1
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
2
|
Chandrasekaran A, Clarke A, McQueen P, Fang HY, Papoian GA, Giniger E. Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol Biol Cell 2022; 33:ar92. [PMID: 35857718 PMCID: PMC9582807 DOI: 10.1091/mbc.e21-11-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multimicron-scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live imaging of actin in wild-type axons in vivo. Using a graph theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high-Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/National Institutes of Health Graduate Partnerships Program, Washington, DC 20037
| | - Philip McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Edward Giniger
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| |
Collapse
|
3
|
Greaves D, Calle Y. Epithelial Mesenchymal Transition (EMT) and Associated Invasive Adhesions in Solid and Haematological Tumours. Cells 2022; 11:649. [PMID: 35203300 PMCID: PMC8869945 DOI: 10.3390/cells11040649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In solid tumours, cancer cells that undergo epithelial mesenchymal transition (EMT) express characteristic gene expression signatures that promote invasive migration as well as the development of stemness, immunosuppression and drug/radiotherapy resistance, contributing to the formation of currently untreatable metastatic tumours. The cancer traits associated with EMT can be controlled by the signalling nodes at characteristic adhesion sites (focal contacts, invadopodia and microtentacles) where the regulation of cell migration, cell cycle progression and pro-survival signalling converge. In haematological tumours, ample evidence accumulated during the last decade indicates that the development of an EMT-like phenotype is indicative of poor disease prognosis. However, this EMT phenotype has not been directly linked to the assembly of specific forms of adhesions. In the current review we discuss the role of EMT in haematological malignancies and examine its possible link with the progression towards more invasive and aggressive forms of these tumours. We also review the known types of adhesions formed by haematological malignancies and speculate on their possible connection with the EMT phenotype. We postulate that understanding the architecture and regulation of EMT-related adhesions will lead to the discovery of new therapeutic interventions to overcome disease progression and resistance to therapies.
Collapse
Affiliation(s)
| | - Yolanda Calle
- School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK;
| |
Collapse
|
4
|
Skruber K, Warp PV, Shklyarov R, Thomas JD, Swanson MS, Henty-Ridilla JL, Read TA, Vitriol EA. Arp2/3 and Mena/VASP Require Profilin 1 for Actin Network Assembly at the Leading Edge. Curr Biol 2020; 30:2651-2664.e5. [PMID: 32470361 DOI: 10.1016/j.cub.2020.04.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Abstract
Cells have many types of actin structures, which must assemble from a common monomer pool. Yet, it remains poorly understood how monomers are distributed to and shared between different filament networks. Simplified model systems suggest that monomers are limited and heterogeneous, which alters actin network assembly through biased polymerization and internetwork competition. However, less is known about how monomers influence complex actin structures, where different networks competing for monomers overlap and are functionally interdependent. One example is the leading edge of migrating cells, which contains filament networks generated by multiple assembly factors. The leading edge dynamically switches between the formation of different actin structures, such as lamellipodia or filopodia, by altering the balance of these assembly factors' activities. Here, we sought to determine how the monomer-binding protein profilin 1 (PFN1) controls the assembly and organization of actin in mammalian cells. Actin polymerization in PFN1 knockout cells was severely disrupted, particularly at the leading edge, where both Arp2/3 and Mena/VASP-based filament assembly was inhibited. Further studies showed that in the absence of PFN1, Arp2/3 no longer localizes to the leading edge and Mena/VASP is non-functional. Additionally, we discovered that discrete stages of internetwork competition and collaboration between Arp2/3 and Mena/VASP networks exist at different PFN1 concentrations. Low levels of PFN1 caused filopodia to form exclusively at the leading edge, while higher concentrations inhibited filopodia and favored lamellipodia and pre-filopodia bundles. These results demonstrate that dramatic changes to actin architecture can be made simply by modifying PFN1 availability.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Peyton V Warp
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Rachael Shklyarov
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Tracy-Ann Read
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric A Vitriol
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Bagonis MM, Fusco L, Pertz O, Danuser G. Automated profiling of growth cone heterogeneity defines relations between morphology and motility. J Cell Biol 2019; 218:350-379. [PMID: 30523041 PMCID: PMC6314545 DOI: 10.1083/jcb.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.
Collapse
Affiliation(s)
- Maria M Bagonis
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ludovico Fusco
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Pertz
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Higgs HN. A fruitful tree: developing the dendritic nucleation model of actin-based cell motility. Mol Biol Cell 2018. [PMCID: PMC6333179 DOI: 10.1091/mbc.e18-07-0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A fundamental question in cell biology concerns how cells move, and this has been the subject of intense research for decades. In the 1990s, a major leap forward was made in our understanding of cell motility, with the proposal of the dendritic nucleation model. This essay describes the events leading to the development of the model, including findings from many laboratories and scientific disciplines. The story is an excellent example of the scientific process in action, with the combination of multiple perspectives leading to robust conclusions.
Collapse
Affiliation(s)
- Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
7
|
Miller KE, Suter DM. An Integrated Cytoskeletal Model of Neurite Outgrowth. Front Cell Neurosci 2018; 12:447. [PMID: 30534055 PMCID: PMC6275320 DOI: 10.3389/fncel.2018.00447] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Neurite outgrowth underlies the wiring of the nervous system during development and regeneration. Despite a significant body of research, the underlying cytoskeletal mechanics of growth and guidance are not fully understood, and the relative contributions of individual cytoskeletal processes to neurite growth are controversial. Here, we review the structural organization and biophysical properties of neurons to make a semi-quantitative comparison of the relative contributions of different processes to neurite growth. From this, we develop the idea that neurons are active fluids, which generate strong contractile forces in the growth cone and weaker contractile forces along the axon. As a result of subcellular gradients in forces and material properties, actin flows rapidly rearward in the growth cone periphery, and microtubules flow forward in bulk along the axon. With this framework, an integrated model of neurite outgrowth is proposed that hopefully will guide new approaches to stimulate neuronal growth.
Collapse
Affiliation(s)
- Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials 2018; 175:93-109. [DOI: 10.1016/j.biomaterials.2018.05.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
|
9
|
Schlau M, Terheyden-Keighley D, Theis V, Mannherz HG, Theiss C. VEGF Triggers the Activation of Cofilin and the Arp2/3 Complex within the Growth Cone. Int J Mol Sci 2018; 19:ijms19020384. [PMID: 29382077 PMCID: PMC5855606 DOI: 10.3390/ijms19020384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott–Aldrich–Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP.
Collapse
Affiliation(s)
- Matthias Schlau
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Daniel Terheyden-Keighley
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Hans Georg Mannherz
- Research Group Molecular Cardiology, University Hospital Bergmannsheil and St. Josef Hospital, c/o Clinical Pharmacology, Ruhr-University, 44780 Bochum, Germany.
