1
|
Valdez VA, Ma M, Gouveia B, Zhang R, Petry S. HURP facilitates spindle assembly by stabilizing microtubules and working synergistically with TPX2. Nat Commun 2024; 15:9689. [PMID: 39516491 PMCID: PMC11549357 DOI: 10.1038/s41467-024-53630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
In vertebrate spindles, most microtubules are formed via branching microtubule nucleation, whereby microtubules nucleate along the side of pre-existing microtubules. Hepatoma up-regulated protein (HURP) is a microtubule-associated protein that has been implicated in spindle assembly, but its mode of action is yet to be defined. In this study, we show that HURP is necessary for RanGTP-induced branching microtubule nucleation in Xenopus egg extract. Specifically, HURP stabilizes the microtubule lattice to promote microtubule formation from γ-TuRC. This function is shifted to promote branching microtubule nucleation through enhanced localization to TPX2 condensates, which form the core of the branch site on microtubules. Lastly, we provide a high-resolution cryo-EM structure of HURP on the microtubule, revealing how HURP binding stabilizes the microtubule lattice. We propose a model in which HURP stabilizes microtubules during their formation, and TPX2 preferentially enriches HURP to microtubules to promote branching microtubule nucleation and thus spindle assembly.
Collapse
Affiliation(s)
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
3
|
Valdez V, Ma M, Gouveia B, Zhang R, Petry S. HURP facilitates spindle assembly by stabilizing microtubules and working synergistically with TPX2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.571906. [PMID: 38187686 PMCID: PMC10769297 DOI: 10.1101/2023.12.18.571906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In large vertebrate spindles, the majority of microtubules are formed via branching microtubule nucleation, whereby microtubules nucleate along the side of pre-existing microtubules. Hepatoma up-regulated protein (HURP) is a microtubule-associated protein that has been implicated in spindle assembly, but its mode of action is yet to be defined. In this study, we show that HURP is necessary for RanGTP-induced branching microtubule nucleation in Xenopus egg extract. Specifically, HURP stabilizes the microtubule lattice to promote microtubule formation from γ-TuRC. This function is shifted to promote branching microtubule nucleation in the presence of TPX2, another branching-promoting factor, as HURP's localization to microtubules is enhanced by TPX2 condensation. Lastly, we provide a structure of HURP on the microtubule lattice, revealing how HURP binding stabilizes the microtubule lattice. We propose a model in which HURP stabilizes microtubules during their formation, and TPX2 preferentially enriches HURP to microtubules to promote branching microtubule nucleation and thus spindle assembly.
Collapse
Affiliation(s)
- Venecia Valdez
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
- Present address: Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (Wuhan, Hubei, China)
| | - Bernardo Gouveia
- Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
| | - Sabine Petry
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States
| |
Collapse
|
4
|
Ansari S, Gergely ZR, Flynn P, Li G, Moore JK, Betterton MD. Quantifying Yeast Microtubules and Spindles Using the Toolkit for Automated Microtubule Tracking (TAMiT). Biomolecules 2023; 13:939. [PMID: 37371519 DOI: 10.3390/biom13060939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/29/2023] Open
Abstract
Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well-developed. Current analysis of fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a result, our ability to quantify microtubule dynamics and organization from light microscopy remains limited. Despite the development of automated microtubule analysis tools for in vitro studies, analysis of images from cells often depends heavily on manual analysis. One of the main reasons for this disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking (TAMiT), which automatically detects, optimizes, and tracks fluorescent microtubules in living yeast cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT detects linear and curved polymers using a geometrical scanning technique. Images are fit via an optimization problem for the microtubule image parameters that are solved using non-linear least squares in Matlab. We benchmark our software using simulated images and show that it reliably detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar spindle microtubule bundle number, length, and lifetime in a large dataset that includes several S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated analysis are consistent with previous work and suggest a direct role for CLASP/Cls1 in bundling spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in S. cerevisiae, with measurement of dynamic instability parameters. The results obtained with our fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT can facilitate automated analysis of spindle and microtubule dynamics in yeast cells.
Collapse
Affiliation(s)
- Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Patrick Flynn
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Gabriella Li
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Ansari S, Gergely ZR, Flynn P, Li G, Moore JK, Betterton MD. Quantifying yeast microtubules and spindles using the Toolkit for Automated Microtubule Tracking (TAMiT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527544. [PMID: 36798368 PMCID: PMC9934621 DOI: 10.1101/2023.02.07.527544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well developed. Current analysis of fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a result, our ability to quantify microtubule dynamics and organization from light microscopy remains limited. Despite development of automated microtubule analysis tools for in vitro studies, analysis of images from cells often depends heavily on manual analysis. One of the main reasons for this disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking (TAMiT), which automatically detects, optimizes and tracks fluorescent microtubules in living yeast cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT detects linear and curved polymers using a geometrical scanning technique. Images are fit via an optimization problem for the microtubule image parameters that is solved using non-linear least squares in Matlab. We benchmark our software using simulated images and show that it reliably detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar spindle microtubule bundle number, length, and lifetime in a large dataset that includes several S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated analysis are consistent with previous work, and suggest a direct role for CLASP/Cls1 in bundling spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in S. cerevisiae , with measurement of dynamic instability parameters. The results obtained with our fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT can facilitate automated analysis of spindle and microtubule dynamics in yeast cells.
Collapse
|
6
|
Multiple asters organize the yolk microtubule network during dclk2-GFP zebrafish epiboly. Sci Rep 2022; 12:4072. [PMID: 35260695 PMCID: PMC8904445 DOI: 10.1038/s41598-022-07747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
It is known that the organization of microtubule (MT) networks in cells is orchestrated by subcellular structures named MT organizing centers (MTOCs). In this work, we use Light Sheet Fluorescence and Confocal Microscopy to investigate how the MT network surrounding the spherical yolk is arranged in the dclk2-GFP zebrafish transgenic line. We found that during epiboly the MT network is organized by multiple aster-like MTOCS. These structures form rings around the yolk sphere. Importantly, in wt embryos, aster-like MTOCs are only found upon pharmacological or genetic induction. Using our microscopy approach, we underscore the variability in the number of such asters in the transgenic line and report on the variety of global configurations of the yolk MT network. The asters’ morphology, dynamics, and their distribution in the yolk sphere are also analyzed. We propose that these features are tightly linked to epiboly timing and geometry. Key molecules are identified which support this asters role as MTOCs, where MT nucleation and growth take place. We conclude that the yolk MT network of dclk2-GFP transgenic embryos can be used as a model to organize microtubules in a spherical geometry by means of multiple MTOCs.
