1
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
2
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
3
|
Brattico E, Bonetti L, Ferretti G, Vuust P, Matrone C. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells 2021; 10:cells10010183. [PMID: 33477654 PMCID: PMC7831493 DOI: 10.3390/cells10010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Motor exercise, such as sport or musical activities, helps with a plethora of diseases by modulating brain functions in neocortical and subcortical regions, resulting in behavioural changes related to mood regulation, well-being, memory, and even cognitive preservation in aging and neurodegenerative diseases. Although evidence is accumulating on the systemic neural mechanisms mediating these brain effects, the specific mechanisms by which exercise acts upon the cellular level are still under investigation. This is particularly the case for music training, a much less studied instance of motor exercise than sport. With regards to sport, consistent neurobiological research has focused on the brain-derived neurotrophic factor (BDNF), an essential player in the central nervous system. BDNF stimulates the growth and differentiation of neurons and synapses. It thrives in the hippocampus, the cortex, and the basal forebrain, which are the areas vital for memory, learning, and higher cognitive functions. Animal models and neurocognitive experiments on human athletes converge in demonstrating that physical exercise reliably boosts BDNF levels. In this review, we highlight comparable early findings obtained with animal models and elderly humans exposed to musical stimulation, showing how perceptual exposure to music might affect BDNF release, similar to what has been observed for sport. We subsequently propose a novel hypothesis that relates the neuroplastic changes in the human brains after musical training to genetically- and exercise-driven BDNF levels.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
- Department of Education, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (E.B.); (C.M.)
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
- Correspondence: (E.B.); (C.M.)
| |
Collapse
|
4
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics identifies neuronal differentiation pathway networks activated by cathepsin inhibition treatment in neuroblastoma cells that are enhanced by concurrent 13-cis retinoic acid treatment. J Proteomics 2020; 232:104068. [PMID: 33278663 DOI: 10.1016/j.jprot.2020.104068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
6
|
Singer W, Manthey M, Panford-Walsh R, Matt L, Geisler HS, Passeri E, Baj G, Tongiorgi E, Leal G, Duarte CB, Salazar IL, Eckert P, Rohbock K, Hu J, Strotmann J, Ruth P, Zimmermann U, Rüttiger L, Ott T, Schimmang T, Knipper M. BDNF-Live-Exon-Visualization (BLEV) Allows Differential Detection of BDNF Transcripts in vitro and in vivo. Front Mol Neurosci 2018; 11:325. [PMID: 30319348 PMCID: PMC6170895 DOI: 10.3389/fnmol.2018.00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for B DNF- l ive- e xon- v isualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications.
Collapse
Affiliation(s)
- Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Rama Panford-Walsh
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Eleonora Passeri
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Gabriele Baj
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrico Tongiorgi
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Graciano Leal
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ivan L. Salazar
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Philipp Eckert
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Karin Rohbock
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Jing Hu
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Jörg Strotmann
- Department of Physiology, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Peter Ruth
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Ott
- Transgenic Facility Tübingen, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Shen T, You Y, Joseph C, Mirzaei M, Klistorner A, Graham SL, Gupta V. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders. Aging Dis 2018; 9:523-536. [PMID: 29896439 PMCID: PMC5988606 DOI: 10.14336/ad.2017.0717] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a unique role in the neuronal development, differentiation, and survival in the developing and adult nervous system. A common single-nucleotide polymorphism in the pro-region of the human BDNF gene, resulting in a valine to methionine substitution (Val66Met), has been associated with the susceptibility, incidence, and clinical features of several neurodegenerative disorders. Much research has been dedicated to evaluating the effects of polymorphism in the past decade, and functional effects of this genetic variation. A better understanding of how this naturally occurring polymorphism associates with or influences physiology, anatomy, and cognition in both healthy and diseased adults in neurodegenerative conditions will help understand neurochemical mechanisms and definable clinical outcomes in humans. Here we review the role and relevance of the BDNF Val66Met polymorphism in neurodegenerative diseases, with particular emphasis on glaucoma, multiple sclerosis (MS), Alzheimer’s disease (AD) and Parkinson’s disease (PD). Several controversies and unresolved issues, including small effect sizes, possible ethnicity, gender, and age effects of the BDNF Val66Met are also discussed with respect to future research.
