1
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. SYNAPTOTAGMIN-9 IN MOUSE RETINA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546758. [PMID: 37425946 PMCID: PMC10327071 DOI: 10.1101/2023.06.27.546758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Medical Education, Creighton University, Omaha, NE 68178
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
2
|
Synaptotagmin 9 Modulates Spontaneous Neurotransmitter Release in Striatal Neurons by Regulating Substance P Secretion. J Neurosci 2023; 43:1475-1491. [PMID: 36732068 PMCID: PMC9992334 DOI: 10.1523/jneurosci.1857-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.
Collapse
|
3
|
Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. eLife 2021; 10:68215. [PMID: 34190041 PMCID: PMC8294851 DOI: 10.7554/elife.68215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Nadiv Dharan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Sathish Thiyagarajan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
| |
Collapse
|
4
|
van Westen R, Poppinga J, Díez Arazola R, Toonen RF, Verhage M. Neuromodulator release in neurons requires two functionally redundant calcium sensors. Proc Natl Acad Sci U S A 2021; 118:e2012137118. [PMID: 33903230 PMCID: PMC8106342 DOI: 10.1073/pnas.2012137118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.
Collapse
Affiliation(s)
- Rhodé van Westen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Josse Poppinga
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rocío Díez Arazola
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Li Y, He P, Tian C, Wang Y. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides. Fungal Genet Biol 2019; 135:103289. [PMID: 31704368 DOI: 10.1016/j.fgb.2019.103289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023]
Abstract
The HOG (high-osmolarity glycerol) pathway is critical for the appropriate adaptation to adverse conditions. Here, we demonstrated that the deletion of CgHog1 resulted in enhanced sensitivity to osmotic stress and increased resistance to fludioxonil in the poplar anthracnose fungus Colletotrichum gloeosporioides. The accumulation of chitin around hyphal tips was obviously decreased in the ΔCgHog1 strain under sorbitol, whereas it strongly was increased in the response to fludioxonil compared with the wild type. To investigate the underlying mechanism of CgHog1-mediated adaption to osmotic stress and fludioxonil, transcriptomic profiles were performed in both the ΔCgHog1 strain and the wild type under the treatment of sorbitol and fludioxonil, respectively. Under sorbitol, genes associated with glycolysis, lipid metabolism, and accumulation of soluble sugars and amino acids were differentially expressed; under fludioxonil, vesicle trafficking-related genes were highly downregulated in the ΔCgHog1 strain, which was consistent with abnormal vacuoles distribution and morphology of hyphae, indicating that the growth defect caused by fludioxonil may be associated with disruption of endocytosis. Taken together, we elucidated the adaptation mechanisms of how CgHog1 regulates appropriate response to sorbitol and fludioxonil via different metabolism pathways. These findings extend our insights into the HOG pathway in fungi.
Collapse
Affiliation(s)
- Yangfan Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Puhuizhong He
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
Lenzi C, Stevens J, Osborn D, Hannah MJ, Bierings R, Carter T. Synaptotagmin 5 regulates Ca 2+-dependent Weibel-Palade body exocytosis in human endothelial cells. J Cell Sci 2019; 132:jcs.221952. [PMID: 30659119 DOI: 10.1242/jcs.221952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Elevations of intracellular free Ca2+ concentration ([Ca2+]i) are a potent trigger for Weibel-Palade body (WPB) exocytosis and secretion of von Willebrand factor (VWF) from endothelial cells; however, the identity of WPB-associated Ca2+-sensors involved in transducing acute increases in [Ca2+]i into granule exocytosis remains unknown. Here, we show that synaptotagmin 5 (SYT5) is expressed in human umbilical vein endothelial cells (HUVECs) and is recruited to WPBs to regulate Ca2+-driven WPB exocytosis. Western blot analysis of HUVECs identified SYT5 protein, and exogenously expressed SYT5-mEGFP localised almost exclusively to WPBs. shRNA-mediated knockdown of endogenous SYT5 (shSYT5) reduced the rate and extent of histamine-evoked WPB exocytosis and reduced secretion of the WPB cargo VWF-propeptide (VWFpp). The shSYT5-mediated reduction in histamine-evoked WPB exocytosis was prevented by expression of shRNA-resistant SYT5-mCherry. Overexpression of SYT5-EGFP increased the rate and extent of histamine-evoked WPB exocytosis, and increased secretion of VWFpp. Expression of a Ca2+-binding defective SYT5 mutant (SYT5-Asp197Ser-EGFP) mimicked depletion of endogenous SYT5. We identify SYT5 as a WPB-associated Ca2+ sensor regulating Ca2+-dependent secretion of stored mediators from vascular endothelial cells.
Collapse
Affiliation(s)
- Camille Lenzi
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| | | | - Daniel Osborn
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| | - Matthew J Hannah
- Microbiology Services Colindale, Public Health England, London, NW9 5EQ, UK
| | - Ruben Bierings
- Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1006 AD Amsterdam, PO Box 9190, The Netherlands
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| |
Collapse
|
7
|
Bello OD, Jouannot O, Chaudhuri A, Stroeva E, Coleman J, Volynski KE, Rothman JE, Krishnakumar SS. Synaptotagmin oligomerization is essential for calcium control of regulated exocytosis. Proc Natl Acad Sci U S A 2018; 115:E7624-E7631. [PMID: 30038018 PMCID: PMC6094142 DOI: 10.1073/pnas.1808792115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis, which underlies many intercellular signaling events, is a tightly controlled process often triggered by calcium ion(s) (Ca2+). Despite considerable insight into the central components involved, namely, the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal Ca2+ sensor [C2-domain proteins like synaptotagmin (Syt)], the molecular mechanism of Ca2+-dependent release has been unclear. Here, we report that the Ca2+-sensitive oligomers of Syt1, a conserved structural feature among several C2-domain proteins, play a critical role in orchestrating Ca2+-coupled vesicular release. This follows from pHluorin-based imaging of single-vesicle exocytosis in pheochromocytoma (PC12) cells showing that selective disruption of Syt1 oligomerization using a structure-directed mutation (F349A) dramatically increases the normally low levels of constitutive exocytosis to effectively occlude Ca2+-stimulated release. We propose a parsimonious model whereby Ca2+-sensitive oligomers of Syt (or a similar C2-domain protein) assembled at the site of docking physically block spontaneous fusion until disrupted by Ca2+ Our data further suggest Ca2+-coupled vesicular release is triggered by removal of the inhibition, rather than by direct activation of the fusion machinery.