Collapse
|
7
|
Tanaka N, Mogi Y, Fujiwara T, Yabe K, Toyama Y, Higashiyama T, Yoshida Y. CZON-cutter - a CRISPR-Cas9 system for multiplexed organelle imaging in a simple unicellular alga. J Cell Sci 2021; 134:jcs258948. [PMID: 34633046 DOI: 10.1242/jcs.258948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
The unicellular alga Cyanidioschyzon merolae has a simple cellular structure; each cell has one nucleus, one mitochondrion, one chloroplast and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Naoto Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kannosuke Yabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yukiho Toyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yamato Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
9
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Wellard SR, Zhang Y, Shults C, Zhao X, McKay M, Murray SA, Jordan PW. Overlapping roles for PLK1 and Aurora A during meiotic centrosome biogenesis in mouse spermatocytes. EMBO Rep 2021; 22:e51023. [PMID: 33615678 PMCID: PMC8024899 DOI: 10.15252/embr.202051023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell-specific conditional knockout strategy, we show that Polo-like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R Wellard
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Yujiao Zhang
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Chris Shults
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Xueqi Zhao
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | | | | | - Philip W Jordan
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| |
Collapse
|
11
|
Silva-Del Toro SL, Allen LAH. Microtubules and Dynein Regulate Human Neutrophil Nuclear Volume and Hypersegmentation During H. pylori Infection. Front Immunol 2021; 12:653100. [PMID: 33828562 PMCID: PMC8019731 DOI: 10.3389/fimmu.2021.653100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils (also called polymorphonuclear leukocytes, PMNs) are heterogeneous and can exhibit considerable phenotypic and functional plasticity. In keeping with this, we discovered previously that Helicobacter pylori infection induces N1-like subtype differentiation of human PMNs that is notable for profound nuclear hypersegmentation. Herein, we utilized biochemical approaches and confocal and super-resolution microscopy to gain insight into the underlying molecular mechanisms. Sensitivity to inhibition by nocodazole and taxol indicated that microtubule dynamics were required to induce and sustain hypersegmentation, and super-resolution Stimulated Emission Depletion (STED) imaging demonstrated that microtubules were significantly more abundant and longer in hypersegmented cells. Dynein activity was also required, and enrichment of this motor protein at the nuclear periphery was enhanced following H. pylori infection. In contrast, centrosome splitting did not occur, and lamin B receptor abundance and ER morphology were unchanged. Finally, analysis of STED image stacks using Imaris software revealed that nuclear volume increased markedly prior to the onset of hypersegmentation and that nuclear size was differentially modulated by nocodazole and taxol in the presence and absence of infection. Taken together, our data define a new mechanism of hypersegmentation that is mediated by microtubules and dynein and as such advance understanding of processes that regulate nuclear morphology.
Collapse
Affiliation(s)
- Stephanie L Silva-Del Toro
- Inflammation Program of the University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program of the University of Iowa, Iowa City, IA, United States
| | - Lee-Ann H Allen
- Inflammation Program of the University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program of the University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Iowa City VA Healthcare System, Iowa City, IA, United States
| |
Collapse
|
12
|
Sharma A, Dagar S, Mylavarapu SVS. Transgelin-2 and phosphoregulation of the LIC2 subunit of dynein govern mitotic spindle orientation. J Cell Sci 2020; 133:jcs239673. [PMID: 32467330 DOI: 10.1242/jcs.239673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 08/31/2023] Open
Abstract
The molecular motor dynein is essential for mitotic spindle orientation, which defines the axis of cell division. The light intermediate chain subunits, LIC1 and LIC2, define biochemically and functionally distinct vertebrate dynein complexes, with LIC2-dynein playing a crucial role in ensuring spindle orientation. We reveal a novel, mitosis-specific interaction of LIC2-dynein with the cortical actin-bundling protein transgelin-2. Transgelin-2 is required for maintaining proper spindle length, equatorial metaphase chromosome alignment, spindle orientation and timely anaphase onset. We show that transgelin-2 stabilizes the cortical recruitment of LGN-NuMA, which together with dynein is required for spindle orientation. The opposing actions of transgelin-2 and LIC2-dynein maintain optimal cortical levels of LGN-NuMA. In addition, we show that the highly conserved serine 194 phosphorylation of LIC2 is required for proper spindle orientation, by maintaining mitotic centrosome integrity to ensure optimal astral microtubule nucleation. The work reveals two specific mechanisms through which LIC2-dynein regulates mitotic spindle orientation; namely, through a new interactor transgelin-2, which is required for engagement of LGN-NuMA with the actin cortex, and through mitotic phosphoregulation of LIC2 to control microtubule nucleation from the poles.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
13
|
Thawani A, Rale MJ, Coudray N, Bhabha G, Stone HA, Shaevitz JW, Petry S. The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy. eLife 2020; 9:e54253. [PMID: 32538784 PMCID: PMC7338055 DOI: 10.7554/elife.54253] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Determining how microtubules (MTs) are nucleated is essential for understanding how the cytoskeleton assembles. While the MT nucleator, γ-tubulin ring complex (γ-TuRC) has been identified, precisely how γ-TuRC nucleates a MT remains poorly understood. Here, we developed a single molecule assay to directly visualize nucleation of a MT from purified Xenopus laevis γ-TuRC. We reveal a high γ-/αβ-tubulin affinity, which facilitates assembly of a MT from γ-TuRC. Whereas spontaneous nucleation requires assembly of 8 αβ-tubulins, nucleation from γ-TuRC occurs efficiently with a cooperativity of 4 αβ-tubulin dimers. This is distinct from pre-assembled MT seeds, where a single dimer is sufficient to initiate growth. A computational model predicts our kinetic measurements and reveals the rate-limiting transition where laterally associated αβ-tubulins drive γ-TuRC into a closed conformation. NME7, TPX2, and the putative activation domain of CDK5RAP2 h γ-TuRC-mediated nucleation, while XMAP215 drastically increases the nucleation efficiency by strengthening the longitudinal γ-/αβ-tubulin interaction.
