1
|
Wu A, Lin L, Li X, Xu Q, Xu W, Zhu X, Teng Y, Yang X, Ai Z. Overexpression of ARHGAP30 suppresses growth of cervical cancer cells by downregulating ribosome biogenesis. Cancer Sci 2021; 112:4515-4525. [PMID: 34490691 PMCID: PMC8586670 DOI: 10.1111/cas.15130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
We aimed to identify whether Rho GTPase activating proteins (RhoGAPs) were downregulated in cervical cancers and might be targeted to reduce the growth of cervical cancer using the GEO database and immunohistochemical analysis to identified changes in transcription and protein levels. We analyzed their proliferation, clone formation ability, and their growth as subcutaneous tumors in mice. To detect ARHGAP30 localization in cells, immunofluorescence assays were conducted. Mass spectrometry combined with immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation assays. Western-blot and q-PCR were applied to analyze candidate binding proteins that were associated with ribosome biogenesis. Puromycin incorporation assay was used to detect the global protein synthesis rate. We identified that ARHGAP30 was the only downregulated RhoGAP and was related to the survival of cervical cancer patients. Overexpression of ARHGAP30 in cervical cancer cells inhibited cell proliferation and migration. ARHGAP30 immunoprecipitated proteins were enriched in the ribosome biogenesis process. ARHGAP30 was located in the nucleous and interacted with nucleolin (NCL). Overexpression of ARHGAP30 inhibited rRNA synthesis and global protein synthesis. ARHGAP30 overexpression induced the ubiquitination of NCL and decreased its protein level in Hela cells. The function of ARHGAP30 on cervical cancer cell ribosome biogenesis and proliferation was independent of its RhoGAP activity as assessed with a RhoGAP-deficient plasmid of ARHGAP30R55A . Overall, the findings revealed that ARHGAP30 was frequently downregulated and associated with shorter survival of cervical cancer patients. ARHGAP30 may suppress growth of cervical cancer by reducing ribosome biogenesis and protein synthesis through promoting ubiquitination of NCL.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lan Lin
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao Li
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qinyang Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Wei Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaolu Zhu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yincheng Teng
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao‐Mei Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhihong Ai
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
2
|
Abstract
TRIP6, a member of the ZYXIN-family of LIM domain proteins, is a focal adhesion component. Trip6 deletion in the mouse, reported here, reveals a function in the brain: ependymal and choroid plexus epithelial cells are carrying, unexpectedly, fewer and shorter cilia, are poorly differentiated, and the mice develop hydrocephalus. TRIP6 carries numerous protein interaction domains and its functions require homodimerization. Indeed, TRIP6 disruption in vitro (in a choroid plexus epithelial cell line), via RNAi or inhibition of its homodimerization, confirms its function in ciliogenesis. Using super-resolution microscopy, we demonstrate TRIP6 localization at the pericentriolar material and along the ciliary axoneme. The requirement for homodimerization which doubles its interaction sites, its punctate localization along the axoneme, and its co-localization with other cilia components suggest a scaffold/co-transporter function for TRIP6 in cilia. Thus, this work uncovers an essential role of a LIM-domain protein assembly factor in mammalian ciliogenesis.
Collapse
|
3
|
Venkatramanan S, Ibar C, Irvine KD. TRIP6 is required for tension at adherens junctions. J Cell Sci 2021; 134:jcs247866. [PMID: 33558314 PMCID: PMC7970510 DOI: 10.1242/jcs.247866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Hippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown, we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for the recruitment of vinculin and VASP to adherens junctions. Knockdown of TRIP6 or vinculin, but not of LIMD1, also influences the localization of myosin and F-actin. In TRIP6 knockdown cells, actin stress fibers are lost apically but increased basally, and there is a corresponding increase in the recruitment of vinculin and VASP to basal focal adhesions. Our observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.
Collapse
Affiliation(s)
- Srividya Venkatramanan
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
4
|
CD99-PTPN12 Axis Suppresses Actin Cytoskeleton-Mediated Dimerization of Epidermal Growth Factor Receptor. Cancers (Basel) 2020; 12:cancers12102895. [PMID: 33050232 PMCID: PMC7599698 DOI: 10.3390/cancers12102895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The epidermal growth factor receptor (EGFR) is activated through growth factor-dependent dimerization accompanied by functional reorganization of the actin cytoskeleton. Lee et al. demonstrate that CD99 activation by agonist ligands inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by protein tyrosine phosphatase non-receptor type 12 (PTPN12)-dependent c-Src/focal adhesion kinase (FAK) inactivation, thereby suppressing breast cancer growth. Abstract The epidermal growth factor receptor (EGFR), a member of ErbB receptor tyrosine kinase (RTK) family, is activated through growth factor-induced reorganization of the actin cytoskeleton and subsequent dimerization. We herein explored the molecular mechanism underlying the suppression of ligand-induced EGFR dimerization by CD99 agonists and its relevance to tumor growth in vivo. Epidermal growth factor (EGF) activated the formation of c-Src/focal adhesion kinase (FAK)-mediated intracellular complex and subsequently induced RhoA-and Rac1-mediated actin remodeling, resulting in EGFR dimerization and endocytosis. In contrast, CD99 agonist facilitated FAK dephosphorylation through the HRAS/ERK/PTPN12 signaling pathway, leading to inhibition of actin cytoskeletal reorganization via inactivation of the RhoA and Rac1 signaling pathways. Moreover, CD99 agonist significantly suppressed tumor growth in a BALB/c mouse model injected with MDA-MB-231 human breast cancer cells. Taken together, these results indicate that CD99-derived agonist ligand inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by PTPN12-dependent c-Src/FAK inactivation, thereby suppressing breast cancer growth.