Collapse
Affiliation(s)
- Oscar D Bello
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - Ouardane Jouannot
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Arunima Chaudhuri
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ekaterina Stroeva
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Kirill E Volynski
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520;
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520;
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| |
Collapse
|
8
|
Bruinsma S, James DJ, Quintana Serrano M, Esquibel J, Woo SS, Kielar-Grevstad E, Crummy E, Qurashi R, Kowalchyk JA, Martin TFJ. Small molecules that inhibit the late stage of Munc13-4-dependent secretory granule exocytosis in mast cells. J Biol Chem 2018; 293:8217-8229. [PMID: 29615494 PMCID: PMC5971468 DOI: 10.1074/jbc.ra117.001547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/30/2018] [Indexed: 01/05/2023] Open
Abstract
Ca2+-dependent secretory granule fusion with the plasma membrane is the final step for the exocytic release of inflammatory mediators, neuropeptides, and peptide hormones. Secretory cells use a similar protein machinery at late steps in the regulated secretory pathway, employing protein isoforms from the Rab, Sec1/Munc18, Munc13/CAPS, SNARE, and synaptotagmin protein families. However, no small-molecule inhibitors of secretory granule exocytosis that target these proteins are currently available but could have clinical utility. Here we utilized a high-throughput screen of a 25,000-compound library that identified 129 small-molecule inhibitors of Ca2+-triggered secretory granule exocytosis in RBL-2H3 mast cells. These inhibitors broadly fell into six different chemical classes, and follow-up permeable cell and liposome fusion assays identified the target for one class of these inhibitors. A family of 2-aminobenzothiazoles (termed benzothiazole exocytosis inhibitors or bexins) was found to inhibit mast cell secretory granule fusion by acting on a Ca2+-dependent, C2 domain–containing priming factor, Munc13-4. Our findings further indicated that bexins interfere with Munc13-4–membrane interactions and thereby inhibit Munc13-4–dependent membrane fusion. We conclude that bexins represent a class of specific secretory pathway inhibitors with potential as therapeutic agents.
Collapse
Affiliation(s)
- Stephen Bruinsma
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | | | - Joseph Esquibel
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Sang Su Woo
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | | | - Ellen Crummy
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Rehan Qurashi
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Judy A Kowalchyk
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706.
| |
Collapse
|
9
|
Kreutzberger AJB, Kiessling V, Liang B, Seelheim P, Jakhanwal S, Jahn R, Castle JD, Tamm LK. Reconstitution of calcium-mediated exocytosis of dense-core vesicles. SCIENCE ADVANCES 2017; 3:e1603208. [PMID: 28776026 PMCID: PMC5517108 DOI: 10.1126/sciadv.1603208] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.
Collapse
Affiliation(s)
- Alex J. B. Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Patrick Seelheim
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Shrutee Jakhanwal
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - J. David Castle
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Corresponding author.
| |
Collapse
|
10
|
Pinheiro PS, Houy S, Sørensen JB. C2-domain containing calcium sensors in neuroendocrine secretion. J Neurochem 2016; 139:943-958. [DOI: 10.1111/jnc.13865] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Paulo S. Pinheiro
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Sébastien Houy
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
11
|
Adams RD, Harkins AB. PC12 cells that lack synaptotagmin I exhibit loss of a subpool of small dense core vesicles. Biophys J 2016; 107:2838-2849. [PMID: 25517150 DOI: 10.1016/j.bpj.2014.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 12/27/2022] Open
Abstract
Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca(2+) sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells.
Collapse
Affiliation(s)
- Robert D Adams
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri
| | - Amy B Harkins
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri; Department of Biomedical Engineering, Saint Louis University, St. Louis, Missouri.
| |
Collapse
|
12
|
Kabachinski G, Kielar-Grevstad DM, Zhang X, James DJ, Martin TFJ. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol Biol Cell 2016; 27:654-68. [PMID: 26700319 PMCID: PMC4750925 DOI: 10.1091/mbc.e15-07-0509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022] Open
Abstract
The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.
Collapse
Affiliation(s)
- Greg Kabachinski
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | | - Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
13
|
Sex-specific regulation of follicle-stimulating hormone secretion by synaptotagmin 9. Nat Commun 2015; 6:8645. [PMID: 26482442 PMCID: PMC4620939 DOI: 10.1038/ncomms9645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
The anterior pituitary releases six different hormones that control virtually all aspects of vertebrate physiology, yet the molecular mechanisms underlying their Ca(2+)-triggered release remain unknown. A subset of the synaptotagmin (syt) family of proteins serve as Ca(2+) sensors for exocytosis in neurons and neuroendocrine cells, and are thus likely to regulate pituitary hormone secretion. Here we show that numerous syt isoforms are highly expressed in the pituitary gland in a lobe, and sex-specific manner. We further investigated a Ca(2+)-activated isoform, syt-9, and found that it is expressed in a subpopulation of anterior pituitary cells, the gonadotropes. Follicle-stimulating hormone (FSH) and syt-9 are highly co-localized in female, but not male, mice. Loss of syt-9 results in diminished basal and stimulated FSH secretion only in females, resulting in alterations in the oestrus cycle. This work uncovers a new function for syt-9 and reveals a novel sex difference in reproductive hormone secretion.