Collapse
Affiliation(s)
- Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Michael J Rale
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton UniversityPrincetonUnited States
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative GenomicsPrincetonUnited States
- Department of Physics, Princeton UniversityPrincetonUnited States
| | - Sabine Petry
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
14
|
Sapkota H, Wren JD, Gorbsky GJ. CSAG1 maintains the integrity of the mitotic centrosome in cells with defective p53. J Cell Sci 2020; 133:jcs.239723. [PMID: 32295846 DOI: 10.1242/jcs.239723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosomes focus microtubules to promote mitotic spindle bipolarity, a critical requirement for balanced chromosome segregation. Comprehensive understanding of centrosome function and regulation requires a complete inventory of components. While many centrosome components have been identified, others yet remain undiscovered. We have used a bioinformatics approach, based on 'guilt by association' expression to identify novel mitotic components among the large group of predicted human proteins that have yet to be functionally characterized. Here, we identify chondrosarcoma-associated gene 1 protein (CSAG1) in maintaining centrosome integrity during mitosis. Depletion of CSAG1 disrupts centrosomes and leads to multipolar spindles, particularly in cells with compromised p53 function. Thus, CSAG1 may reflect a class of 'mitotic addiction' genes, whose expression is more essential in transformed cells.
Collapse
Affiliation(s)
- Hem Sapkota
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Sasaki-Takahashi N, Shinohara H, Shioda S, Seki T. The polarity and properties of radial glia-like neural stem cells are altered by seizures with status epilepticus: Study using an improved mouse pilocarpine model of epilepsy. Hippocampus 2020; 30:250-262. [PMID: 32101365 DOI: 10.1002/hipo.23153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
Abstract
In the adult mouse hippocampus, new neurons are produced by radial glia-like (RGL) neural stem cells in the subgranular zone, which extend their apical processes toward the molecular layer, and express the astrocyte marker glial fibrillary acidic protein, but not the astrocyte marker S100β. In rodent models of epilepsy, adult hippocampal neurogenesis was reported to be increased after acute and mild seizures, but to be decreased by chronic and severe epilepsy. In the present study, we investigated how the severity of seizures affects neurogenesis and RGL neural stem cells in acute stages of epilepsy, using an improved mouse pilocarpine model in which pilocarpine-induced hypothermia was prevented by maintaining body temperature, resulting in a high incidence rate of epileptic seizures and low rate of mortality. In mice that experienced seizures without status epilepticus (SE), the number of proliferating progenitors and immature neurons were significantly increased, whereas no changes were observed in RGL cells. In mice that experienced seizures with SE, the number of proliferating progenitors and immature neurons were unchanged, but the number of RGL cells with an apical process was significantly reduced. Furthermore, the processes of the majority of RGL cells extended inversely toward the hilus, and about half of the aberrant RGL cells expressed S100β. These results suggest that seizures with SE lead to changes in the polarity and properties of RGL neural stem cells, which may direct them toward astrocyte differentiation, resulting in the reduction of neural stem cells producing new granule cells. This also suggests the possibility that cell polarity of RGL stem cells is important for maintaining the stemness of adult neural stem cells.
Collapse
Affiliation(s)
| | - Hiroshi Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Seiji Shioda
- Institute for Advanced Bioscience Research, Hoshi University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Yi ZY, Meng TG, Ma XS, Li J, Zhang CH, Ouyang YC, Schatten H, Qiao J, Sun QY, Qian WP. CDC6 regulates both G2/M transition and metaphase-to-anaphase transition during the first meiosis of mouse oocytes. J Cell Physiol 2020; 235:5541-5554. [PMID: 31984513 DOI: 10.1002/jcp.29469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.
Collapse
Affiliation(s)
- Zi-Yun Yi
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Chun-Hui Zhang
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Jie Qiao
- Reproductive Medical Center, Peking University Third Hospital, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
17
|
Microtubules in Influenza Virus Entry and Egress. Viruses 2020; 12:v12010117. [PMID: 31963544 PMCID: PMC7020094 DOI: 10.3390/v12010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza viruses are respiratory pathogens that represent a significant threat to public health, despite the large-scale implementation of vaccination programs. It is necessary to understand the detailed and complex interactions between influenza virus and its host cells in order to identify successful strategies for therapeutic intervention. During viral entry, the cellular microenvironment presents invading pathogens with a series of obstacles that must be overcome to infect permissive cells. Influenza hijacks numerous host cell proteins and associated biological pathways during its journey into the cell, responding to environmental cues in order to successfully replicate. The cellular cytoskeleton and its constituent microtubules represent a heavily exploited network during viral infection. Cytoskeletal filaments provide a dynamic scaffold for subcellular viral trafficking, as well as virus-host interactions with cellular machineries that are essential for efficient uncoating, replication, and egress. In addition, influenza virus infection results in structural changes in the microtubule network, which itself has consequences for viral replication. Microtubules, their functional roles in normal cell biology, and their exploitation by influenza viruses will be the focus of this review.
Collapse
|
18
|
The γ-tubulin complex protein GCP6 is crucial for spindle morphogenesis but not essential for microtubule reorganization in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:27115-27123. [PMID: 31818952 DOI: 10.1073/pnas.1912240116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
γ-Tubulin typically forms a ring-shaped complex with 5 related γ-tubulin complex proteins (GCP2 to GCP6), and this γ-tubulin ring complex (γTuRC) serves as a template for microtubule (MT) nucleation in plants and animals. While the γTuRC takes part in MT nucleation in most eukaryotes, in fungi such events take place robustly with just the γ-tubulin small complex (γTuSC) assembled by γ-tubulin plus GCP2 and GCP3. To explore whether the γTuRC is the sole functional γ-tubulin complex in plants, we generated 2 mutants of the GCP6 gene encoding the largest subunit of the γTuRC in Arabidopsis thaliana Both mutants showed similar phenotypes of dwarfed vegetative growth and reduced fertility. The gcp6 mutant assembled the γTuSC, while the wild-type cells had GCP6 join other GCPs to produce the γTuRC. Although the gcp6 cells had greatly diminished γ-tubulin localization on spindle MTs, the protein was still detected there. The gcp6 cells formed spindles that lacked MT convergence and discernable poles; however, they managed to cope with the challenge of MT disorganization and were able to complete mitosis and cytokinesis. Our results reveal that the γTuRC is not the only functional form of the γ-tubulin complex for MT nucleation in plant cells, and that γ-tubulin-dependent, but γTuRC-independent, mechanisms meet the basal need of MT nucleation. Moreover, we show that the γTuRC function is more critical for the assembly of spindle MT array than for the phragmoplast. Thus, our findings provide insight into acentrosomal MT nucleation and organization.