Collapse
Affiliation(s)
- Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Yuyi You
- 2Save Sight Institute, Sydney University, Sydney, Australia
| | - Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Mehdi Mirzaei
- 3Faculty of Science and Engineering, Macquarie University, Australia
| | - Alexander Klistorner
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia.,2Save Sight Institute, Sydney University, Sydney, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia.,2Save Sight Institute, Sydney University, Sydney, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| |
Collapse
|
8
|
Polacchini A, Albani C, Baj G, Colliva A, Carpinelli P, Tongiorgi E. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF. Biol Open 2016; 5:899-907. [PMID: 27256407 PMCID: PMC4958269 DOI: 10.1242/bio.016725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5′UTR exons 1, 2c, 4 or 6 and 3′UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3′UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism. Summary: Cisplatin increases endogenous BDNF in MYCN-expanded neuroblastoma cells. Additional treatment with aurora kinase inhibitor PHA-680632 increases cell death but surviving cells overproduce BDNF, mainly by increased translation of exon 6.
Collapse
Affiliation(s)
- Alessio Polacchini
- University of Trieste, Department of Life Sciences, Trieste 34127, Italy
| | - Clara Albani
- University of Trieste, Department of Life Sciences, Trieste 34127, Italy Nerviano Medical Sciences, Nerviano, Milano 20014, Italy Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Gabriele Baj
- University of Trieste, Department of Life Sciences, Trieste 34127, Italy
| | - Andrea Colliva
- University of Trieste, Department of Life Sciences, Trieste 34127, Italy
| | | | - Enrico Tongiorgi
- University of Trieste, Department of Life Sciences, Trieste 34127, Italy
| |
Collapse
|
9
|
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11:1164-78. [PMID: 26788077 PMCID: PMC4697050 DOI: 10.5114/aoms.2015.56342] [Citation(s) in RCA: 768] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/05/2014] [Indexed: 01/09/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus.
Collapse
Affiliation(s)
- Siresha Bathina
- Bio-Science Research Center, Gayatri Vidya Parishad College of Engineering, Visakhapatnam, India
| | - Undurti N. Das
- Bio-Science Research Center, Gayatri Vidya Parishad College of Engineering, Visakhapatnam, India
- UND Life Sciences, USA
| |
Collapse
|
10
|
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138:155-75. [PMID: 23348013 DOI: 10.1016/j.pharmthera.2013.01.004] [Citation(s) in RCA: 595] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Glial cell-derived neurotrophic factor (GDNF), and the neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are important for the survival, maintenance and regeneration of specific neuronal populations in the adult brain. Depletion of these neurotrophic factors has been linked with disease pathology and symptoms, and replacement strategies are considered as potential therapeutics for neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's diseases. GDNF administration has recently been shown to be an effective treatment for Parkinson's disease, with clinical trials currently in progress. Trials with NGF for Alzheimer's disease are ongoing, with some degree of success. Preclinical results using BDNF also show much promise, although there are accompanying difficulties. Ultimately, the administration of a therapy involving proteins in the brain has inherent problems. Because of the blood-brain-barrier, the protein must be infused directly, produced by viral constructs, secreted from implanted protein-secreting cells or actively transported across the brain. An alternative to this is the use of a small molecule agonist, a modulator or enhancer targeting the associated receptors. We evaluate these neurotrophic factors as potential short or long-term treatments, weighing up preclinical and clinical results with the possible effects on the underlying neurodegenerative process.