Collapse
|
14
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
15
|
Rao TC, Passmore DR, Peleman AR, Das M, Chapman ER, Anantharam A. Distinct fusion properties of synaptotagmin-1 and synaptotagmin-7 bearing dense core granules. Mol Biol Cell 2014; 25:2416-27. [PMID: 24943843 PMCID: PMC4142614 DOI: 10.1091/mbc.e14-02-0702] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adrenal chromaffin cells express two synaptotagmin isoforms, Syt-1 and Syt-7. Isoforms are usually sorted to separate secretory granules, are differentially activated by depolarizing stimuli, and favor discrete modes of exocytosis. It is proposed that stimulus/Ca+-dependent secretion in the chromaffin cell relies on selective Syt isoform activation. Adrenal chromaffin cells release hormones and neuropeptides that are essential for physiological homeostasis. During this process, secretory granules fuse with the plasma membrane and deliver their cargo to the extracellular space. It was once believed that fusion was the final regulated step in exocytosis, resulting in uniform and total release of granule cargo. Recent evidence argues for nonuniform outcomes after fusion, in which cargo is released with variable kinetics and selectivity. The goal of this study was to identify factors that contribute to the different outcomes, with a focus on the Ca2+-sensing synaptotagmin (Syt) proteins. Two Syt isoforms are expressed in chromaffin cells: Syt-1 and Syt-7. We find that overexpressed and endogenous Syt isoforms are usually sorted to separate secretory granules and are differentially activated by depolarizing stimuli. In addition, overexpressed Syt-1 and Syt-7 impose distinct effects on fusion pore expansion and granule cargo release. Syt-7 pores usually fail to expand (or reseal), slowing the dispersal of lumenal cargo proteins and granule membrane proteins. On the other hand, Syt-1 diffuses from fusion sites and promotes the release of lumenal cargo proteins. These findings suggest one way in which chromaffin cells may regulate cargo release is via differential activation of synaptotagmin isoforms.
Collapse
Affiliation(s)
- Tejeshwar C Rao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Daniel R Passmore
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Andrew R Peleman
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Madhurima Das
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, WI 53705
| | - Arun Anantharam
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
16
|
Messenger SW, Falkowski MA, Groblewski GE. Ca²⁺-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 2014; 55:369-75. [PMID: 24742357 DOI: 10.1016/j.ceca.2014.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/09/2023]
Abstract
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca(2+), diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca(2+). However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG-SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20-30 min. Studies indicate the early phase is triggered by Ca(2+) and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca(2+)-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.
Collapse
Affiliation(s)
- Scott W Messenger
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Michelle A Falkowski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Guy E Groblewski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
17
|
Moghadam PK, Jackson MB. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol (Lausanne) 2013; 4:124. [PMID: 24065953 PMCID: PMC3776153 DOI: 10.3389/fendo.2013.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/31/2013] [Indexed: 11/25/2022] Open
Abstract
Synaptotagmins (syts) are abundant, evolutionarily conserved integral membrane proteins that play essential roles in regulated exocytosis in nervous and endocrine systems. There are at least 17 syt isoforms in mammals, all with tandem C-terminal C2 domains with highly variable capacities for Ca(2+) binding. Many syts play roles in neurotransmitter release or hormone secretion or both, and a growing body of work supports a role for some syts as Ca(2+) sensors of exocytosis. Work in many types of endocrine cells has documented the presence of a number of syt isoforms on dense-core vesicles containing various hormones. Syts can influence the kinetics of exocytotic fusion pores and the choice of release mode between kiss-and-run and full-fusion. Vesicles harboring different syt isoforms can preferentially undergo distinct modes of exocytosis with different forms of stimulation. The diverse properties of syt isoforms enable these proteins to shape Ca(2+) sensing in endocrine cells, thus contributing to the regulation of hormone release and the organization of complex endocrine functions.