Collapse
|
19
|
Lee YRJ, Liu B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. THE NEW PHYTOLOGIST 2019; 222:1705-1718. [PMID: 30681146 DOI: 10.1111/nph.15705] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/07/2019] [Indexed: 05/15/2023]
Abstract
Contents Summary I. Introduction II. MT arrays in plant cells III. γ-Tubulin and MT nucleation IV. MT nucleation sites or flexible MTOCs in plant cells V. MT-dependent MT nucleation VI. Generating new MTs for spindle assembly VII. Generation of MTs for phragmoplast expansion during cytokinesis VIII. MT generation for the cortical MT array IX. MT nucleation: looking forward Acknowledgements References SUMMARY: Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel their MT network in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of new MTs is a critical step for MT remodeling. Although many key factors contributing to MT nucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexible MTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions. MT-dependent MT nucleation is particularly noticeable in plant cells because it accounts for the primary source of MT generation for assembling spindle, phragmoplast, and cortical arrays when the γ-tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant-specific MTOCs and how plant cells activate or inactivate MT nucleation activities in spatiotemporally regulated manners.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Regulating the BCL2 Family to Improve Sensitivity to Microtubule Targeting Agents. Cells 2019; 8:cells8040346. [PMID: 31013740 PMCID: PMC6523793 DOI: 10.3390/cells8040346] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 02/03/2023] Open
Abstract
Chemotherapeutic targeting of microtubules has been the standard of care in treating a variety of malignancies for decades. During mitosis, increased microtubule dynamics are necessary for mitotic spindle formation and successful chromosomal segregation. Microtubule targeting agents (MTAs) disrupt the dynamics necessary for successful spindle assembly and trigger programmed cell death (apoptosis). As the critical regulators of apoptosis, anti-apoptotic BCL2 family members are often amplified during carcinogenesis that can result in MTA resistance. This review outlines how BCL2 family regulation is positioned within the context of MTA treatment and explores the potential of combination therapy of MTAs with emerging BCL2 family inhibitors.
Collapse
|
21
|
Mariappan A, Soni K, Schorpp K, Zhao F, Minakar A, Zheng X, Mandad S, Macheleidt I, Ramani A, Kubelka T, Dawidowski M, Golfmann K, Wason A, Yang C, Simons J, Schmalz HG, Hyman AA, Aneja R, Ullrich R, Urlaub H, Odenthal M, Büttner R, Li H, Sattler M, Hadian K, Gopalakrishnan J. Inhibition of CPAP-tubulin interaction prevents proliferation of centrosome-amplified cancer cells. EMBO J 2018; 38:embj.201899876. [PMID: 30530478 PMCID: PMC6331730 DOI: 10.15252/embj.201899876] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP‐dependent peri‐centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP–tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP–tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de‐clustering, prolonged multipolar mitosis, and cell death. 3D‐organotypic invasion assays reveal that CCB02 has broad anti‐invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)‐resistant EGFR‐mutant non‐small‐cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug‐resistant cancers exhibiting high incidence of centrosome amplification.
Collapse
Affiliation(s)
- Aruljothi Mariappan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Komal Soni
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Fan Zhao
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Amin Minakar
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - Xiangdong Zheng
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Iris Macheleidt
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Anand Ramani
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tomáš Kubelka
- Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Maciej Dawidowski
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany.,Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Kristina Golfmann
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Arpit Wason
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Judith Simons
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | | | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Roland Ullrich
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany
| | - Margarete Odenthal
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Reinhardt Büttner
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Haitao Li
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jay Gopalakrishnan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany .,Center for Molecular Medicine of the University of Cologne, Cologne, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
22
|
Massive cytoplasmic transport and microtubule organization in fertilized chordate eggs. Dev Biol 2018; 448:154-160. [PMID: 30521810 DOI: 10.1016/j.ydbio.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 01/13/2023]
Abstract
Eggs have developed their own strategies for early development. Amphibian, teleost fish, and ascidian eggs show cortical rotation and an accompanying structure, a cortical parallel microtubule (MT) array, during the one-cell embryonic stage. Cortical rotation is thought to relocate maternal deposits to a certain compartment of the egg and to polarize the embryo. The common features and differences among chordate eggs as well as localized maternal proteins and mRNAs that are related to the organization of MT structures are described in this review. Furthermore, recent studies report progress in elucidating the molecular nature and functions of the noncentrosomal MT organizing center (ncMTOC). The parallel array of MT bundles is presumably organized by ncMTOCs; therefore, the mechanism of ncMTOC control is likely inevitable for these species. Thus, the molecules related to the ncMTOC provide clues for understanding the mechanisms of early developmental systems, which ultimately determine the embryonic axis.
Collapse
|
23
|
γ-Tubulin small complex formation is essential for early zebrafish embryogenesis. Mech Dev 2018; 154:145-152. [DOI: 10.1016/j.mod.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
|
24
|
Kim J, Park SJ. Roles of end-binding 1 protein and gamma-tubulin small complex in cytokinesis and flagella formation of Giardia lamblia. Microbiologyopen 2018; 8:e00748. [PMID: 30318753 PMCID: PMC6562232 DOI: 10.1002/mbo3.748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 02/05/2023] Open
Abstract
Giardia lamblia is a unicellular organism with two nuclei, a median body, eight flagella, and an adhesive disk. γ‐Tubulin is a microtubule (MT)‐nucleating protein that functions in the γ‐tubulin small complex (γ‐TuSC) in budding yeast. In this study, G. lamblia γ‐tubulin (Glγ‐tubulin) was found to bind to another MT‐binding protein, namely G. lamblia end‐binding protein 1 (GlEB1), via both in vivo and in vitro assays. Hemagglutinin (HA)‐tagged Glγ‐tubulin localized to the basal bodies, axonemes, and median bodies of G. lamblia trophozoites. The knockdown of Glγ‐tubulin expression using an anti‐Glγ‐tubulin morpholino resulted in a decreased growth rate and an increased failed cytokinesis cells of Giardia. The formation of median bodies was affected, and the central pair of MTs in flagella was frequently missing in the Giardia treated with an anti‐Glγ‐tubulin morpholino. G. lamblia γ‐tubulin complex protein 2 (GlGCP2) and GlGCP3, which are putative components of γ‐TuSC, were co‐immunoprecipitated with HA‐tagged Glγ‐tubulin in Giardia extracts. The knockdown of GlGCP2 and GlGCP3 expression also resulted in decreased formation of both the median body and flagella MTs. Knockdown of Glγ‐tubulin, GlGCP2, and GlGCP3 expression affected localization of GlEB1 in G. lamblia. In addition, decreased level of GlEB1 caused reduced formation of median body and the central pair of flagella MTs. These results indicated that Glγ‐tubulin plays a role in MT nucleation for median body formation and flagella biogenesis as a component of Glγ‐TuSC in Giardia and GlEB1 may be involved in this process.