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
10
|
Nozumi M, Nakatsu F, Katoh K, Igarashi M. Coordinated Movement of Vesicles and Actin Bundles during Nerve Growth Revealed by Superresolution Microscopy. Cell Rep 2017; 18:2203-2216. [DOI: 10.1016/j.celrep.2017.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/29/2016] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
|
11
|
Abstract
The growth and migration of neurons require continuous remodelling of the neuronal cytoskeleton, providing a versatile cellular framework for force generation and guided movement, in addition to structural support. Actin filaments and microtubules are central to the dynamic action of the cytoskeleton and rapid advances in imaging technologies are enabling ever more detailed visualisation of the dynamic intracellular networks that they form. However, these filaments do not act individually and an expanding body of evidence emphasises the importance of actin-microtubule crosstalk in orchestrating cytoskeletal dynamics. Here, we summarise our current understanding of the structure and dynamics of actin and microtubules in isolation, before reviewing both the mechanisms and the molecular players involved in mediating actin-microtubule crosstalk in neurons.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
12
|
Sayyad WA, Fabris P, Torre V. The Role of Rac1 in the Growth Cone Dynamics and Force Generation of DRG Neurons. PLoS One 2016; 11:e0146842. [PMID: 26766136 PMCID: PMC4713067 DOI: 10.1371/journal.pone.0146842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
We used optical tweezers, video imaging, immunocytochemistry and a variety of inhibitors to analyze the role of Rac1 in the motility and force generation of lamellipodia and filopodia from developing growth cones of isolated Dorsal Root Ganglia neurons. When the activity of Rac1 was inhibited by the drug EHop-016, the period of lamellipodia protrusion/retraction cycles increased and the lamellipodia retrograde flow rate decreased; moreover, the axial force exerted by lamellipodia was reduced dramatically. Inhibition of Arp2/3 by a moderate amount of the drug CK-548 caused a transient retraction of lamellipodia followed by a complete recovery of their usual motility. This recovery was abolished by the concomitant inhibition of Rac1. The filopodia length increased upon inhibition of both Rac1 and Arp2/3, but the speed of filopodia protrusion increased when Rac1 was inhibited and decreased instead when Arp2/3 was inhibited. These results suggest that Rac1 acts as a switch that activates upon inhibition of Arp2/3. Rac1 also controls the filopodia dynamics necessary to explore the environment.
Collapse
Affiliation(s)
- Wasim A. Sayyad
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Paolo Fabris
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Vincent Torre
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
13
|
Wang F, Cui N, Yang L, Shi L, Li Q, Zhang G, Wu J, Zheng J, Jiao B. Resveratrol Rescues the Impairments of Hippocampal Neurons Stimulated by Microglial Over-Activation In Vitro. Cell Mol Neurobiol 2015; 35:1003-15. [PMID: 25898934 PMCID: PMC11486292 DOI: 10.1007/s10571-015-0195-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/12/2015] [Indexed: 01/04/2023]
Abstract
Resveratrol is a naturally occurring phytoalexin found in red grapes, and believed to have neuroprotective, anti-oxidant, and anti-inflammatory effects. But little is known about its effect on the neural impairments induced by microglial over-activation, which leads to neuroinflammation and multiple pathophysiological damages. In this study, we aimed to investigate the protective effects of resveratrol on the impairments of neural development by microglial over-activation insult. The results indicated that resveratrol inhibited the lipopolysaccharide (LPS)-dependent release of cytokines from activated microglia and LPS-dependent changes in NF-κB signaling pathway. Conditioned medium (CM) from activated microglia treated by resveratrol directly protected primary cultured hippocampal neurons against LPS-CM-induced neuronal death, and restored the inhibitory effects of LPS-CM on dendrite sprouting and outgrowth. Finally, neurons cultured in CM from LPS-stimulated microglia treated by resveratrol exhibited increased spine density compared to those without resveratrol treatment. Our findings support that resveratrol inhibits microglial over-activation and alleviates neuronal injuries induced by microglial activation. Our study suggests the use of resveratrol as an alternative intervention approach that could prevent further neuronal insults.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China.
| | - Na Cui
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lijun Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Lin Shi
- Department of Neurosurgery, The Second Hospital of Baoding City, Baoding, 071051, China
| | - Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050000, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jun Zheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Baohua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
14
|
Wang Y, Yang L, Yang D. Tanshinone IIA Rescued the Impairments of Primary Hippocampal Neurons Induced by BV2 Microglial Over-Activation. Neurochem Res 2015; 40:1497-508. [PMID: 26012368 DOI: 10.1007/s11064-015-1624-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
Activated microglia plays an important role in monitoring the microenvironment and prune neural process in healthy neural tissue, in order to maintain synaptic homeostasis. However, hyperactive microglia may release various cytotoxic factors and induce neuroinflammation, which cause neuronal damages leading to neurodegenerative diseases. Tanshinone IIA (TSA), an extract from traditional Chinese medicine, features potent anti-apoptotic and anti-inflammatory effects both in vitro and in vivo. But little is known on the effects of TSA on microglial-over-activation-induced neural impairments. In this study, by employing murine BV2 cell lines as well as the combinations of ELISA assay, immunostaining, western blotting analysis and RT-PCR, we found that TSA has the potential to exhibit anti-inflammatory effects. We hereby demonstrated that TSA rescued neural growth and development in the primary cultured hippocampal neurons from impairments caused by BV2 microglial over-activation insult. The results show that TSA attenuated the BV2 cell activation by lipopolysaccharide (LPS) stimulation through suppressing the NF-кB signal pathway. Also, conditioned mediums (CM) from TSA treated and activated BV2 cells protected against LPS-CM-induced neuronal death. Furthermore, TSA treatment could recover the inhibitory effects of LPS-CM on growth cone extension, neurite sprouting and outgrowth, as well as spinogenesis. Our findings support that TSA is capable of inhibiting BV2 cell over-activation thus has potential protective effects in the cultured hippocampal neurons. This study may lay a foundation for using TSA to restore cerebral injuries after severe neuroinflammation.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | | | | |
Collapse
|
15
|
Peng J, Wang P, Ge H, Qu X, Jin X. Effects of cordycepin on the microglia-overactivation-induced impairments of growth and development of hippocampal cultured neurons. PLoS One 2015; 10:e0125902. [PMID: 25932642 PMCID: PMC4416906 DOI: 10.1371/journal.pone.0125902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022] Open
Abstract
Microglial cells are normally activated in response to brain injury or immunological stimuli to protect central nervous system (CNS). However, over-activation of microglia conversely amplifies the inflammatory effects and mediates cellular degeneration, leading to the death of neurons. Recently, cordycepin, an active component found in Cordyceps militarisa known as a rare Chinese caterpillar fungus, has been reported as an effective drug for treating inflammatory diseases and cancer via unclear mechanisms. In this study, we attempted to identify the anti-inflammatory role of cordycepin and its protective effects on the impairments of neural growth and development induced by microglial over-activation. The results indicate that cordycepin could attenuate the lipopolysaccharide (LPS)-induced microglial activation, evidenced by the dramatically reduced release of TNF-α and IL-1β, as well as the down-regulation of mRNA levels of iNOS and COX-2 after cordycepin treatment. Besides, cordycepin reversed the LPS-induced activation of NF-κB pathway, resulting in anti-inflammatory effects. Furthermore, by employing the conditioned medium (CM), we found cordycepin was able to recover the impairments of neural growth and development in the primary hippocampal neurons cultured in LPS-CM, including cell viability, growth cone extension, neurite sprouting and outgrowth as well as spinogenesis. This study expands our knowledge of the anti-inflammatory function of cordycepin and paves the way for the biomedical applications of cordycepin in the therapies of neural injuries.