Collapse
Affiliation(s)
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- *Correspondence: Meyer B. Jackson, Department of Neuroscience, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-1510, USA e-mail:
| |
Collapse
|
18
|
Xie Z, McMillan K, Pike CM, Cahill AL, Herring BE, Wang Q, Fox AP. Interaction of anesthetics with neurotransmitter release machinery proteins. J Neurophysiol 2012; 109:758-67. [PMID: 23136341 DOI: 10.1152/jn.00666.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
General anesthetics produce anesthesia by depressing central nervous system activity. Activation of inhibitory GABA(A) receptors plays a central role in the action of many clinically relevant general anesthetics. Even so, there is growing evidence that anesthetics can act at a presynaptic locus to inhibit neurotransmitter release. Our own data identified the neurotransmitter release machinery as a target for anesthetic action. In the present study, we sought to examine the site of anesthetic action more closely. Exocytosis was stimulated by directly elevating the intracellular Ca(2+) concentration at neurotransmitter release sites, thereby bypassing anesthetic effects on channels and receptors, allowing anesthetic effects on the neurotransmitter release machinery to be examined in isolation. Three different PC12 cell lines, which had the expression of different release machinery proteins stably suppressed by RNA interference, were used in these studies. Interestingly, there was still significant neurotransmitter release when these knockdown PC12 cells were stimulated. We have previously shown that etomidate, isoflurane, and propofol all inhibited the neurotransmitter release machinery in wild-type PC12 cells. In the present study, we show that knocking down synaptotagmin I completely prevented etomidate from inhibiting neurotransmitter release. Synaptotagmin I knockdown also diminished the inhibition produced by propofol and isoflurane, but the magnitude of the effect was not as large. Knockdown of SNAP-25 and SNAP-23 expression also changed the ability of these three anesthetics to inhibit neurotransmitter release. Our results suggest that general anesthetics inhibit the neurotransmitter release machinery by interacting with multiple SNARE and SNARE-associated proteins.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Walter AM, Groffen AJ, Sørensen JB, Verhage M. Multiple Ca2+ sensors in secretion: teammates, competitors or autocrats? Trends Neurosci 2011; 34:487-97. [PMID: 21831459 DOI: 10.1016/j.tins.2011.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 12/25/2022]
Abstract
Regulated neurotransmitter secretion depends on Ca(2+) sensors, C2 domain proteins that associate with phospholipids and soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes to trigger release upon Ca(2+) binding. Ca(2+) sensors are thought to prevent spontaneous fusion at rest (clamping) and to promote fusion upon Ca(2+) activation. At least eight, often coexpressed, Ca(2+) sensors have been identified in mammals. Accumulating evidence suggests that multiple Ca(2+) sensors interact, rather than work autonomously, to produce the complex secretory response observed in neurons and secretory cells. In this review, we present several working models to describe how different sensors might be arranged to mediate synchronous, asynchronous and spontaneous neurotransmitter release. We discuss the scenario that different Ca(2+) sensors typically act on one shared vesicle pool and compete for binding the multiple SNARE complexes that are likely to assemble at single vesicles, to exert both clamping and fusion-promoting functions.
Collapse
Affiliation(s)
- Alexander M Walter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
Cao P, Maximov A, Südhof TC. Activity-dependent IGF-1 exocytosis is controlled by the Ca(2+)-sensor synaptotagmin-10. Cell 2011; 145:300-11. [PMID: 21496647 PMCID: PMC3102833 DOI: 10.1016/j.cell.2011.03.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 12/24/2010] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as Ca(2+)-sensors for synaptic and neuroendocrine exocytosis, but the function of other synaptotagmins remains unknown. Here, we show that olfactory bulb neurons secrete IGF-1 by an activity-dependent pathway of exocytosis, and that Syt10 functions as the Ca(2+)-sensor that triggers IGF-1 exocytosis in these neurons. Deletion of Syt10 impaired activity-dependent IGF-1 secretion in olfactory bulb neurons, resulting in smaller neurons and an overall decrease in synapse numbers. Exogenous IGF-1 completely reversed the Syt10 knockout phenotype. Syt10 colocalized with IGF-1 in somatodendritic vesicles of olfactory bulb neurons, and Ca(2+)-binding to Syt10 caused these vesicles to undergo exocytosis, thereby secreting IGF-1. Thus, Syt10 controls a previously unrecognized pathway of Ca(2+)-dependent exocytosis that is spatially and temporally distinct from Ca(2+)-dependent synaptic vesicle exocytosis controlled by Syt1. Our findings thereby reveal that two different synaptotagmins can regulate functionally distinct Ca(2+)-dependent membrane fusion reactions in the same neuron.
Collapse
Affiliation(s)
- Peng Cao
- Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, 1050 Arastradero Rd., Palo Alto, California 94305, USA
| | | | | |
Collapse
|
21
|
Matsuoka H, Harada K, Nakamura J, Fukuda M, Inoue M. Differential distribution of synaptotagmin-1, -4, -7, and -9 in rat adrenal chromaffin cells. Cell Tissue Res 2011; 344:41-50. [PMID: 21287204 DOI: 10.1007/s00441-011-1131-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/12/2011] [Indexed: 11/27/2022]
Abstract
Neurons and certain kinds of endocrine cells, such as adrenal chromaffin cells, have large dense-core vesicles (LDCVs) and synaptic vesicles or synaptic-like microvesicles (SLMVs). These secretory vesicles exhibit differences in Ca(2+) sensitivity and contain diverse signaling substances. The present work was undertaken to identify the synaptotagmin (Syt) isoforms present in secretory vesicles. Fractionation analysis of lysates of the bovine adrenal medulla and immunocytochemistry in rat chromaffin cells indicated that Syt 1 was localized in LDCVs and SLMVs, whereas Syt 7 was the predominant isoform present in LDCVs. In contrast to PC12 cells and the pancreatic β cell line INS-1, Syt 9 was not immunodetected in LDCVs in rat chromaffin cells. Double-staining revealed that Syt 9-like immunoreactivity was nearly identical with fluorescent thapsigargin binding, suggesting the presence of Syt 9 in the endoplasmic reticulum (ER).The exogenous expression of Syt 1-GFP in INS-1 cells, which had a negligible level of endogenous Syt 1, resulted in an increase in the amount of Syt 9 in the ER, suggesting that Syt 9 competes with Syt 1 for trafficking from the ER to the Golgi complex. We conclude that LDCVs mainly contain Syt 7, whereas SLMVs contain Syt 1, but not Syt 7, in rat and bovine chromaffin cells.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, 807-8555, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
hid-1 was originally identified as a Caenorhabditis elegans gene encoding a novel conserved protein that regulates the decision to enter into the enduring dauer larval stage. We isolated a novel allele of hid-1 in a forward genetic screen for mutants mislocalizing RBF-1 rabphilin, a RAB-27 effector. Here we demonstrate that HID-1 functions in the nervous system to regulate neuromuscular signaling and in the intestine to regulate the defecation motor program. We further show that a conserved N-terminal myristoylated motif of both invertebrate and vertebrate HID-1 is essential for its association with intracellular membranes in nematodes and PC12 cells. C. elegans neuronal HID-1 resides on intracellular membranes in neuronal cell somas; however, the kinesin UNC-104 also transports HID-1 to synaptic regions. HID-1 accumulates in the axons of unc-13 and unc-31 mutants, suggesting it is associated with neurosecretory vesicles. Consistent with this, genetic studies place HID-1 in a peptidergic signaling pathway. Finally, a hid-1 null mutation reduces the levels of endogenous neuropeptides and alters the secretion of fluorescent-tagged cargos derived from neuronal and intestinal dense core vesicles (DCVs). Taken together, our findings indicate that HID-1 is a novel component of a DCV-based neurosecretory pathway and that it regulates one or more aspects of the biogenesis, maturation, or trafficking of DCVs.