Collapse
Affiliation(s)
- Juri Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Romé P, Ohkura H. A novel microtubule nucleation pathway for meiotic spindle assembly in oocytes. J Cell Biol 2018; 217:3431-3445. [PMID: 30087124 PMCID: PMC6168254 DOI: 10.1083/jcb.201803172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
The meiotic spindle in oocytes is assembled in the absence of centrosomes, the major microtubule nucleation sites in mitotic and male meiotic cells. A crucial, yet unresolved question in meiosis is how spindle microtubules are generated without centrosomes and only around chromosomes in the exceptionally large volume of oocytes. Here we report a novel oocyte-specific microtubule nucleation pathway that is essential for assembling most spindle microtubules complementarily with the Augmin pathway. This pathway is mediated by the kinesin-6 Subito/MKlp2, which recruits the γ-tubulin complex to the spindle equator to nucleate microtubules in Drosophila oocytes. Away from chromosomes, Subito interaction with the γ-tubulin complex is suppressed by its N-terminal region to prevent ectopic microtubule assembly in oocytes. We further demonstrate in vitro that the Subito complex from ovaries can nucleate microtubules from pure tubulin dimers. Collectively, microtubule nucleation regulated by Subito drives spatially restricted spindle assembly in oocytes.
Collapse
Affiliation(s)
- Pierre Romé
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, UK
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
26
|
Różańska E, Czarnocka W, Baranowski Ł, Mielecki J, de Almeida Engler J, Sobczak M. Expression of both Arabidopsis γ-tubulin genes is essential for development of a functional syncytium induced by Heterodera schachtii. PLANT CELL REPORTS 2018; 37:1279-1292. [PMID: 29947953 PMCID: PMC6096582 DOI: 10.1007/s00299-018-2312-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 05/23/2023]
Abstract
After initial up-regulation, expression of TUBG1 and TUBG2 is significantly down-regulated in mature syncytia, but lack of expression of either of γ-tubulin genes reduces numbers of nematode infections and developing females. Infective second stage juveniles of sedentary plant parasitic nematode Heterodera schachtii invade the root vascular tissue and induce a feeding site, named syncytium, formed as a result of cell hypertrophy and partial cell wall dissolution leading to a multinucleate state. Syncytium formation and maintenance involves a molecular interplay between the plant host and the developing juveniles leading to rearrangements and fragmentation of the plant cytoskeleton. In this study, we investigated the role of two Arabidopsis γ-tubulin genes (TUBG1 and TUBG2), involved in MTs nucleation during syncytium development. Expression analysis revealed that both γ-tubulin's transcript levels changed during syncytium development and after initial up-regulation (1-3 dpi) they were significantly down-regulated in 7, 10 and 15 dpi syncytia. Moreover, TUBG1 and TUBG2 showed distinct immunolocalization patterns in uninfected roots and syncytia. Although no severe changes in syncytium anatomy and ultrastructure in tubg1-1 and tubg2-1 mutants were observed compared to syncytia induced in wild-type plants, nematode infection assays revealed reduced numbers of infecting juveniles and developed female nematodes in mutant lines. Our results indicate that the expression of both TUBG1 and TUBG2 genes, although generally down-regulated in mature syncytia, is essential for successful root infection, development of functional syncytium and nematode maturation.
Collapse
Affiliation(s)
- Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Łukasz Baranowski
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | | - Mirosław Sobczak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
27
|
Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life 2018; 70:602-611. [DOI: 10.1002/iub.1865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
28
|
Thawani A, Kadzik RS, Petry S. XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex. Nat Cell Biol 2018; 20:575-585. [PMID: 29695792 PMCID: PMC5926803 DOI: 10.1038/s41556-018-0091-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
How microtubules (MTs) are generated in the cell is a major question in understanding how the cytoskeleton is assembled. For several decades, γ-tubulin has been accepted as the universal MT nucleator of the cell. Although there is evidence that γ-tubulin complexes are not the sole MT nucleators, identification of other nucleation factors has proven difficult. Here, we report that the well-characterized MT polymerase XMAP215 (chTOG/Msps/Stu2p/Alp14/Dis1 homologue) is essential for MT nucleation in Xenopus egg extracts. The concentration of XMAP215 determines the extent of MT nucleation. Even though XMAP215 and the γ-tubulin ring complex (γ-TuRC) possess minimal nucleation activity individually, together, these factors synergistically stimulate MT nucleation in vitro. The amino-terminal TOG domains 1-5 of XMAP215 bind to αβ-tubulin and promote MT polymerization, whereas the conserved carboxy terminus is required for efficient MT nucleation and directly binds to γ-tubulin. In summary, XMAP215 and γ-TuRC together function as the principal nucleation module that generates MTs in cells.
Collapse
Affiliation(s)
- Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Rachel S Kadzik
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
29
|
Feitosa WB, Hwang K, Morris PL. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Dev Biol 2018; 434:278-291. [PMID: 29269218 PMCID: PMC5805567 DOI: 10.1016/j.ydbio.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization.
Collapse
Affiliation(s)
- Weber Beringui Feitosa
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - KeumSil Hwang
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA; The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
30
|
Luo B, Smith JW, Wu Z, Kim J, Ou Z, Chen Q. Polymerization-Like Co-Assembly of Silver Nanoplates and Patchy Spheres. ACS NANO 2017; 11:7626-7633. [PMID: 28715193 DOI: 10.1021/acsnano.7b02059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly anisometric nanoparticles have distinctive mechanical, electrical, and thermal properties and are therefore appealing candidates for use as self-assembly building blocks. Here, we demonstrate that ultra-anisometric nanoplates, which have a nanoscale thickness but a micrometer-scale edge length, offer many material design capabilities. In particular, we show that these nanoplates "copolymerize" in a predictable way with patchy spheres (Janus and triblock particles) into one- and two-dimensional structures with tunable architectural properties. We find that, on the pathway to these structures, nanoplates assemble into chains following the kinetics of molecular step-growth polymerization. In the same mechanistic framework, patchy spheres control the size distribution and morphology of assembled structures, by behaving as monofunctional chain stoppers or multifunctional branch points during nanoplate polymerization. In addition, both the lattice constant and the stiffness of the nanoplate assemblies can be manipulated after assembly. We see highly anisometric nanoplates as one representative of a broader class of dual length-scale nanoparticles, with the potential to enrich the library of structures and properties available to the nanoparticle self-assembly toolbox.
Collapse
Affiliation(s)
- Binbin Luo
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - John W Smith
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zixuan Wu
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Juyeong Kim
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zihao Ou
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Nuclear pore complex tethers to the cytoskeleton. Semin Cell Dev Biol 2017; 68:52-58. [PMID: 28676424 DOI: 10.1016/j.semcdb.2017.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed.