Collapse
|
11
|
Fujimoto M, Hayashi T, Urfer R, Mita S, Su TP. Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 2012; 66:630-9. [PMID: 22337473 PMCID: PMC3824965 DOI: 10.1002/syn.21549] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/09/2012] [Indexed: 01/16/2023]
Abstract
The sigma-1 receptor (Sig-1R) is a novel endoplasmic reticulum (ER) molecular chaperone that regulates protein folding and degradation. The Sig-1R activation by agonists is known to improve memory, promote cell survival, and exert an antidepressant-like action in animals. Cutamesine (SA4503), a selective Sig-1R ligand, was shown to increase BDNF in the hippocampus of rats. How exactly the intracellular chaperone Sig-1R or associated ligand causes the increase of BDNF or any other neurotrophins is unknown. We examined here whether the action of Sig-1Rs may relate to the post-translational processing and release of BDNF in neuroblastoma cell lines. We used in vitro assays and confirmed that cutamesine possesses the bona fide Sig-1R agonist property by causing the dissociation of BiP from Sig-1Rs. The C-terminus of Sig-1Rs exerted robust chaperone activity by completely blocking the aggregation of BDNF and GDNF in vitro. Chronic treatment with cutamesine in rat B104 neuroblastoma caused a time- and dose-dependent potentiation of the secretion of BDNF without affecting the mRNA level of BDNF. Cutamesine decreased the intracellular level of pro-BDNF and mature BDNF whereas increased the extracellular level of mature BDNF. The pulse-chase experiment indicated that the knockdown of Sig-1Rs decreased the secreted mature BDNF in B104 cells without affecting the synthesis of BDNF. Our findings indicate that, in contrast to clinically used antidepressants that promote the transcriptional upregulation of BDNF, the Sig-1R agonist cutamesine potentiates the post-translational processing of neurotrophins. This unique pharmacological profile may provide a novel therapeutic opportunity for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michiko Fujimoto
- National Institute on Drug Abuse, National Institutes of Health – Cellular Stress Signaling Unit and Cellular Pathobiology Section, Integrative Neuroscience Branch, Baltimore, MD, USA
| | - Teruo Hayashi
- National Institute on Drug Abuse, National Institutes of Health – Cellular Stress Signaling Unit and Cellular Pathobiology Section, Integrative Neuroscience Branch, Baltimore, MD, USA
| | | | | | - Tsung-Ping Su
- National Institute on Drug Abuse, National Institutes of Health – Cellular Stress Signaling Unit and Cellular Pathobiology Section, Integrative Neuroscience Branch, Baltimore, MD, USA
| |
Collapse
|
12
|
Long PM, Stradecki HM, Minturn JE, Wesley UV, Jaworski DM. Differential aminoacylase expression in neuroblastoma. Int J Cancer 2011; 129:1322-30. [PMID: 21128244 DOI: 10.1002/ijc.25798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/09/2010] [Indexed: 12/18/2022]
Abstract
Neuroblastoma, a cancer of the sympathetic nervous system, is the most common extracranial solid tumor in children. MYCN amplification and increased BDNF/TrkB signaling are features of high-risk tumors; yet, only ˜25% of malignant tumors display these features. Thus, the identification of additional biomarkers and therapeutic targets is essential. As aminoacylase 1 (ACY1), an amino acid deacetylase, is a putative tumor suppressor in small cell lung and renal cell carcinomas, we investigated whether it or the other family members aspartoacylase (ASPA, aminoacylase 2) or aminoacylase 3 (ACY3) could serve a similar function in neuroblastoma. Aminoacylase expression was examined in TrkB-positive, MYCN-amplified (SMS-KCNR and SK-N-BE) and TrkB-negative, non-MYCN-amplified (SK-N-AS, SK-N-SH, SH-SY5Y and SH-EP) neuroblastoma cell lines. Each aminoacylase exhibited distinct spatial localization (i.e., cytosolic ACY1, membrane-associated ASPA and nuclear ACY3). When SK-N-SH cells were treated with neural differentiation agents (e.g., retinoic acid and cAMP) in media containing 10% serum, ACY1 was the only aminoacylase whose expression was upregulated. ASPA was primarily expressed in SH-EP cells of a glial sublineage. ACY3 was more highly expressed in the TrkB-positive, MYCN-amplified lines. All three aminoacylases were expressed in normal human adrenal gland, a common site of neuroblastoma origin, but only ACY1 and ACY3 displayed detectable expression in primary neuroblastoma tumor. Bioinformatics data mining of Kaplan-Meier survival revealed that high ACY3 expression is correlated with poor prognosis, whereas low expression of ACY1 or ASPA is correlated with poor prognosis. These data suggest that aminoacylase expression is dysregulated in neuroblastoma.