Collapse
|
23
|
Abstract
In chromaffin cells, Ca(2+) binding to synaptotagmin-1 and -7 triggers exocytosis by promoting fusion pore opening and fusion pore expansion. Synaptotagmins contain two C2 domains that both bind Ca(2+) and contribute to exocytosis; however, it remains unknown whether the C2 domains act similarly or differentially to promote opening and expansion of fusion pores. Here, we use patch amperometry measurements in WT and synaptotagmin-7-mutant chromaffin cells to analyze the role of Ca(2+) binding to the two synaptotagmin-7 C2 domains in exocytosis. We show that, surprisingly, Ca(2+) binding to the C2A domain suffices to trigger fusion pore opening but that the resulting fusion pores are unstable and collapse, causing a dramatic increase in kiss-and-run fusion events. Thus, synaptotagmin-7 controls fusion pore dynamics during exocytosis via a push-and-pull mechanism in which Ca(2+) binding to both C2 domains promotes fusion pore opening, but the C2B domain is selectively essential for continuous expansion of an otherwise unstable fusion pore.
Collapse
|
24
|
Xue M, Craig TK, Shin OH, Li L, Brautigam CA, Tomchick DR, Südhof TC, Rosenmund C, Rizo J. Structural and mutational analysis of functional differentiation between synaptotagmins-1 and -7. PLoS One 2010; 5. [PMID: 20824061 PMCID: PMC2932738 DOI: 10.1371/journal.pone.0012544] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/09/2010] [Indexed: 01/16/2023] Open
Abstract
Synaptotagmins are known to mediate diverse forms of Ca2+-triggered exocytosis through their C2 domains, but the principles underlying functional differentiation among them are unclear. Synaptotagmin-1 functions as a Ca2+ sensor in neurotransmitter release at central nervous system synapses, but synaptotagmin-7 does not, and yet both isoforms act as Ca2+ sensors in chromaffin cells. To shed light into this apparent paradox, we have performed rescue experiments in neurons from synaptotagmin-1 knockout mice using a chimera that contains the synaptotagmin-1 sequence with its C2B domain replaced by the synaptotagmin-7 C2B domain (Syt1/7). Rescue was not achieved either with the WT Syt1/7 chimera or with nine mutants where residues that are distinct in synaptotagmin-7 were restored to those present in synaptotagmin-1. To investigate whether these results arise because of unique conformational features of the synaptotagmin-7 C2B domain, we determined its crystal structure at 1.44 Å resolution. The synaptotagmin-7 C2B domain structure is very similar to that of the synaptotagmin-1 C2B domain and contains three Ca2+-binding sites. Two of the Ca2+-binding sites of the synaptotagmin-7 C2B domain are also present in the synaptotagmin-1 C2B domain and have analogous ligands to those determined for the latter by NMR spectroscopy, suggesting that a discrepancy observed in a crystal structure of the synaptotagmin-1 C2B domain arose from crystal contacts. Overall, our results suggest that functional differentiation in synaptotagmins arises in part from subtle sequence changes that yield dramatic functional differences.
Collapse
Affiliation(s)
- Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy K. Craig
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Liyi Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chad A. Brautigam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas C. Südhof
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
| | - Christian Rosenmund
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Neuroscience Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (CR); (JR)
| | - Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (CR); (JR)
| |
Collapse
|
25
|
Li J, Xiao Y, Zhou W, Wu Z, Zhang R, Xu T. Silence of Synaptotagmin VII inhibits release of dense core vesicles in PC12 cells. ACTA ACUST UNITED AC 2009; 52:1156-63. [PMID: 20016973 DOI: 10.1007/s11427-009-0160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/27/2009] [Indexed: 11/27/2022]
Abstract
Synaptotagmin VII (Syt VII), which has a higher Ca(2+) affinity and slower disassembly kinetics with lipid than Syt I and Syt IX, was regarded as being uninvolved in synaptic vesicle (SV) exocytosis but instead possibly as a calcium sensor for the slower kinetic phase of dense core vesicles (DCVs) release. By using high temporal resolution capacitance and amperometry measurements, it was demonstrated that the knockdown of endogenous Syt VII attenuated the fusion of DCV with the plasma membrane, reduced the amplitude of the exocytotic burst of the Ca(2+)-triggered DCV release without affecting the slope of the sustained component, and blocked the fusion pore expansion. This suggests that Syt VII is the Ca(2+) sensor of DCV fusion machinery and is an essential factor for the establishment and maintenance of the pool size of releasable DCVs in PC12 cells.
Collapse
Affiliation(s)
- JiangLi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
26
|
Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci Rep 2009; 29:245-59. [PMID: 19500075 DOI: 10.1042/bsr20090031] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion. Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems.