Collapse
Affiliation(s)
- Jie Peng
- Wuzhong Hospital, Suzhou, Jiangsu, China
| | - Ping Wang
- Wuzhong Hospital, Suzhou, Jiangsu, China
| | - Hongshan Ge
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianqin Qu
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
- * E-mail: (XJ); (XQ)
| | - Xingliang Jin
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Sydney Centre for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW, Australia
- * E-mail: (XJ); (XQ)
| |
Collapse
|
16
|
Directional cell elongation through filopodia-steered lamellipodial extension on patterned silk fibroin films. Biointerphases 2015; 10:011005. [PMID: 25743615 DOI: 10.1116/1.4914028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Micropatterned biomaterials have been used to direct cell alignment for specific tissue engineering applications. However, the understanding of how cells respond to guidance cues remains limited. Plasticity in protrusion formation has been proposed to enable cells to adapt their motility mode to microenvironment. In this study, the authors investigated the key role of protrusion response in cell guidance on patterned silk fibroin films. The results revealed that the ability to transform between filopodia and small lamellipodia played important roles in directional cell guidance. Filopodia did not show directional extension on patterned substrates prior to spreading, but they transduced topographical cues to the cell to trigger the formation of small lamellipodia along the direction of a microgrooved or parallel nanofiber pattern. The polar lamellipodia formation provided not only a path with directionality, but a driving force for directional cell elongation. Moreover, aligned nanofibers coating provided better mechanical support for the traction of filopodia and lamellipodia, promoting cell attachment, spreading, and migration. This study provides new insight into how cells respond to guidance cues and how filopodia and lamellipodia control cell contact guidance on micropatterned biomaterial surfaces.
Collapse
|
17
|
Sayyad WA, Amin L, Fabris P, Ercolini E, Torre V. The role of myosin-II in force generation of DRG filopodia and lamellipodia. Sci Rep 2015; 5:7842. [PMID: 25598228 PMCID: PMC4648386 DOI: 10.1038/srep07842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/15/2014] [Indexed: 11/10/2022] Open
Abstract
Differentiating neurons process the mechanical stimulus by exerting the protrusive forces through lamellipodia and filopodia. We used optical tweezers, video imaging and immunocytochemistry to analyze the role of non-muscle myosin-II on the protrusive force exerted by lamellipodia and filopodia from developing growth cones (GCs) of isolated Dorsal Root Ganglia (DRG) neurons. When the activity of myosin-II was inhibited by 30 μM Blebbistatin protrusion/retraction cycles of lamellipodia slowed down and during retraction lamellipodia could not lift up axially as in control condition. Inhibition of actin polymerization with 25 nM Cytochalasin-D and of microtubule polymerization with 500 nM Nocodazole slowed down the protrusion/retraction cycles, but only Cytochalasin-D decreased lamellipodia axial motion. The force exerted by lamellipodia treated with Blebbistatin decreased by 50%, but, surprisingly, the force exerted by filopodia increased by 20-50%. The concomitant disruption of microtubules caused by Nocodazole abolished the increase of the force exerted by filopodia treated with Blebbistatin. These results suggest that; i- Myosin-II controls the force exerted by lamellipodia and filopodia; ii- contractions of the actomyosin complex formed by filaments of actin and myosin have an active role in ruffle formation; iii- myosin-II is an essential component of the structural stability of GCs architecture.
Collapse
Affiliation(s)
- Wasim A Sayyad
- Neuroscience Area, International School for Advanced Studies (SISSA), IT-34136 Trieste, Italy
| | - Ladan Amin
- Neuroscience Area, International School for Advanced Studies (SISSA), IT-34136 Trieste, Italy
| | - Paolo Fabris
- Neuroscience Area, International School for Advanced Studies (SISSA), IT-34136 Trieste, Italy
| | - Erika Ercolini
- Neuroscience Area, International School for Advanced Studies (SISSA), IT-34136 Trieste, Italy
| | - Vincent Torre
- Neuroscience Area, International School for Advanced Studies (SISSA), IT-34136 Trieste, Italy
| |
Collapse
|
18
|
Hu W, Wehrle-Haller B, Vogel V. Maturation of filopodia shaft adhesions is upregulated by local cycles of lamellipodia advancements and retractions. PLoS One 2014; 9:e107097. [PMID: 25229609 PMCID: PMC4167701 DOI: 10.1371/journal.pone.0107097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/13/2014] [Indexed: 11/19/2022] Open
Abstract
While cell-substrate adhesions that form between the protruding edge of a spreading cell and flat surfaces have been studied extensively, processes that regulate the maturation of filopodia adhesions are far less characterized. Since little is known about how the kinetics of formation or disassembly of filopodia adhesions is regulated upon integration into the lamellum, a kinetic analysis of the formation and disassembly of filopodia adhesions was conducted at the leading edge of β3-integrin-EGFP-expressing rat embryonic fibroblasts spreading on fibronectin-coated glass or on soft polyacrylamide gels. Filopodia β3-integrin adhesions matured only if the lamellipodium in their immediate vicinity showed cyclic protrusions and retractions. Filopodia β3-integrin shaft adhesions elongated rapidly when they were overrun by the advancing lamellipodium. Subsequently and once the lamellipodium stopped its advancement at the distal end of the filopodia β3-integrin adhesion, these β3-integrin shaft adhesions started to grow sidewise and colocalize with the newly assembled circumferential actin stress fibers. In contrast, the suppression of the cyclic protrusions and retractions of the lamellipodium by blocking myosin light chain kinase suppressed the growth of filopodia adhesion and resulted in the premature disassembly of filopodia adhesions. The same failure to stabilize those adhesions was found for the advancing lamellipodium that rapidly overran filopodia shaft adhesions without pausing as seen often during fast cell spreading. In turn, plating cells on soft polyacrylamide gels resulted in a reduction of lamellipodia activity, which was partially restored locally by the presence of filopodia adhesions. Thus filopodia adhesions could also mature and be integrated into the lamellum for fibroblasts on soft polyacrylamide substrates.
