011.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Natalie K Rynkiewicz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
33
|
Balamatsias D, Kong AM, Waters JE, Sriratana A, Gurung R, Bailey CG, Rasko JEJ, Tiganis T, Macaulay SL, Mitchell CA. Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT4 protein trafficking in adipocytes. J Biol Chem 2011; 286:43229-40. [PMID: 22002247 DOI: 10.1074/jbc.m111.306621] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Demis Balamatsias
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wong CYA, Wuriyanghan H, Xie Y, Lin MF, Abel PW, Tu Y. Epigenetic regulation of phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 gene expression in prostate cancer cells. J Biol Chem 2011; 286:25813-22. [PMID: 21636851 PMCID: PMC3138273 DOI: 10.1074/jbc.m110.211292] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/17/2011] [Indexed: 12/21/2022] Open
Abstract
Aberrant up-regulation of P-Rex1 expression plays important roles in cancer progression and metastasis. The present study investigated the regulatory mechanism underlying P-Rex1 gene expression in prostate cancer cells. We showed that P-Rex1 expression was much higher in metastatic prostate cancer cells than in prostate epithelial cells and non-metastatic prostate cancer cells. Histone deacetylase (HDAC) inhibitors or silence of endogenous HDAC1 and HDAC2 markedly elevated P-Rex1 transcription in non-metastatic prostate cancer cells, whereas overexpression of recombinant HDAC1 in metastatic prostate cancer cells suppressed P-Rex1 expression. HDAC inhibitor trichostatin A (TSA) also significantly increased P-Rex1 promoter activity and caused acetylated histones to accumulate and associate with the P-Rex1 promoter. One Sp1 site, essential for basal promoter activity, was identified as critical for the TSA effect. TSA treatment did not alter the DNA-binding activity of Sp1 toward the P-Rex1 promoter; however, it facilitated the dissociation of the repressive HDAC1 and HDAC2 from the Sp1 binding region. Interestingly, HDAC1 association with Sp1 and with the P-Rex1 promoter were much weaker in metastatic prostate cancer PC-3 cells than in non-metastatic prostate cancer cells, and HDAC inhibitors only had very modest stimulatory effects on P-Rex1 promoter activity and P-Rex1 expression in PC-3 cells. Altogether, our studies demonstrate that HDACs could regulate P-Rex1 gene transcription by interaction with Sp1 and by region-specific changes in histone acetylation within the P-Rex1 promoter. Disassociation of HDACs from Sp1 on the P-Rex1 promoter may contribute to aberrant up-regulation of P-Rex1 in cancer.
Collapse
Affiliation(s)
- Chuu-Yun A. Wong
- From the Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| | - Hada Wuriyanghan
- From the Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| | - Yan Xie
- From the Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| | - Ming-Fong Lin
- the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68131
| | - Peter W. Abel
- From the Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| | - Yaping Tu
- From the Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| |
Collapse
|
35
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
36
|
Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth. PLoS One 2010; 5:e9647. [PMID: 20333299 PMCID: PMC2841637 DOI: 10.1371/journal.pone.0009647] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022] Open
Abstract
Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF.
Collapse
|
37
|
Carretero-Ortega J, Walsh CT, Hernández-García R, Reyes-Cruz G, Brown JH, Vázquez-Prado J. Phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 (P-Rex-1), a guanine nucleotide exchange factor for Rac, mediates angiogenic responses to stromal cell-derived factor-1/chemokine stromal cell derived factor-1 (SDF-1/CXCL-12) linked to Rac activation, endothelial cell migration, and in vitro angiogenesis. Mol Pharmacol 2010; 77:435-42. [PMID: 20018810 PMCID: PMC3202486 DOI: 10.1124/mol.109.060400] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/17/2009] [Indexed: 01/15/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF-1/CXCL-12) and vascular endothelial growth factor (VEGF), which can be secreted by hypoxic tumors, promote the generation of new blood vessels. These potent angiogenic factors stimulate endothelial cell migration via the activation of Rho GTPases and the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Thus, characterization of guanine nucleotide exchange factors critical in the angiogenic signaling cascades offers the possibility of identifying novel molecular targets. We demonstrated previously that mammalian target of rapamycin, an important effector and regulator of PI3K/AKT, activates phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 (P-Rex1), a Rac guanine nucleotide exchange factor identified as a target of G betagamma and PI3K, via direct interactions. In this study, we tested the hypothesis that P-Rex1 is involved in the angiogenic responses elicited by SDF-1 and VEGF. Using a knockdown approach, we demonstrate that P-Rex1 is indeed required for SDF-1 promoted signaling pathway, because there is decreased Rac activation, cell migration, and in vitro angiogenesis in P-Rex1 knockdown cells stimulated with SDF-1. In contrast, P-Rex1 knockdown does not affect responses to VEGF, and signaling to extracellular signal-regulated kinase in response to either angiogenic factor is not sensitive to P-Rex1 knockdown. We also demonstrate that in endothelial cells, VEGF promotes an increase in the expression of endogenous P-Rex1 and the SDF-1 receptor CXCR4, In addition, VEGF-pretreated cells show an increased migratory and angiogenic response to SDF-1, suggesting that VEGF stimulation can complement SDF-1/CXCR4 signaling to induce angiogenesis. We conclude that P-Rex1 is a key element in SDF-1-induced angiogenic responses and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Departments of Pharmacology (J.C.-O., R.H.-G., J.V.-P.) and Cell Biology (G.R.-C.), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico, D.F., Mexico; and the Department of Pharmacology (C.T.W., J.H.B.), University of California, San Diego, California