Collapse
|
27
|
Nojiri M, Loyet KM, Klenchin VA, Kabachinski G, Martin TFJ. CAPS activity in priming vesicle exocytosis requires CK2 phosphorylation. J Biol Chem 2009; 284:18707-14. [PMID: 19460754 DOI: 10.1074/jbc.m109.017483] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CAPS (Ca(2+)-dependent activator protein for secretion) functions in priming Ca(2+)-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca(2+)-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in the 1289 residue protein. Ser-5, -6, and -7 but not Ser-1281 to Ala substitutions abolished CAPS activity. Protein kinase CK2 phosphorylated CAPS in vitro at these sites and restored the activity of dephosphorylated CAPS. CK2 is the likely in vivo CAPS protein kinase based on inhibition of phosphorylation by tetrabromo-2-benzotriazole in PC12 cells and by the identity of in vivo and in vitro phosphorylation sites. CAPS phosphorylation by CK2 was constitutive, but the elevation of Ca(2+) in synaptosomes increased CAPS Ser-5 and -6 dephosphorylation, which terminates CAPS activity. These results identify a functionally important N-terminal phosphorylation site that regulates CAPS activity in priming vesicle exocytosis.
Collapse
Affiliation(s)
- Mari Nojiri
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
28
|
Tuvim MJ, Mospan AR, Burns KA, Chua M, Mohler PJ, Melicoff E, Adachi R, Ammar-Aouchiche Z, Davis CW, Dickey BF. Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J Biol Chem 2009; 284:9781-7. [PMID: 19208631 DOI: 10.1074/jbc.m807849200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin 2 (Syt2) functions as a low affinity, fast exocytic Ca(2+) sensor in neurons, where it is activated by Ca(2+) influx through voltage-gated channels. Targeted insertion of lacZ into the mouse syt2 locus reveals expression in mucin-secreting goblet cells of the airways. In these cells, rapid Ca(2+) entry from the extracellular medium does not contribute significantly to stimulated secretion (Davis, C. W., and Dickey, B. F. (2008) Annu. Rev. Physiol. 70, 487-512). Nonetheless, Syt2(-/-) mice show a severe defect in acute agonist-stimulated airway mucin secretion, and Syt2(+/-) mice show a partial defect. In contrast to Munc13-2(-/-) mice (Zhu, Y., Ehre, C., Abdullah, L. H., Sheehan, J. K., Roy, M., Evans, C. M., Dickey, B. F., and Davis, C. W. (2008) J. Physiol. (Lond.) 586, 1977-1992), Syt2(-/-) mice show no spontaneous mucin accumulation, consistent with the inhibitory action of Syt2 at resting cytoplasmic Ca(2+) in neurons. In human airway goblet cells, inositol trisphosphate receptors are found in rough endoplasmic reticulum that closely invests apical mucin granules, consistent with the known dependence of exocytic Ca(2+) signaling on intracellular stores in these cells. Hence, Syt2 can serve as an exocytic sensor for diverse Ca(2+) signaling systems, and its levels are limiting for stimulated secretory function in airway goblet cells.
Collapse
Affiliation(s)
- Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lynch KL, Gerona RRL, Kielar DM, Martens S, McMahon HT, Martin TFJ. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol Biol Cell 2008; 19:5093-103. [PMID: 18799625 DOI: 10.1091/mbc.e08-03-0235] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In regulated vesicle exocytosis, SNARE protein complexes drive membrane fusion to connect the vesicle lumen with the extracellular space. The triggering of fusion pore formation by Ca(2+) is mediated by specific isoforms of synaptotagmin (Syt), which employ both SNARE complex and membrane binding. Ca(2+) also promotes fusion pore expansion and Syts have been implicated in this process but the mechanisms involved are unclear. We determined the role of Ca(2+)-dependent Syt-effector interactions in fusion pore expansion by expressing Syt-1 mutants selectively altered in Ca(2+)-dependent SNARE binding or in Ca(2+)-dependent membrane insertion in PC12 cells that lack vesicle Syts. The release of different-sized fluorescent peptide-EGFP vesicle cargo or the vesicle capture of different-sized external fluorescent probes was used to assess the extent of fusion pore dilation. We found that PC12 cells expressing partial loss-of-function Syt-1 mutants impaired in Ca(2+)-dependent SNARE binding exhibited reduced fusion pore opening probabilities and reduced fusion pore expansion. Cells with gain-of-function Syt-1 mutants for Ca(2+)-dependent membrane insertion exhibited normal fusion pore opening probabilities but the fusion pores dilated extensively. The results indicate that Syt-1 uses both Ca(2+)-dependent membrane insertion and SNARE binding to drive fusion pore expansion.
Collapse
Affiliation(s)
- Kara L Lynch
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Neurotransmitter release at synapses involves a highly specialized form of membrane fusion that is triggered by Ca(2+) ions and is optimized for speed. These observations were established decades ago, but only recently have the molecular mechanisms that underlie this process begun to come into view. Here, we summarize findings obtained from genetically modified neurons and neuroendocrine cells, as well as from reconstituted systems, which are beginning to reveal the molecular mechanism by which Ca(2+)-acting on the synaptic vesicle (SV) protein synaptotagmin I (syt)-triggers rapid exocytosis. This work sheds light not only on presynaptic aspects of synaptic transmission, but also on the fundamental problem of membrane fusion, which has remained a puzzle that has yet to be solved in any biological system.