Collapse
Affiliation(s)
- Wei Hu
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cellular Physiology and Metabolism, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
20
|
Abstract
During development extrinsic guidance cues modulate the peripheral actin network in growth cones to direct axons to their targets. We wanted to understand the role of the actin nucleator Arp2/3 in growth cone actin dynamics and guidance. Since growth cones migrate in association with diverse adhesive substrates during development, we probed the hypothesis that the functional significance of Arp2/3 is substrate dependent. We report that Arp2/3 inhibition led to a reduction in the number of filopodia and growth cone F-actin content on laminin and L1. However, we found substrate-dependent differences in growth cone motility, actin retrograde flow, and guidance after Arp2/3 inhibition, suggesting that its role, and perhaps that of other actin binding proteins, in growth cone motility is substrate dependent.
Collapse
|
21
|
Möller J, Lühmann T, Chabria M, Hall H, Vogel V. Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism. Sci Rep 2013; 3:2884. [PMID: 24097079 PMCID: PMC3791455 DOI: 10.1038/srep02884] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/18/2013] [Indexed: 01/06/2023] Open
Abstract
To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis.
Collapse
Affiliation(s)
- Jens Möller
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Comparison of the force exerted by hippocampal and DRG growth cones. PLoS One 2013; 8:e73025. [PMID: 23991169 PMCID: PMC3749134 DOI: 10.1371/journal.pone.0073025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/16/2013] [Indexed: 01/31/2023] Open
Abstract
Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 µm2 and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties.
Collapse
|
23
|
Yang Q, Zhang XF, Van Goor D, Dunn AP, Hyland C, Medeiros N, Forscher P. Protein kinase C activation decreases peripheral actin network density and increases central nonmuscle myosin II contractility in neuronal growth cones. Mol Biol Cell 2013; 24:3097-114. [PMID: 23966465 PMCID: PMC3784383 DOI: 10.1091/mbc.e13-05-0289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PKC activation enhances myosin II contractility in the central growth cone domain while decreasing actin density and increasing actin network flow rates in the peripheral domain. This dual mode of action has mechanistic implications for interpreting reported effects of PKC on growth cone guidance and neuronal regeneration. Protein kinase C (PKC) can dramatically alter cell structure and motility via effects on actin filament networks. In neurons, PKC activation has been implicated in repulsive guidance responses and inhibition of axon regeneration; however, the cytoskeletal mechanisms underlying these effects are not well understood. Here we investigate the acute effects of PKC activation on actin network structure and dynamics in large Aplysia neuronal growth cones. We provide evidence of a novel two-tiered mechanism of PKC action: 1) PKC activity enhances myosin II regulatory light chain phosphorylation and C-kinase–potentiated protein phosphatase inhibitor phosphorylation. These effects are correlated with increased contractility in the central cytoplasmic domain. 2) PKC activation results in significant reduction of P-domain actin network density accompanied by Arp2/3 complex delocalization from the leading edge and increased rates of retrograde actin network flow. Our results show that PKC activation strongly affects both actin polymerization and myosin II contractility. This synergistic mode of action is relevant to understanding the pleiotropic reported effects of PKC on neuronal growth and regeneration.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | |
Collapse
|
24
|
Saengsawang W, Taylor KL, Lumbard DC, Mitok K, Price A, Pietila L, Gomez TM, Dent EW. CIP4 coordinates with phospholipids and actin-associated proteins to localize to the protruding edge and produce actin ribs and veils. J Cell Sci 2013; 126:2411-23. [PMID: 23572514 DOI: 10.1242/jcs.117473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils). In neurons, CIP4 localizes specifically to extending protrusions and functions to limit neurite outgrowth early in development. The mechanism by which CIP4 localizes to the protruding edge membrane and induces lamellipodial/veil protrusion and actin rib formation is not known. Here, we show that CIP4 localization to the protruding edge of neurons is dependent on both the phospholipid content of the plasma membrane and the underlying organization of actin filaments. Inhibiting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production decreases CIP4 at the membrane. CIP4 localization to the protruding edge is also dependent on Rac1/WAVE1, rather than Cdc42/N-WASP. Capping actin filaments with low concentrations of cytochalasin D or by overexpressing capping protein dramatically decreases CIP4 at the protruding edge, whereas inactivating Arp2/3 drives CIP4 to the protruding edge. We also demonstrate that CIP4 dynamically colocalizes with Ena/VASP and DAAM1, two proteins known to induce unbranched actin filament arrays and play important roles in neuronal development. Together, this is the first study to show that the localization of an F-BAR protein depends on both actin filament architecture and phospholipids at the protruding edge of developing neurons.
Collapse
Affiliation(s)
- Witchuda Saengsawang
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
26
|
Marx A, Godinez WJ, Tsimashchuk V, Bankhead P, Rohr K, Engel U. Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules. Mol Biol Cell 2013; 24:1544-58. [PMID: 23515224 PMCID: PMC3655815 DOI: 10.1091/mbc.e12-08-0573] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynamic microtubules (MTs) are required for neuronal guidance, in which axons extend directionally toward their target tissues. We found that depletion of the MT-binding protein Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) or treatment with the MT drug Taxol reduced axon outgrowth in spinal cord neurons. To quantify the dynamic distribution of MTs in axons, we developed an automated algorithm to detect and track MT plus ends that have been fluorescently labeled by end-binding protein 3 (EB3). XCLASP1 depletion reduced MT advance rates in neuronal growth cones, very much like treatment with Taxol, demonstrating a potential link between MT dynamics in the growth cone and axon extension. Automatic tracking of EB3 comets in different compartments revealed that MTs increasingly slowed as they passed from the axon shaft into the growth cone and filopodia. We used speckle microscopy to demonstrate that MTs experience retrograde flow at the leading edge. Microtubule advance in growth cone and filopodia was strongly reduced in XCLASP1-depleted axons as compared with control axons, but actin retrograde flow remained unchanged. Instead, we found that XCLASP1-depleted growth cones lacked lamellipodial actin organization characteristic of protrusion. Lamellipodial architecture depended on XCLASP1 and its capacity to associate with MTs, highlighting the importance of XCLASP1 in actin-microtubule interactions.