Collapse
|
32
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Chen Y, Bi H, Li X, Zhang Z, Yue H, Weng S, He J. Wsv023 interacted with Litopenaeus vannamei γ-tubulin complex associated proteins 2, and decreased the formation of microtubules. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160379. [PMID: 28484601 PMCID: PMC5414238 DOI: 10.1098/rsos.160379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
A previous study found the key transcription factor of Litopenaeus vannamei PERK-eIF2α pathway cyclic AMP-dependent transcription factor 4 (LvATF4) was involved in the transcriptional regulation of white spot syndrome virus (WSSV) gene wsv023. Knocked-down expression of LvATF4 reduced the viral copy number and the cumulative mortality of WSSV-infected shrimp. These results suggested that wsv023 may be critical to WSSV infection but the precise function of wsv023 was still unknown. By using co-immunoprecipitation and pull-down assays, we show that wsv023 interacts with L. vannamei gamma complex-associated protein 2 (LvGCP2), which is the core protein of the γ-tubulin small complex. Knocked-down, the wsv023 gene significantly reduced the copy number of WSSV in L. vannamei muscle, as well as the cumulative mortality of infected shrimp. And PERK-eIF2α pathway inhibition also showed reduced virus copy number and abrogated shrimp mortality. Furthermore, overexpression of wsv023 inhibited the formation of microtubules in 293T cells. Flow cytometry revealed that WSSV infection similarly decreased the formation of microtubules in L. vannamei haemocytes. These findings suggested that wsv023 plays a role in microtubule organization in host cells, which in turn may be beneficial to WSSV.
Collapse
Affiliation(s)
- Yihong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
- State Key Laboratory for Biocontrol, OE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Haitao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
- State Key Laboratory for Biocontrol, OE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Xiaoyun Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Zezhi Zhang
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
- State Key Laboratory for Biocontrol, OE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Haitao Yue
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
- State Key Laboratory for Biocontrol, OE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
- State Key Laboratory for Biocontrol, OE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Jianguo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
- State Key Laboratory for Biocontrol, OE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| |
Collapse
|
34
|
Shakeri R, Kheirollahi A, Davoodi J. Apaf-1: Regulation and function in cell death. Biochimie 2017; 135:111-125. [PMID: 28192157 DOI: 10.1016/j.biochi.2017.02.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
Apoptosis, a form of programmed cell death, is responsible for eliminating damaged or unnecessary cells in multicellular organisms. Various types of intracellular stress trigger apoptosis by induction of cytochrome c release from mitochondria into the cytosol. Apoptotic protease activating factor-1 (Apaf-1) is a key molecule in the intrinsic or mitochondrial pathway of apoptosis, which oligomerizes in response to cytochrome c release and forms a large complex known as apoptosome. Procaspase-9, an initiator caspase in the mitochondrial pathway, is recruited and activated by the apoptosome leading to downstream caspase-3 processing. Various cellular proteins and small molecules can modulate apoptosome formation and function directly or indirectly. Despite recent progress in understanding the mitochondrial pathway of apoptosis, numerous questions such as the molecular mechanism of Apaf-1 oligomerization and caspase-9 activation remain poorly understood. In addition, reports have emerged showing non-apoptotic functions for Apaf-1. The current review summarizes the latest findings regarding structure-function relationship of Apaf-1 as well as its modifiers.
Collapse
Affiliation(s)
- Raheleh Shakeri
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Asma Kheirollahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran.
| |
Collapse
|
35
|
Compagnucci C, Piermarini E, Sferra A, Borghi R, Niceforo A, Petrini S, Piemonte F, Bertini E. Cytoskeletal dynamics during in vitro neurogenesis of induced pluripotent stem cells (iPSCs). Mol Cell Neurosci 2016; 77:113-124. [PMID: 27756615 DOI: 10.1016/j.mcn.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) provide a novel tool to investigate the pathophysiology of poorly known diseases, in particular those affecting the nervous system, which has been difficult to study for its lack of accessibility. In this emerging and promising field, recent iPSCs studies are mostly used as "proof-of-principle" experiments that are confirmatory of previous findings obtained from animal models and postmortem human studies; its promise as a discovery tool is just beginning to be realized. A recent number of studies point to the functional similarities between in vitro neurogenesis and in vivo neuronal development, suggesting that similar morphogenetic and patterning events direct neuronal differentiation. In this context, neuronal adhesion, cytoskeletal organization and cell metabolism emerge as an integrated and unexplored processes of human neurogenesis, mediated by the lack of data due to the difficult accessibility of the human neural tissue. These observations raise the necessity to understand which are the players controlling cytoskeletal reorganization and remodeling. In particular, we investigated human in vitro neurogenesis using iPSCs of healthy subjects to unveil the underpinnings of the cytoskeletal dynamics with the aim to shed light on the physiologic events controlling the development and the functionality of neuronal cells. We validate the iPSCs system to better understand the development of the human nervous system in order to set the bases for the future understanding of pathologies including developmental disorders (i.e. intellectual disability), epilepsy but also neurodegenerative disorders (i.e. Friedreich's Ataxia). We investigate the changes of the cytoskeletal components during the 30days of neuronal differentiation and we demonstrate that human neuronal differentiation requires a (time-dependent) reorganization of actin filaments, intermediate filaments and microtubules; and that immature neurons present a finely regulated localization of Glu-, Tyr- and Acet-TUBULINS. This study advances our understanding on cytoskeletal dynamics with the hope to pave the way for future therapies that could be potentially able to target cytoskeletal based neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Children's Research Hospital Bambino Gesù, IRCCS, Rome 00146, Italy.
| | - Emanuela Piermarini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Children's Research Hospital Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Antonella Sferra
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Children's Research Hospital Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Rossella Borghi
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Children's Research Hospital Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Alessia Niceforo
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Children's Research Hospital Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Fiorella Piemonte
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Children's Research Hospital Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Children's Research Hospital Bambino Gesù, IRCCS, Rome 00146, Italy
| |
Collapse
|
36
|
Ricolo D, Deligiannaki M, Casanova J, Araújo S. Centrosome Amplification Increases Single-Cell Branching in Post-mitotic Cells. Curr Biol 2016; 26:2805-2813. [DOI: 10.1016/j.cub.2016.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023]
|
37
|
Braun A, Caesar NM, Dang K, Myers KA. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells. J Vis Exp 2016. [PMID: 27584860 PMCID: PMC5091855 DOI: 10.3791/54265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration.