Collapse
Affiliation(s)
- Edwin R Chapman
- Howard Hughes Medical Institute and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
31
|
James DJ, Khodthong C, Kowalchyk JA, Martin TFJ. Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. ACTA ACUST UNITED AC 2008; 182:355-66. [PMID: 18644890 PMCID: PMC2483516 DOI: 10.1083/jcb.200801056] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P2) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P2 as ∼6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P2 soluble NSF attachment protein receptor (SNARE)–dependent liposome fusion is inhibited. Inhibition by PI 4,5-P2 likely results from its intrinsic positive curvature–promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P2, suggesting that syntaxin sequesters PI 4,5-P2 to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P2, we test a PI 4,5-P2–binding priming factor required for vesicle exocytosis. Ca2+-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P2 dependent. These results indicate that PI 4,5-P2 regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.
Collapse
Affiliation(s)
- Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
32
|
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9:543-56. [DOI: 10.1038/nrm2417] [Citation(s) in RCA: 524] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Hu ZT, Chen MR, Ping Z, Dong YM, Zhang RY, Xu T, Wu ZX. Synaptotagmin IV regulates dense core vesicle (DCV) release in LbetaT2 cells. Biochem Biophys Res Commun 2008; 371:781-6. [PMID: 18468511 DOI: 10.1016/j.bbrc.2008.04.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 11/17/2022]
Abstract
Synaptotagmins (Syts) are calcium-binding proteins which are conserved from nematodes to humans. Fifteen Syts have been identified in mammalian species. Syt I is recognized as a Ca(2+) sensor for the synchronized release of synaptic vesicles in some types of neurons, but its role in the secretion of dense core vesicles (DCVs) remains unclear. The function of Syt IV is of particular interest because it is rapidly up-regulated by chronic depolarization and seizures. Using RNAi-mediated gene silencing, we have explored the role of Syt I and IV on secretion in a pituitary gonadotrope cell line. Downregulation of Syt IV clearly reduced Ca(2+)-triggered exocytosis of dense core vesicles (DCVs) in LbetaT2 cells. Syt I silencing, however, had no effect on vesicular release.
Collapse
Affiliation(s)
- Zhi-Tao Hu
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Joint Laboratory of Institute of Biophysics & Huazhong University of Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037#, Wuhan 430074, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Xu T, Xu P. Searching for Molecular Players Differentially Involved in Neurotransmitter and Neuropeptide Release. Neurochem Res 2008; 33:1915-9. [DOI: 10.1007/s11064-008-9648-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 02/29/2008] [Indexed: 11/24/2022]
|
35
|
Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci U S A 2008; 105:3992-7. [PMID: 18308938 DOI: 10.1073/pnas.0711700105] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vertebrates express at least 15 different synaptotagmins with the same domain structure but diverse localizations and tissue distributions. Synaptotagmin-1,-2, and -9 act as calcium sensors for the fast phrase of neurotransmitter release, and synaptotagmin-12 acts as a calcium-independent modulator of release. The exact functions of the remaining 11 synaptotagmins, however, have not been established. By analogy to the role of synaptotagmin-1, -2, and -9 in neurotransmission, these other synaptotagmins may serve as Ca(2+) transducers regulating other Ca(2+)-dependent membrane processes, such as insulin secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor controlling insulin secretion in pancreatic beta cells.
Collapse
|
36
|
Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis. Proc Natl Acad Sci U S A 2008; 105:3986-91. [PMID: 18308933 DOI: 10.1073/pnas.0712372105] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin-7 is a candidate Ca(2+) sensor for exocytosis that is at least partly localized to synapses. Similar to synaptotagmin-1, which functions as a Ca(2+) sensor for fast synaptic vesicle (SV) exocytosis, synaptotagmin-7 contains C(2)A and C(2)B domains that exhibit Ca(2+)-dependent phospholipid binding. However, synaptotagmin-7 cannot replace synaptotagmin-1 as a Ca(2+) sensor for fast SV exocytosis, raising questions about the physiological significance of its Ca(2+)-binding properties. Here, we examine how synaptotagmin-7 binds Ca(2+) and test whether this Ca(2+) binding regulates Ca(2+)-triggered SV exocytosis. We show that the synaptotagmin-7 C(2)A domain exhibits a Ca(2+)-binding mode similar to that of the synaptotagmin-1 C(2)A domain, suggesting that the synaptotagmin-1 and -7 C(2) domains generally employ comparable Ca(2+)-binding mechanisms. We then generated mutant mice that lack synaptotagmin-7 or contain point mutations inactivating Ca(2+) binding either to both C(2) domains of synaptotagmin-7 or only to its C(2)B domain. Synaptotagmin-7-mutant mice were viable and fertile. Inactivation of Ca(2+) binding to both C(2) domains caused an approximately 70% reduction in synaptotagmin-7 levels, whereas inactivation of Ca(2+) binding to only the C(2)B domain did not alter synaptotagmin-7 levels. The synaptotagmin-7 deletion did not change fast synchronous release, slow asynchronous release, or short-term synaptic plasticity of release of neurotransmitters. Thus, our results show that Ca(2+) binding to the synaptotagmin-7 C(2) domains is physiologically important for stabilizing synaptotagmin-7, but that Ca(2+) binding by synaptotagmin-7 likely does not regulate SV exocytosis, consistent with a role for synaptotagmin-7 in other forms of Ca(2+)-dependent synaptic exocytosis.