Collapse
Affiliation(s)
- Astrid Marx
- Exzellenzcluster CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Yang Q, Zhang XF, Pollard TD, Forscher P. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow. ACTA ACUST UNITED AC 2012; 197:939-56. [PMID: 22711700 PMCID: PMC3384413 DOI: 10.1083/jcb.201111052] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II-dependent contractility with consequent effects on growth cone motility.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
28
|
Amin L, Ercolini E, Shahapure R, Migliorini E, Torre V. The role of membrane stiffness and actin turnover on the force exerted by DRG lamellipodia. Biophys J 2012; 102:2451-60. [PMID: 22713560 DOI: 10.1016/j.bpj.2012.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022] Open
Abstract
We used optical tweezers to analyze the effect of jasplakinolide and cyclodextrin on the force exerted by lamellipodia from developing growth cones (GCs) of isolated dorsal root ganglia (DRG) neurons. We found that 25 nM of jasplakinolide, which is known to inhibit actin filament turnover, reduced both the maximal exerted force and maximal velocity during lamellipodia leading-edge protrusion. By using atomic force microscopy, we verified that cyclodextrin, which is known to remove cholesterol from membranes, decreased the membrane stiffness of DRG neurons. Lamellipodia treated with 2.5 mM of cyclodextrin exerted a larger force, and their leading edge could advance with a higher velocity. Neither jasplakinolide nor cyclodextrin affected force or velocity during lamellipodia retraction. The amplitude and frequency of elementary jumps underlying force generation were reduced by jasplakinolide but not by cyclodextrin. The action of both drugs at the used concentration was fully reversible. These results support the notion that membrane stiffness provides a selective pressure that shapes force generation, and confirm the pivotal role of actin turnover during protrusion.
Collapse
Affiliation(s)
- Ladan Amin
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | |
Collapse
|
29
|
The F-BAR protein CIP4 inhibits neurite formation by producing lamellipodial protrusions. Curr Biol 2012; 22:494-501. [PMID: 22361215 DOI: 10.1016/j.cub.2012.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/22/2011] [Accepted: 01/19/2012] [Indexed: 02/01/2023]
Abstract
Neurite formation is a seminal event in the early development of neurons. However, little is known about the mechanisms by which neurons form neurites. F-BAR proteins function in sensing and inducing membrane curvature. Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, regulates endocytosis in a variety of cell types. However, there is little data on how CIP4 functions in neurons. Here we show that CIP4 plays a novel role in neuronal development by inhibiting neurite formation. Remarkably, CIP4 exerts this effect not through endocytosis, but by producing lamellipodial protrusions. In primary cortical neurons CIP4 is concentrated specifically at the tips of extending lamellipodia and filopodia, instead of endosomes as in other cell types. Overexpression of CIP4 results in lamellipodial protrusions around the cell body, subsequently delaying neurite formation and enlarging growth cones. These effects depend on the F-BAR and SH3 domains of CIP4 and on its ability to multimerize. Conversely, cortical neurons from CIP4-null mice initiate neurites twice as fast as controls. This is the first study to demonstrate that an F-BAR protein functions differently in neuronal versus nonneuronal cells and induces lamellipodial protrusions instead of invaginations or filopodia-like structures.
Collapse
|
30
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
31
|
A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol 2011; 13:371-81. [PMID: 21423177 DOI: 10.1038/ncb2205] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/06/2011] [Indexed: 02/07/2023]
Abstract
Epithelial cell migration requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion, when myosin II redistributes to the lamellipodial actin and condenses it into an actin arc parallel to the edge. The new actin arc moves rearward, slowing down at focal adhesions in the lamella. We propose that net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thereby serves as a structural element underlying the temporal and spatial connection between the lamellipodium and the lamella during directed cell motion.
Collapse
|
32
|
Stuhrmann B, Huber F, Käs J. Robust organizational principles of protrusive biopolymer networks in migrating living cells. PLoS One 2011; 6:e14471. [PMID: 21267070 PMCID: PMC3022574 DOI: 10.1371/journal.pone.0014471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 12/06/2010] [Indexed: 01/16/2023] Open
Abstract
Cell migration is associated with the dynamic protrusion of a thin actin-based cytoskeletal extension at the cell front, which has been shown to consist of two different substructures, the leading lamellipodium and the subsequent lamellum. While the formation of the lamellipodium is increasingly well understood, organizational principles underlying the emergence of the lamellum are just beginning to be unraveled. We report here on a 1D mathematical model which describes the reaction-diffusion processes of a polarized actin network in steady state, and reproduces essential characteristics of the lamellipodium-lamellum system. We observe a steep gradient in filament lengths at the protruding edge, a local depolymerization maximum a few microns behind the edge, as well as a differential dominance of the network destabilizer ADF/cofilin and the stabilizer tropomyosin. We identify simple and robust organizational principles giving rise to the derived network characteristics, uncoupled from the specifics of any molecular implementation, and thus plausibly valid across cell types. An analysis of network length dependence on physico-chemical system parameters implies that to limit array treadmilling to cellular dimensions, network growth has to be truncated by mechanisms other than aging-induced depolymerization, e.g., by myosin-associated network dissociation at the transition to the cell body. Our work contributes to the analytical understanding of the cytoskeletal extension's bisection into lamellipodium and lamellum and sheds light on how cells organize their molecular machinery to achieve motility.
Collapse
Affiliation(s)
- Björn Stuhrmann
- Institute of Soft Matter Physics, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
33
|
Shahapure R, Difato F, Laio A, Bisson G, Ercolini E, Amin L, Ferrari E, Torre V. Force generation in lamellipodia is a probabilistic process with fast growth and retraction events. Biophys J 2010; 98:979-88. [PMID: 20303855 DOI: 10.1016/j.bpj.2009.11.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 12/26/2022] Open
Abstract
Polymerization of actin filaments is the primary source of motility in lamellipodia and it is controlled by a variety of regulatory proteins. The underlying molecular mechanisms are only partially understood and a precise determination of dynamical properties of force generation is necessary. Using optical tweezers, we have measured with millisecond (ms) temporal resolution and picoNewton (pN) sensitivity the force-velocity (Fv) relationship and the power dissipated by lamellipodia of dorsal root ganglia neurons. When force and velocity are averaged over 3-5 s, the Fv relationships can be flat. On a finer timescale, random occurrence of fast growth and subsecond retractions become predominant. The maximal power dissipated by lamellipodia over a silica bead with a diameter of 1 microm is 10(-16) W. Our results clarify the dynamical properties of force generation: i), force generation is a probabilistic process; ii), underlying biological events have a bandwidth up to at least 10 Hz; and iii), fast growth of lamellipodia leading edge alternates with local retractions.