Collapse
Affiliation(s)
- Patrick M Long
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
13
|
Zajac MS, Pang TYC, Wong N, Weinrich B, Leang LSK, Craig JM, Saffery R, Hannan AJ. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington's disease mice. Hippocampus 2010; 20:621-36. [PMID: 19499586 DOI: 10.1002/hipo.20658] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin and regulation of its expression is complex due to multiple 5' untranslated exons which are separately spliced to a common coding exon to form unique mRNA transcripts. Disruption of BDNF gene expression is a key to the development of symptoms in Huntington's disease (HD), a fatal neurodegenerative condition. Abnormal epigenetic modifications are associated with reduced gene expression in late-stage HD but such regulation of BDNF gene expression has yet to be investigated. We hypothesized that BDNF gene expression is altered in the HD hippocampus of pre-motor symptomatic R6/1 transgenic HD mice, correlating with a change in the DNA methylation profile. The effects of wheel-running and environmental enrichment on wild-type mice, in association with a proposed environment-mediated correction of BDNF gene expression deficits in HD mice, were also investigated. Using real-time PCR, levels of total BDNF mRNA were found to be reduced in the hippocampus of both male and female HD mice. Wheel-running significantly increased total BDNF gene expression in all groups of mice except male HD mice. In contrast, environmental enrichment significantly increased expression only in male wild-type animals. Further quantification of BDNF exon-specific transcripts revealed sex-specific changes in relation to the effect of the HD mutation and differential effects on gene expression by wheel-running and environmental enrichment. The HD-associated reduction of BDNF gene expression was not due to increased methylation of the gene sequence. Furthermore, environment-induced changes in BDNF gene expression in the wild-type hippocampus were independent of the extent of DNA methylation. Overall, the results of this study provide new insight into the role of BDNF in HD pathogenesis in addition to the mechanisms regulating normal BDNF gene expression.
Collapse
Affiliation(s)
- M S Zajac
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tognoli C, Rossi F, Di Cola F, Baj G, Tongiorgi E, Terova G, Saroglia M, Bernardini G, Gornati R. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax. BMC Neurosci 2010; 11:4. [PMID: 20074340 PMCID: PMC2829032 DOI: 10.1186/1471-2202-11-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/14/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. RESULTS We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. CONCLUSION The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.