Collapse
Affiliation(s)
- Alexander Braun
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Nicole M Caesar
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kyvan Dang
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia;
| |
Collapse
|
38
|
Cavazza T, Malgaretti P, Vernos I. The sequential activation of the mitotic microtubule assembly pathways favors bipolar spindle formation. Mol Biol Cell 2016; 27:2935-45. [PMID: 27489339 PMCID: PMC5042580 DOI: 10.1091/mbc.e16-05-0322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023] Open
Abstract
A combination of experimental data obtained in somatic cells and Xenopus egg extracts and modeling suggests a novel function for centrosome maturation that balances the activity of the mitotic microtubule assembly pathways favoring bipolar spindle formation. Centrosome maturation is the process by which the duplicated centrosomes recruit pericentriolar components and increase their microtubule nucleation activity before mitosis. The role of this process in cells entering mitosis has been mostly related to the separation of the duplicated centrosomes and thereby to the assembly of a bipolar spindle. However, spindles can form without centrosomes. In fact, all cells, whether they have centrosomes or not, rely on chromatin-driven microtubule assembly to form a spindle. To test whether the sequential activation of these microtubule assembly pathways, defined by centrosome maturation and nuclear envelope breakdown, plays any role in spindle assembly, we combined experiments in tissue culture cells and Xenopus laevis egg extracts with a mathematical model. We found that interfering with the sequential activation of the microtubule assembly pathways compromises bipolar spindle assembly in tissue culture cells but not in X. laevis egg extracts. Our data suggest a novel function for centrosome maturation that determines the contribution of the chromosomal microtubule assembly pathway and favors bipolar spindle formation in most animal cells in which tubulin is in limiting amounts.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Paolo Malgaretti
- Departament de Fisica Fonamental, Universitat de Barcelona, 08028 Barcelona, Spain Max-Planck-Institut für Intelligente Systeme and IV. Institut für Theoretische Physik, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
39
|
He XQ, Song YQ, Liu R, Liu Y, Zhang F, Zhang Z, Shen YT, Xu L, Chen MH, Wang YL, Xu BH, Yang XJ, Wang HL. Axin-1 Regulates Meiotic Spindle Organization in Mouse Oocytes. PLoS One 2016; 11:e0157197. [PMID: 27284927 PMCID: PMC4902301 DOI: 10.1371/journal.pone.0157197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
Axin-1, a negative regulator of Wnt signaling, is a versatile scaffold protein involved in centrosome separation and spindle assembly in mitosis, but its function in mammalian oogenesis remains unknown. Here we examined the localization and function of Axin-1 during meiotic maturation in mouse oocytes. Immunofluorescence analysis showed that Axin-1 was localized around the spindle. Knockdown of the Axin1 gene by microinjection of specific short interfering (si)RNA into the oocyte cytoplasm resulted in severely defective spindles, misaligned chromosomes, failure of first polar body (PB1) extrusion, and impaired pronuclear formation. However, supplementing the culture medium with the Wnt pathway activator LiCl improved spindle morphology and pronuclear formation. Downregulation of Axin1 gene expression also impaired the spindle pole localization of γ-tubulin/Nek9 and resulted in retention of the spindle assembly checkpoint protein BubR1 at kinetochores after 8.5 h of culture. Our results suggest that Axin-1 is critical for spindle organization and cell cycle progression during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Qin He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
- The Fifth Hospital of Wuhan, Wuhan City, Hubei Province, P. R. China
| | - Yue-Qiang Song
- New England Fertility Institute, Stamford, CT, United States of America
| | - Rui Liu
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Fei Zhang
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Zhen Zhang
- Xiamen Institute for Food and Drug Quality Control, Xiamen City, Fujian Province, P. R. China
| | - Yu-Ting Shen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai City, P. R. China
| | - Lin Xu
- New England Fertility Institute, Stamford, CT, United States of America
| | - Ming-Huang Chen
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Bai-Hui Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | - Xiang-Jun Yang
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, P. R. China
- * E-mail: (HLW); (XJY)
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
- * E-mail: (HLW); (XJY)
| |
Collapse
|
40
|
Abstract
Polarized distribution of signaling molecules to axons and dendrites facilitates directional information flow in complex vertebrate nervous systems. The topic we address here is when the key aspects of neuronal polarity evolved. All neurons have a central cell body with thin processes that extend from it to cover long distances, and they also all rely on voltage-gated ion channels to propagate signals along their length. The most familiar neurons, those in vertebrates, have additional cellular features that allow them to send directional signals efficiently. In these neurons, dendrites typically receive signals and axons send signals. It has been suggested that many of the distinct features of axons and dendrites, including the axon initial segment, are found only in vertebrates. However, it is now becoming clear that two key cytoskeletal features that underlie polarized sorting, a specialized region at the base of the axon and polarized microtubules, are found in invertebrate neurons as well. It thus seems likely that all bilaterians generate axons and dendrites in the same way. As a next step, it will be extremely interesting to determine whether the nerve nets of cnidarians and ctenophores also contain polarized neurons with true axons and dendrites, or whether polarity evolved in concert with the more centralized nervous systems found in bilaterians.
Collapse
Affiliation(s)
- Melissa M Rolls
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy J Jegla
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
41
|
Yonezawa S, Shigematsu M, Hirata K, Hayashi K. Loss of γ-tubulin, GCP-WD/NEDD1 and CDK5RAP2 from the Centrosome of Neurons in Developing Mouse Cerebral and Cerebellar Cortex. Acta Histochem Cytochem 2015; 48:145-52. [PMID: 26633906 DOI: 10.1267/ahc.15023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/18/2015] [Indexed: 11/22/2022] Open
Abstract
It has been recently reported that the centrosome of neurons does not have microtubule nucleating activity. Microtubule nucleation requires γ-tubulin as well as its recruiting proteins, GCP-WD/NEDD1 and CDK5RAP2 that anchor γ-tubulin to the centrosome. Change in the localization of these proteins during in vivo development of brain, however, has not been well examined. In this study we investigate the localization of γ-tubulin, GCP-WD and CDK5RAP2 in developing cerebral and cerebellar cortex with immunofluorescence. We found that γ-tubulin and its recruiting proteins were localized at centrosomes of immature neurons, while they were lost at centrosomes in mature neurons. This indicated that the loss of microtubule nucleating activity at the centrosome of neurons is due to the loss of γ-tubulin-recruiting proteins from the centrosome. RT-PCR analysis revealed that these proteins are still expressed after birth, suggesting that they have a role in microtubule generation in cell body and dendrites of mature neurons. Microtubule regrowth experiments on cultured mature neurons showed that microtubules are nucleated not at the centrosome but within dendrites. These data indicated the translocation of microtubule-organizing activity from the centrosome to dendrites during maturation of neurons, which would explain the mixed polarity of microtubules in dendrites.