Collapse
Affiliation(s)
- Rajesh Shahapure
- International School for Advanced Studies (SISSA-ISAS), Trieste 34149, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
From dynamic live cell imaging to 3D ultrastructure: novel integrated methods for high pressure freezing and correlative light-electron microscopy. PLoS One 2010; 5:e9014. [PMID: 20140253 PMCID: PMC2815783 DOI: 10.1371/journal.pone.0009014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM) to electron microscopy (EM). Methodology To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coordinates that were conserved at every step of the sample preparation and visualization processes. Specifically designed for cryo-fixation, this method allowed a fast freezing of dynamic events within seconds and their ultrastructural characterization. We provide examples of the dynamic oligomerization of GFP-tagged myotubularin (MTM1) phosphoinositides phosphatase induced by osmotic stress, and of the ultrastructure of membrane tubules dependent on amphiphysin 2 (BIN1) expression. Conclusion Accessible and versatile, we show that this approach is efficient to routinely correlate functional and dynamic LM with high resolution morphology by EM, with immuno-EM labeling, with 3D reconstruction using serial immuno-EM or tomography, and with scanning-EM.
Collapse
|
35
|
Shemesh T, Verkhovsky AB, Svitkina TM, Bershadsky AD, Kozlov MM. Role of focal adhesions and mechanical stresses in the formation and progression of the lamellipodium-lamellum interface [corrected]. Biophys J 2009; 97:1254-64. [PMID: 19720013 DOI: 10.1016/j.bpj.2009.05.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 01/16/2023] Open
Abstract
Actin network in the front part of a moving cell is organized into a lamellipodium and a lamellum. A distinct lamellipodium-lamellum interface is associated with focal adhesions and consists of a series of arclike segments linking neighboring focal adhesions in the front row. The interface advances by leaping onto new rows of focal adhesions maturating underneath the lamellipodium. We propose a mechanism of the lamellipodium-lamellum boundary generation, shape formation, and progression based on the elastic stresses generated in the lamellipodial actin gel by its friction against the focal adhesions. The crucial assumption of the model is that stretching stresses trigger actin gel disintegration. We compute the stress distribution throughout the actin gel and show that the gel-disintegrating stresses drive formation of a gel boundary passing through the row of focal adhesions. Our computations recover the lamellipodium-lamellum boundary shapes detected in cells and predict the mode of the boundary transition to the row of the newly maturing focal adhesions in agreement with the experimental observations. The model fully accounts for the current phenomenology of the lamellipodium-lamellum interface formation and advancing, and makes experimentally testable predictions on the dependence of these phenomena on the sizes of the focal adhesions, the character of the focal adhesion distribution on the substrate, and the velocity of the actin retrograde flow with respect to the focal adhesions. The phase diagram resulting from the model provides a background for quantitative classification of different cell types with respect to their ability to form a lamellipodium-lamellum interface. In addition, the model suggests a mechanism of nucleation of the dorsal and arclike actin bundles found in the lamellum.
Collapse
Affiliation(s)
- Tom Shemesh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
36
|
Abstract
Growth cones are the main motile structures located at the tip of neurites and are composed of a lamellipodium from which thin filopodia emerge. In this article, we analyzed the kinetics and dynamics of growth cones with the aim to understand two major issues: first, the strategy used by filopodia and lamellipodia during their exploration and navigation; second, what kind of mechanical problems neurons need to solve during their operation. In the developing nervous system and in the adult brain, neurons constantly need to solve mechanical problems. Growth cones must decide how to explore the environment and in which direction to grow; they also need to establish the appropriate contacts, to avoid obstacles and to determine how much force to exert. Here, we show that in sparse cultures, filopodia grow and retract following statistical patterns, nearly optimal for an efficient exploration of the environment. In a dense culture, filopodia exploration is still present although significantly reduced. Analysis on 1271, 6432, and 185 pairs of filopodia of DRG, PC12 and Hippocampal neurons respectively showed that the correlation coefficient |rho| of the growth of more than 50% of filopodia pairs was >0.15. From a computational point of view, filopodia and lamellipodia motion can be described by a random process in which errors are corrected by efficient feedback loops. This article argues that neurons not only process sensory signals, but also solve mechanical problems throughout their entire lifespan, from the early stages of embryogenesis to adulthood.
Collapse
Affiliation(s)
- Jummi Laishram
- Neuroscience Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
37
|
Abstract
Interactions between dynamic microtubules and actin filaments are essential to a wide range of cell biological processes including cell division, motility and morphogenesis. In neuronal growth cones, interactions between microtubules and actin filaments in filopodia are necessary for growth cones to make a turn. Growth-cone turning is a fundamental behaviour during axon guidance, as correct navigation of the growth cone through the embryo is required for it to locate an appropriate synaptic partner. Microtubule-actin filament interactions also occur in the transition zone and central domain of the growth cone, where actin arcs exert compressive forces to corral microtubules into the core of the growth cone and thereby facilitate microtubule bundling, a requirement for axon formation. We now have a fairly comprehensive understanding of the dynamic behaviour of the cytoskeleton in growth cones, and the stage is set for discovering the molecular machinery that enables microtubule-actin filament coupling in growth cones, as well as the intracellular signalling pathways that regulate these interactions. Furthermore, recent experiments suggest that microtubule-actin filament interactions might also be important for the formation of dendritic spines from filopodia in mature neurons. Therefore, the mechanisms coupling microtubules to actin filaments in growth-cone turning and dendritic-spine maturation might be conserved.
Collapse
Affiliation(s)
- Sara Geraldo
- The MRC Centre for Developmental Neurobiology, New Hunts House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | |
Collapse
|
38
|
Brown JA, Bridgman PC. Disruption of the cytoskeleton during Semaphorin 3A induced growth cone collapse correlates with differences in actin organization and associated binding proteins. Dev Neurobiol 2009; 69:633-46. [PMID: 19513995 DOI: 10.1002/dneu.20732] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Repulsive guidance cues induce growth cone collapse or collapse and retraction. Collapse results from disruption and loss of the actin cytoskeleton. Actin-rich regions of growth cones contain binding proteins that influence filament organization, such as Arp2/3, cortactin, and fascin, but little is known about the role that these proteins play in collapse. Here, we show that Semaphorin 3A (Sema 3A), which is repulsive to mouse dorsal root ganglion neurons, has unequal effects on actin binding proteins and their associated filaments. The immunofluorescence staining intensity of Arp-2 and cortactin decreases relative to total protein; whereas in unextracted growth cones fascin increases. Fascin and myosin IIB staining redistribute and show increased overlap. The degree of actin filament loss during collapse correlates with filament superstructures detected by rotary shadow electron microscopy. Collapse results in the loss of branched f-actin meshworks, while actin bundles are partially retained to varying degrees. Taken together with the known affects of Sema 3A on actin, this suggests a model for collapse that follows a sequence; depolymerization of actin meshworks followed by partial depolymerization of fascin associated actin bundles and their movement to the neurite to complete collapse. The relocated fascin associated actin bundles may provide the substrate for actomyosin contractions that produce retraction.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
39
|
Xiong Y, Lee AC, Suter DM, Lee GU. Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy. Biophys J 2009; 96:5060-72. [PMID: 19527666 DOI: 10.1016/j.bpj.2009.03.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 03/01/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022] Open
Abstract
Neuronal growth cones are motile structures located at the end of axons that translate extracellular guidance information into directional movements. Despite the important role of growth cones in neuronal development and regeneration, relatively little is known about the topography and mechanical properties of distinct subcellular growth cone regions under live conditions. In this study, we used the AFM to study the P domain, T zone, and C domain of live Aplysia growth cones. The average height of these regions was calculated from contact mode AFM images to be 183 +/- 33, 690 +/- 274, and 1322 +/- 164 nm, respectively. These findings are consistent with data derived from dynamic mode images of live and contact mode images of fixed growth cones. Nano-indentation measurements indicate that the elastic moduli of the C domain and T zone ruffling region ranged between 3-7 and 7-23 kPa, respectively. The range of the measured elastic modulus of the P domain was 10-40 kPa. High resolution images of the P domain suggest its relatively high elastic modulus results from a dense meshwork of actin filaments in lamellipodia and from actin bundles in the filopodia. The increased mechanical stiffness of the P and T domains is likely important to support and transduce tension that develops during growth cone steering.