| | - Colin T. Walsh
- Departments of Pharmacology (J.C.-O., R.H.-G., J.V.-P.) and Cell Biology (G.R.-C.), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico, D.F., Mexico; and the Department of Pharmacology (C.T.W., J.H.B.), University of California, San Diego, California
| | - Ricardo Hernández-García
- Departments of Pharmacology (J.C.-O., R.H.-G., J.V.-P.) and Cell Biology (G.R.-C.), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico, D.F., Mexico; and the Department of Pharmacology (C.T.W., J.H.B.), University of California, San Diego, California
| | - Guadalupe Reyes-Cruz
- Departments of Pharmacology (J.C.-O., R.H.-G., J.V.-P.) and Cell Biology (G.R.-C.), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico, D.F., Mexico; and the Department of Pharmacology (C.T.W., J.H.B.), University of California, San Diego, California
| | - Joan Heller Brown
- Departments of Pharmacology (J.C.-O., R.H.-G., J.V.-P.) and Cell Biology (G.R.-C.), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico, D.F., Mexico; and the Department of Pharmacology (C.T.W., J.H.B.), University of California, San Diego, California
| | - José Vázquez-Prado
- Departments of Pharmacology (J.C.-O., R.H.-G., J.V.-P.) and Cell Biology (G.R.-C.), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico, D.F., Mexico; and the Department of Pharmacology (C.T.W., J.H.B.), University of California, San Diego, California
| |
Collapse
|
38
|
Hong K, Nishiyama M. From Guidance Signals to Movement: Signaling Molecules Governing Growth Cone Turning. Neuroscientist 2009; 16:65-78. [DOI: 10.1177/1073858409340702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Directed growth cone movements in response to external guidance signals are required for the establishment of functional neuronal connections during development, adult nerve regeneration, and adult neurogenesis. Growth cone intrinsic properties permit different growth cone responses (e.g., attraction or repulsion) to a guidance signal, and alterations to these intrinsic properties often result in opposite growth cone responses. This article reviews the current knowledge of growth cone signaling, emphasizing the dependency of Ca2+ signaling on membrane potential shifts, and cyclic nucleotide and phosphoinositide signaling pathways during growth cone turning in response to guidance signals. We also discuss how asymmetrical growth cone signaling is achieved for the fine-tuned growth cone movement.
Collapse
Affiliation(s)
- Kyonsoo Hong
- Department of Biochemistry, New York University School of Medicine, New York, New York,
| | - Makoto Nishiyama
- Department of Biochemistry, New York University School of Medicine, New York, New York
| |
Collapse
|
39
|
Hajdo-Milasinovic A, van der Kammen RA, Moneva Z, Collard JG. Rac3 inhibits adhesion and differentiation of neuronal cells by modifying GIT1 downstream signaling. J Cell Sci 2009; 122:2127-36. [DOI: 10.1242/jcs.039958] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rac1 and Rac3 are highly homologous regulatory proteins that belong to the small GTPases of the Rho family. Previously, we showed that Rac3 induces cell rounding and prevents neuronal differentiation, in contrast to its close relative Rac1, which stimulates cell spreading and neuritogenesis. To explain these opposing effects, we investigated whether Rac1 and Rac3 interact with different proteins. Here, we show that both Rac1 and Rac3 interact with GIT1, a multifunctional Arf-GAP protein, which regulates cell-matrix adhesion, cell spreading and endocytosis. However, in contrast to Rac1, the Rac3-GIT1 interaction is not mediated by βPix. Interestingly, Rac3 expression severely attenuates the interaction between GIT1 and paxillin, accompanied by defective paxillin distribution, focal adhesion formation and disturbed cell spreading. Moreover, in Rac3-expressing cells, Arf6 activity is strongly reduced and the Arf6-GAP activity of GIT1 is required for Rac3 downstream signaling. Indeed, expression of wild-type Arf6 or the Arf6-GEF ARNO induced cell spreading in the otherwise rounded Rac3-expressing cells. Our data suggest that Rac3 and Rac1 oppose each other's function by differently modulating GIT1 signaling. Rac1 induces adhesion and differentiation by activating PAK1 and stimulating the GIT1-paxillin interaction, whereas Rac3 blocks this interaction and inactivates Arf6 by stimulating the GAP function of GIT1, thereby preventing cell spreading and differentiation.
Collapse
Affiliation(s)
- Amra Hajdo-Milasinovic
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Rob A. van der Kammen
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Zvezdana Moneva
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - John G. Collard
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|