Collapse
Affiliation(s)
- Satoshi Yonezawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Momoko Shigematsu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Kazuto Hirata
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Kensuke Hayashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| |
Collapse
|
42
|
Meunier S, Vernos I. Acentrosomal Microtubule Assembly in Mitosis: The Where, When, and How. Trends Cell Biol 2015; 26:80-87. [PMID: 26475655 DOI: 10.1016/j.tcb.2015.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
In mitosis the cell assembles the bipolar spindle, a microtubule (MT)-based apparatus that segregates the duplicated chromosomes into two daughter cells. Most animal cells enter mitosis with duplicated centrosomes that provide an active source of dynamic MTs. However, it is now established that spindle assembly relies on the nucleation of acentrosomal MTs occurring around the chromosomes after nuclear envelope breakdown, and on pre-existing microtubules. Where chromosome-dependent MT nucleation occurs, when MT amplification takes place and how the two pathways function are still key questions that generate some controversies. We reconcile the data and present an integrated model accounting for acentrosomal microtubule assembly in the dividing cell.
Collapse
Affiliation(s)
- Sylvain Meunier
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
43
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
44
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
45
|
Abstract
A metaphase spindle is a complex structure consisting of microtubules and a myriad of different proteins that modulate microtubule dynamics together with chromatin and kinetochores. A decade ago, a full description of spindle formation and function seemed a lofty goal. Here, we describe how work in the last 10 years combining cataloging of spindle components, the characterization of their biochemical activities using single-molecule techniques, and theory have advanced our knowledge. Taken together, these advances suggest that a full understanding of spindle assembly and function may soon be possible.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
46
|
Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:413076. [PMID: 26137480 PMCID: PMC4475536 DOI: 10.1155/2015/413076] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
| | - Mutsa Tatenda Madondo
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michael Quinn
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Magdalena Plebanski
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| |
Collapse
|
47
|
Schuster M, Kilaru S, Latz M, Steinberg G. Fluorescent markers of the microtubule cytoskeleton in Zymoseptoria tritici. Fungal Genet Biol 2015; 79:141-9. [PMID: 25857261 PMCID: PMC4502552 DOI: 10.1016/j.fgb.2015.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/28/2022]
Abstract
The microtubule cytoskeleton supports vital processes in fungal cells, including hyphal growth and mitosis. Consequently, it is a target for fungicides, such as benomyl. The use of fluorescent fusion proteins to illuminate microtubules and microtubule-associated proteins has led to a break-through in our understanding of their dynamics and function in fungal cells. Here, we introduce fluorescent markers to visualize microtubules and accessory proteins in the wheat pathogen Zymoseptoria tritici. We fused enhanced green-fluorescent protein to α-tubulin (ZtTub2), to ZtPeb1, a homologue of the mammalian plus-end binding protein EB1, and to ZtGrc1, a component of the minus-end located γ-tubulin ring complex, involved in the nucleation of microtubules. In vivo observation confirms the localization and dynamic behaviour of all three markers. These marker proteins are useful tools for understanding the organization and importance of the microtubule cytoskeleton in Z. tritici.
Collapse
Affiliation(s)
- M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
48
|
Ishihara K, Nguyen PA, Wühr M, Groen AC, Field CM, Mitchison TJ. Organization of early frog embryos by chemical waves emanating from centrosomes. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0454. [PMID: 25047608 DOI: 10.1098/rstb.2013.0454] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The large cells in early vertebrate development face an extreme physical challenge in organizing their cytoplasm. For example, amphibian embryos have to divide cytoplasm that spans hundreds of micrometres every 30 min according to a precise geometry, a remarkable accomplishment given the extreme difference between molecular and cellular scales in this system. How do the biochemical reactions occurring at the molecular scale lead to this emergent behaviour of the cell as a whole? Based on recent findings, we propose that the centrosome plays a crucial role by initiating two autocatalytic reactions that travel across the large cytoplasm as chemical waves. Waves of mitotic entry and exit propagate out from centrosomes using the Cdk1 oscillator to coordinate the timing of cell division. Waves of microtubule-stimulated microtubule nucleation propagate out to assemble large asters that position spindles for the following mitosis and establish cleavage plane geometry. By initiating these chemical waves, the centrosome rapidly organizes the large cytoplasm during the short embryonic cell cycle, which would be impossible using more conventional mechanisms such as diffusion or nucleation by structural templating. Large embryo cells provide valuable insights to how cells control chemical waves, which may be a general principle for cytoplasmic organization.
Collapse
Affiliation(s)
- Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA Marine Biological Laboratory, Woods Hole, MA, USA
| | - Phuong A Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA Marine Biological Laboratory, Woods Hole, MA, USA
| | - Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA Marine Biological Laboratory, Woods Hole, MA, USA
| | - Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA Marine Biological Laboratory, Woods Hole, MA, USA
| | - Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
49
|
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0459. [PMID: 25047613 PMCID: PMC4113103 DOI: 10.1098/rstb.2013.0459] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions (
table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
50
|
Bon H, Wadhwa K, Schreiner A, Osborne M, Carroll T, Ramos-Montoya A, Ross-Adams H, Visser M, Hoffmann R, Ahmed AA, Neal DE, Mills IG. Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res 2014; 13:620-635. [PMID: 25548099 DOI: 10.1158/1541-7786.mcr-13-0182-t] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete. IMPLICATIONS This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.
Collapse
Affiliation(s)
- Hélène Bon
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Karan Wadhwa
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Alexander Schreiner
- Microscopy and Imaging Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Michelle Osborne
- Genomics Core, Cambridge Research Institute, Cambridge, CB2 ORE, UK
| | - Thomas Carroll
- Bioinformatics Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | | | - Helen Ross-Adams
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Matthieu Visser
- Health Care Innovation, Philips Research, Eidhoven, Netherlands
| | - Ralf Hoffmann
- Molecular Diagnostics, Philips Research, Eindhoven, Netherlands
| | - Ahmed Ashour Ahmed
- Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS and Nuffield Department of Obstetrics and Gynaecology, University of Oxford, OX3 9DU, UK
| | - David E Neal
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.,Department of Oncology, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Ian G Mills
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Oslo University Hospital, 0424 Oslo, Norway.,Department of Cancer Prevention, Oslo University Hospital, 0424 Oslo, Norway.,Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo and Oslo University Hospital, N-0349, Oslo, Norway
| |
Collapse
|