Collapse
Affiliation(s)
- Ying Xiong
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The metastatic process, i.e. the dissemination of cancer cells throughout the body to seed secondary tumors at distant sites, requires cancer cells to leave the primary tumor and to acquire migratory and invasive capabilities. In a process of epithelial-mesenchymal transition (EMT), besides changing their adhesive repertoire, cancer cells employ developmental processes to gain migratory and invasive properties that involve a dramatic reorganization of the actin cytoskeleton and the concomitant formation of membrane protrusions required for invasive growth. The molecular processes underlying such cellular changes are still only poorly understood, and the various migratory organelles, including lamellipodia, filopodia, invadopodia and podosomes, still require a better functional and molecular characterization. Notably, direct experimental evidence linking the formation of migratory membrane protrusions and the process of EMT and tumor metastasis is still lacking. In this review, we have summarized recent novel insights into the molecular processes and players underlying EMT on one side and the formation of invasive membrane protrusions on the other side.
Collapse
Affiliation(s)
- Mahmut Yilmaz
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
41
|
Pellegrino M, Orsini P, De Gregorio F. Use of scanning ion conductance microscopy to guide and redirect neuronal growth cones. Neurosci Res 2009; 64:290-6. [DOI: 10.1016/j.neures.2009.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/16/2022]
|
42
|
Abstract
The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.
Collapse
|
43
|
Abstract
The regulation of growth cone actin dynamics is a critical aspect of axonal growth control. Among the proteins that are directly involved in the regulation of actin dynamics, actin nucleation factors play a pivotal role by promoting the formation of novel actin filaments. However, the essential nucleation factors in developing neurons have so far not been clearly identified. Here, we show expression data, and use true loss-of-function analysis and targeted expression of activated constructs to demonstrate that the Drosophila formin DAAM plays a critical role in axonal morphogenesis. In agreement with this finding, we show that dDAAM is required for filopodia formation at axonal growth cones. Our genetic interaction, immunoprecipitation and protein localization studies argue that dDAAM acts in concert with Rac GTPases, Profilin and Enabled during axonal growth regulation. We also show that mouse Daam1 rescues the CNS defects observed in dDAAM mutant flies to a high degree, and vice versa, that Drosophila DAAM induces the formation of neurite-like protrusions when expressed in mouse P19 cells, strongly suggesting that the function of DAAM in developing neurons has been conserved during evolution.
Collapse
|
44
|
Small JV, Auinger S, Nemethova M, Koestler S, Goldie KN, Hoenger A, Resch GP. Unravelling the structure of the lamellipodium. J Microsc 2008; 231:479-85. [PMID: 18755003 DOI: 10.1111/j.1365-2818.2008.02060.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Summary Pushing at the cell front is the business of lamellipodia and understanding how lamellipodia function requires knowledge of their structural organization. Analysis of extracted, critical-point-dried cells by electron microscopy has led to a current dogma that the lamellipodium pushes as a branched array of actin filaments, with a branching angle of 70 degrees , defined by the Arp2/3 complex. Comparison of different preparative methods indicates that the critical-point-drying-replica technique introduces distortions into actin networks, such that crossing filaments may appear branched. After negative staining and from preliminary studies by cryo-electron tomography, no clear evidence could be found for actin filament branching in lamellipodia. From recent observations of a sub-class of actin speckles in lamellipodia that exhibit a dynamic behaviour similar to speckles in the lamella region behind, it has been proposed that the lamellipodium surfs on top of the lamella. Negative stain electron microscopy and cryo-electron microscopy of fixed cells, which reveal the entire complement of filaments in lamellipodia show, however, that there is no separate, second array of filaments beneath the lamellipodium network. From present data, we conclude that the lamellipodium is a distinct protrusive entity composed of a network of primarily unbranched actin filaments. Cryo-electron tomography of snap-frozen intact cells will be required to finally clarify the three-dimensional arrangement of actin filaments in lamellipodia in vivo.
Collapse
Affiliation(s)
- J V Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cell migration is an evolutionarily conserved mechanism that underlies the development and functioning of uni- and multicellular organisms and takes place in normal and pathogenic processes, including various events of embryogenesis, wound healing, immune response, cancer metastases, and angiogenesis. Despite the differences in the cell types that take part in different migratory events, it is believed that all of these migrations occur by similar molecular mechanisms, whose major components have been functionally conserved in evolution and whose perturbation leads to severe developmental defects. These mechanisms involve intricate cytoskeleton-based molecular machines that can sense the environment, respond to signals, and modulate the entire cell behavior. A big question that has concerned the researchers for decades relates to the coordination of cell migration in situ and its relation to the intracellular aspects of the cell migratory mechanisms. Traditionally, this question has been addressed by researchers that considered the intra- and extracellular mechanisms driving migration in separate sets of studies. As more data accumulate researchers are now able to integrate all of the available information and consider the intracellular mechanisms of cell migration in the context of the developing organisms that contain additional levels of complexity provided by extracellular regulation. This review provides a broad summary of the existing and emerging data in the cell and developmental biology fields regarding cell migration during development.