Collapse
Affiliation(s)
- Chiara Tognoli
- Department of Biotechnology and Molecular Science, University of Insubria, Varese, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Janardhanan R, Banik NL, Ray SK. N-Myc down regulation induced differentiation, early cell cycle exit, and apoptosis in human malignant neuroblastoma cells having wild type or mutant p53. Biochem Pharmacol 2009; 78:1105-14. [PMID: 19540207 PMCID: PMC3103941 DOI: 10.1016/j.bcp.2009.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 01/09/2023]
Abstract
Neuroblastomas, which mostly occur in children, are aggressive metastatic tumors of the sympathetic nervous system. The failure of the previous therapeutic regimens to target multiple components of N-Myc pathway resulted in poor prognosis. The present study investigated the efficacy of the combination of N-(4-hydroxyphenyl) retinamide (4-HPR, 0.5 microM) and genistein (GST, 25 microM) to control the growth of human neuroblastoma cells (SH-SY5Y and SK-N-BE2) harboring divergent molecular attributes. Combination of 4-HPR and GST down regulated N-Myc, Notch-1, and Id2 to induce neuronal differentiation. Transition to neuronal phenotype was accompanied by increase in expression of e-cadherin. Induction of neuronal differentiation was associated with decreased expression of hTERT, PCNA, survivin, and fibronectin. This is the first report that combination of 4-HPR and GST mediated reactivation of multiple tumor suppressors (p53, p21, Rb, and PTEN) for early cell cycle exit (due to G1/S phase arrest) in neuroblastoma cells. Reactivation of tumor suppressor(s) repressed N-Myc driven growth factor mediated angiogenic and invasive pathways (VEGF, b-FGF, MMP-2, and MMP-9) in neuroblastoma. Repression of angiogenic factors led to the blockade of components of mitogenic pathways [phospho-Akt (Thr 308), p65 NF-kappaB, and p42/44 Erk 1/2]. Taken together, the combination of 4-HPR and GST effectively blocked survival, mitogenic, and angiogenic pathways and activated proteases for apoptosis in neuroblastoma cells. These results suggested that combination of 4-HPR and GST could be effective for controlling the growth of heterogeneous human neuroblastoma cell populations.
Collapse
Affiliation(s)
- Rajiv Janardhanan
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Naren L. Banik
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, P.O. Box 250606, Charleston, SC 29425, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| |
Collapse
|
16
|
KARMAKAR S, CHOUDHURY SROY, BANIK NL, RAY SK. Combination of N-(4-hydroxyphenyl) retinamide and genistein increased apoptosis in neuroblastoma SK-N-BE2 and SH-SY5Y xenografts. Neuroscience 2009; 163:286-95. [PMID: 19540315 PMCID: PMC3103945 DOI: 10.1016/j.neuroscience.2009.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/11/2009] [Accepted: 06/14/2009] [Indexed: 11/23/2022]
Abstract
Neuroblastoma is the childhood malignancy that mainly occurs in adrenal glands and is found also in the neck, chest, abdomen, and pelvis. New therapeutic strategies are urgently needed for successful treatment of this pediatric cancer. In this investigation, we examined efficacy of the retinoid N-(4-hydroxyphenyl) retinamide (4-HPR) and the isoflavonoid genistein (GST) alone and also in combination for controlling the growth of human malignant neuroblastoma SK-N-BE2 and SH-SY5Y xenografts in nude mice. Combination of 4-HPR and GST significantly reduced tumor volume in vivo due to overwhelming apoptosis in both neuroblastoma xenografts. Time-dependently, combination of 4-HPR and GST caused reduction in body weight, tumor weight, and tumor volume. Combination of 4-HPR and GST increased Bax:Bcl-2 ratio, mitochondrial release of Smac, downregulation of baculovirus inhibitor-of-apoptosis repeat containing (BIRC) proteins including BIRC-2 and BIRC-3, and activation of caspase-3 and apoptosis inducing factor (AIF). Further, downregulation of nuclear factor-kappa B (NF-kappaB), vascular endothelial growth factor (VEGF), and fibroblast growth factor 2 (FGF2) was also detected. In situ immunofluorescent labelings of tumor sections showed overexpression of calpain, caspase-12, and caspase-3, and also AIF in the course of apoptosis. Combination therapy increased apoptosis in the xenografts but did not induce kidney and liver toxicities in the animals. Results demonstrated that combination of 4-HPR and GST induced multiple molecular mechanisms for apoptosis and thus could be highly effective for inhibiting growth of malignant neuroblastoma in preclinical animal models.
Collapse
Affiliation(s)
- S. KARMAKAR
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - S. ROY CHOUDHURY
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - N. L. BANIK
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - S. K. RAY
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|