Collapse
|
37
|
Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci U S A 2008; 105:3998-4003. [PMID: 18308932 DOI: 10.1073/pnas.0712373105] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin-1, the canonical isoform of the synaptotagmin family, is a Ca(2+) sensor for fast synchronous neurotransmitter release in forebrain neurons and chromaffin cells. Even though deletion of synaptotagmin-1 abolishes fast exocytosis in chromaffin cells, it reduces overall secretion by only 20% because of the persistence of slow exocytosis. Therefore, another Ca(2+) sensor dominates release in these cells. Synaptotagmin-7 has a higher Ca(2+) affinity and slower binding kinetics than synaptotagmin-1, matching the proposed properties for the second, slower Ca(2+) sensor. Here, we examined Ca(2+)-triggered exocytosis in chromaffin cells from KO mice lacking synaptotagmin-7, and from knockin mice containing normal levels of a mutant synaptotagmin-7 whose C(2)B domain does not bind Ca(2+). In both types of mutant chromaffin cells, Ca(2+)-triggered exocytosis was decreased dramatically. Moreover, in chromaffin cells lacking both synaptotagmin-1 and -7, only a very slow release component, accounting for approximately 30% of WT exocytosis, persisted. These data establish synaptotagmin-7 as a major Ca(2+) sensor for exocytosis in chromaffin cells, which, together with synaptotagmin-1, mediates almost all of the Ca(2+) triggering of exocytosis in these cells, a surprising result, considering the lack of a role of synaptotagmin-7 in synaptic vesicle exocytosis.
Collapse
|
38
|
Abstract
Catecholamines and peptides secreted from dense-core vesicles (DCVs) of adrenal chromaffin cells regulate a wide variety of physiological processes. For instance, the release of noradrenaline and adrenaline plays a key role in regulating heart rate and blood pressure. Thus understanding the mechanisms of secretory processes of DCVs is crucial for understanding the basis of diseases such as hypertension. DCVs undergo several stages of secretory processing before they are exocytosed. These include docking, priming and triggering of membrane fusion/exocytosis. Molecular studies of DCV exocytosis have identified many proteins critically involved in DCV secretion. These proteins include SNARE proteins, Munc18-1, phosphatidylinositol transfer protein, type I phosphatidylinositol-4-phosphate-5-kinases, NSF, Munc13, CAPS1, synaptotagmins, RalA/RalB GTPases and exocyst proteins. In this article, I will discuss the functions of these proteins within the context of the stages (i.e. docking, priming and triggering of membrane fusion/exocytosis) in DCV secretion.
Collapse
Affiliation(s)
- S Sugita
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network and Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Roden WH, Papke JB, Moore JM, Cahill AL, Macarthur H, Harkins AB. Stable RNA interference of synaptotagmin I in PC12 cells results in differential regulation of transmitter release. Am J Physiol Cell Physiol 2007; 293:C1742-52. [PMID: 17913838 DOI: 10.1152/ajpcell.00482.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In sympathetic neurons, it is well-established that the neurotransmitters, norepinephrine (NE), neuropeptide Y (NPY), and ATP are differentially coreleased from the same neurons. In this study, we determined whether synaptotagmin (syt) I, the primary Ca(2+) sensor for regulated release, could function as the protein that differentially regulates release of these neurotransmitters. Plasmid-based RNA interference was used to specifically and stably silence expression of syt I in a model secretory cell line. Whereas stimulated release of NPY and purines was abolished, stimulated catecholamine (CA) release was only reduced by approximately 50%. Although expression levels of tyrosine hydroxylase, the rate-limiting enzyme in the dopamine synthesis pathway, was unaffected, expression of the vesicular monoamine transporter 1 was reduced by 50%. To evaluate whether NPY and CAs are found within the same vesicles and whether syt I is found localized to each of these NPY- and CA-containing vesicles, we used immunocytochemistry to determine that syt I colocalized with large dense core vesicles, with NPY, and with CAs. Furthermore, both CAs and NPY colocalized with one another and with large dense core vesicles. Electron micrographs show that large dense core vesicles are synthesized and available for release in cells that lack syt I. These results are consistent with syt I regulating differential release of transmitters.
Collapse
Affiliation(s)
- William H Roden
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lynch KL, Gerona R, Larsen EC, Marcia RF, Mitchell JC, Martin T. Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis. Mol Biol Cell 2007; 18:4957-68. [PMID: 17914059 PMCID: PMC2096586 DOI: 10.1091/mbc.e07-04-0368] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.
Collapse
Affiliation(s)
| | | | | | - R. F. Marcia
- Departments of *Biochemistry and
- Mathematics, University of Wisconsin, Madison, WI 53706
| | - J. C. Mitchell
- Departments of *Biochemistry and
- Mathematics, University of Wisconsin, Madison, WI 53706
| | | |
Collapse
|
41
|
Affiliation(s)
- Katherine Leitzell
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
42
|
Xu J, Mashimo T, Südhof TC. Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons. Neuron 2007; 54:567-81. [PMID: 17521570 DOI: 10.1016/j.neuron.2007.05.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 04/05/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Synaptotagmin-1 and -2 are known Ca(2+) sensors for fast synchronous neurotransmitter release, but the potential Ca(2+)-sensor functions of other synaptotagmins in release remain uncharacterized. We now show that besides synaptotagmin-1 and -2, only synaptotagmin-9 (also called synaptotagmin-5) mediates fast Ca(2+) triggering of release. Release induced by the three different synaptotagmin Ca(2+) sensors exhibits distinct kinetics and apparent Ca(2+) sensitivities, suggesting that the synaptotagmin isoform expressed by a neuron determines the release properties of its synapses. Conditional knockout mice producing GFP-tagged synaptotagmin-9 revealed that synaptotagmin-9 is primarily expressed in the limbic system and striatum. Acute deletion of synaptotagmin-9 in striatal neurons severely impaired fast synchronous release without changing the size of the readily-releasable vesicle pool. These data show that in mammalian brain, only synaptotagmin-1, -2, and -9 function as Ca(2+) sensors for fast release, and that these synaptotagmins are differentially expressed to confer distinct release properties onto synapses formed by defined subsets of neurons.
Collapse
Affiliation(s)
- Jun Xu
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | | | | |
Collapse
|