Collapse
Affiliation(s)
- Satoshi Kurosaka
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
46
|
Costantino S, Kent CB, Godin AG, Kennedy TE, Wiseman PW, Fournier AE. Semi-automated quantification of filopodial dynamics. J Neurosci Methods 2008; 171:165-73. [PMID: 18394712 DOI: 10.1016/j.jneumeth.2008.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/28/2022]
Abstract
Cellular motility underlies critical physiological processes including embryogenesis, metastasis and wound healing. Nerve cells undergo cellular migration during development and also extend neuronal processes for long distances through a complex microenvironment to appropriately wire the nervous system. The growth cone is a highly dynamic structure that responds to extracellular cues by extending and retracting filopodia and lamellipodia to explore the microenvironment and to dictate the path and speed of process extension. Neuronal responses to a myriad of guidance cues have been studied biochemically, however, these approaches fail to capture critical spatio-temporal elements of growth cone dynamics. Live imaging of growth cones in culture has emerged as a powerful tool to study growth cone responses to guidance cues but the dynamic nature of the growth cone requires careful quantitative analysis. Space time kymographs have been developed as a tool to quantify lamellipodia dynamics in a semi-automated fashion but no such tools exist to analyze filopodial dynamics. In this work we present an algorithm to quantify filopodial dynamics from cultured neurons imaged by time-lapse fluorescence microscopy. The method is based on locating the end tips of filopodia and tracking their locations as if they were free-moving particles. The algorithm is a useful tool and should be broadly applicable to filopodial tracking from multiple cell types.
Collapse
|
47
|
Korobova F, Svitkina T. Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell 2008; 19:1561-74. [PMID: 18256280 DOI: 10.1091/mbc.e07-09-0964] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 complex-independent manner. Depletion of Arp2/3 complex in primary neurons and neuroblastoma cells by small interfering RNA significantly decreased the F-actin contents and inhibited lamellipodial protrusion and retrograde flow in growth cones, but also initiation and dynamics of filopodia. Using electron microscopy, immunochemistry, and gene expression, we demonstrated the presence of the Arp2/3 complex-dependent dendritic network of actin filaments in growth cones, and we showed that individual actin filaments in filopodia originated at Arp2/3 complex-dependent branch points in lamellipodia, thus providing a mechanistic explanation of Arp2/3 complex functions during filopodia formation. Additionally, Arp2/3 complex depletion led to formation of multiple neurites, erratic pattern of neurite extension, and excessive formation of stress fibers and focal adhesions. Consistent with this phenotype, RhoA activity was increased in Arp2/3 complex-depleted cells, indicating that besides nucleating actin filaments, Arp2/3 complex may influence cell motility by altering Rho GTPase signaling.
Collapse
Affiliation(s)
- Farida Korobova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
|
49
|
Guillou H, Depraz-Depland A, Planus E, Vianay B, Chaussy J, Grichine A, Albigès-Rizo C, Block MR. Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Exp Cell Res 2007; 314:478-88. [PMID: 18067889 DOI: 10.1016/j.yexcr.2007.10.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 10/28/2007] [Accepted: 10/31/2007] [Indexed: 01/09/2023]
Abstract
Time-lapse video-microscopy unambiguously shows that fibroblast filopodia are the scaffold of lamellipodia nucleation that allows anisotropic cell spreading. This process was dissected into elementary stages by monitoring cell adhesion on micropatterned extracellular matrix arrays of various pitches. Adhesion structures are stabilized by contact with the adhesive plots and subsequently converted into lamellipodia-like extensions starting at the filopodia tips. This mechanism progressively leads to full cell spreading. Stable expression of the dominant-negative Rac1 N17 impairs this change in membrane extension mode and stops cell spreading on matrix arrays. Similar expression of the dominant-negative Cdc42 N17 impairs cell spreading on homogenous and structured substrate, suggesting that filopodia extension is a prerequisite for cell spreading in this model. The differential polarity of the nucleation of lamellipodial structures by filopodia on homogenous and structured surfaces starting from the cell body and of filopodia tip, respectively, suggested that this process is triggered by areas that are in contact with extracellular matrix proteins for longer times. Consistent with this view, wild-type cells cannot spread on microarrays made of function blocking or neutral anti-beta 1 integrin antibodies. However, stable expression of a constitutively active Rac1 mutant rescues the cell ability to spread on these integrin microarrays. Thereby, lamellipodia nucleation by filopodia requires integrin occupancy by matrix substrate and downstream Rac1 signaling.
Collapse
|
50
|
Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J, Righi M, Di Fabrizio EM, Torre V. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS One 2007; 2:e1072. [PMID: 17957254 PMCID: PMC2034605 DOI: 10.1371/journal.pone.0001072] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/04/2007] [Indexed: 01/25/2023] Open
Abstract
During neuronal differentiation, lamellipodia and filopodia explore the environment in search for the correct path to the axon's final destination. Although the motion of lamellipodia and filopodia has been characterized to an extent, little is known about the force they exert. In this study, we used optical tweezers to measure the force exerted by filopodia and lamellipodia with a millisecond temporal resolution. We found that a single filopodium exerts a force not exceeding 3 pN, whereas lamellipodia can exert a force up to 20 pN. Using metabolic inhibitors, we showed that no force is produced in the absence of actin polymerization and that development of forces larger than 3 pN requires microtubule polymerization. These results show that actin polymerization is necessary for force production and demonstrate that not only do neurons process information, but they also act on their environment exerting forces varying from tenths pN to tens of pN.
Collapse
Affiliation(s)
- Dan Cojoc
- Consiglio Nazionale delle Ricerche (CNR)-Istituto Nazionale per la Fisica della Materia (INFM), Laboratorio Nazionale Tecnologie Avanzate E Nanoscienza (TASC), Area Science Park Basovizza, Trieste, Italy
- Centro per la Biomedicina Molecolare (CBM), LANADA Laboratory, Trieste, Italy
- * To whom correspondence should be addressed. E-mail: (DC); (VT)
| | - Francesco Difato
- International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Enrico Ferrari
- Consiglio Nazionale delle Ricerche (CNR)-Istituto Nazionale per la Fisica della Materia (INFM), Laboratorio Nazionale Tecnologie Avanzate E Nanoscienza (TASC), Area Science Park Basovizza, Trieste, Italy
| | | | - Jummi Laishram
- International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Massimo Righi
- International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Enzo M. Di Fabrizio
- Consiglio Nazionale delle Ricerche (CNR)-Istituto Nazionale per la Fisica della Materia (INFM), Laboratorio Nazionale Tecnologie Avanzate E Nanoscienza (TASC), Area Science Park Basovizza, Trieste, Italy
- Università Magna Graecia di Catanzaro, Campus Germaneto, Catanzaro, Italy
| | - Vincent Torre
- International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
- Italian Institute of Technology, International School for Advanced Studies (ISAS) Unit, Italy
- * To whom correspondence should be addressed. E-mail: (DC); (VT)
| |
Collapse
|