Collapse
|
5
|
Wang F, Zhang B, Xu X, Zhu L, Zhu X. TRIP6 promotes tumorigenic capability through regulating FOXC1 in hepatocellular carcinoma. Pathol Res Pract 2020; 216:152850. [PMID: 32046874 DOI: 10.1016/j.prp.2020.152850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive malignant tumor with poor prognosis that is characterized by high rates of postoperative recurrence and mortality. Understanding the molecular mechanism of this malignancy is of great significance for the development of new and effective strategies for the treatment of hepatocellular carcinoma. Thyroid hormone receptor-interacting protein 6 (TRIP6), also known as zyxin-related protein-1 or ZRP-1, is an adaptor protein that belongs to the zyxin family of LIM proteins. Recent studies showed that TRIP6 is involved in carcinogenesis. But the functional role of TRIP6 in HCC has not been reported to date. METHODS TRIP6 expression level in HCC cell lines and normal cell line was measured by qPCR. The roles of TRIP6 on HCC cell proliferation, colony formation, and invasion were examined by MTT assay, colony formation assay, and transwell invasion assay, respectively. The effect of TRIP6 on the overall survival of HCC patients was further analyzed. ChIP assay and western blot were performed to validate whether FOXC1 was involved in the regulation of TRIP6 expression. RESULTS Western blot and immunohistochemical analyses showed that TRIP6 expression was up-regulated in HCC tissues compared with adjacent non-tumor tissues. Kaplan-Meier survival analysis indicated that upregulation of TRIP6 was dramatically associated with poor overall survival. TRIP6 knockdown significantly inhibited cell migration, invasion, and proliferation, and its effect on cell proliferation was mediated by the modulation of cell cycle progression. FOXC1 also played a vital role in TRIP6 regulation. TRIP6 mediated the FOXC1-regulated proliferation, invasion, and migration in vitro and tumor growth in vivo. CONCLUSIONS These results suggest that TRIP6 may contribute to the invasiveness and metastasis of HCC cells, and provide new insight into the crucial role of TRIP6 in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Zhang
- Medical College of Nantong University, Nantong, Jiangsu, China
| | - Xiaodong Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, Yanchen, Jiangsu, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaochao Zhu
- Department of General Surgery, Suqian First People's Hospital, Suqian, Jiangsu, China.
| |
Collapse
|
6
|
Mukherjee S, Chatterjee S, Poddar A, Bhattacharyya B, Gupta S. Cytotoxic biphenyl-4-carboxylic acid targets the tubulin–microtubule system and inhibits cellular migration in HeLa cells. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2014.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Suman Mukherjee
- Department of Biotechnology, Haldia Institute of Technology, I.C.A.R.E. Complex, Haldia, Purba Medinipur, 721657, India
| | - Shamba Chatterjee
- Department of Biotechnology, Haldia Institute of Technology, I.C.A.R.E. Complex, Haldia, Purba Medinipur, 721657, India
| | - Asim Poddar
- Department of Biochemistry, Bose Institute, Kolkata, 700054, India
| | | | - Suvroma Gupta
- Department of Biotechnology, Haldia Institute of Technology, I.C.A.R.E. Complex, Haldia, Purba Medinipur, 721657, India
| |
Collapse
|
7
|
Hes1 promotes cell proliferation and migration by activating Bmi-1 and PTEN/Akt/GSK3β pathway in human colon cancer. Oncotarget 2016; 6:38667-80. [PMID: 26452029 PMCID: PMC4770728 DOI: 10.18632/oncotarget.5484] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022] Open
Abstract
Hes1 is a transcription factor that influences cell proliferation and differentiation. However, the effect of Hes1 on invasiveness and the underlying mechanism remain unknown. In the current study, we found that Hes1 suppressed cell apoptosis, promoted cell growth, induced EMT phenotype and cytoskeleton reconstruction, and enhanced the metastatic potential of colon cancer cells in vitro and in vivo. Furthermore, we indicated that Bmi-1 mediated Hes1-induced cell proliferation and migration, downregulated PTEN and activated the Akt/GSK3β pathway, consequently induced EMT and cytoskeleton reconstruction, ultimately leading to enhanced invasiveness of cancer cells. In addition, we also found that both Hes1 and Bmi-1 could directly regulate PTEN by associating at the PTEN locus, and played important roles in regulating PTEN/Akt/GSK3β pathway. Our results provide functional and mechanistic links between Hes1 and Bmi-1/PTEN/Akt/GSK3β signaling in the development and progression of colon cancer.
Collapse
|
8
|
Han MKL, de Rooij J. Converging and Unique Mechanisms of Mechanotransduction at Adhesion Sites. Trends Cell Biol 2016; 26:612-623. [PMID: 27036655 DOI: 10.1016/j.tcb.2016.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
Abstract
The molecular mechanisms by which physical forces control tissue development are beginning to be elucidated. Sites of adhesion between both cells and the extracellular environment [extracellular matrix (ECM) or neighboring cells] contain protein complexes capable of sensing fluctuations in tensile forces. Tension-dependent changes in the dynamics and composition of these complexes mark the transformation of physical input into biochemical signals that defines mechanotransduction. It is becoming apparent that, although the core constituents of these different adhesions are distinct, principles and proteins involved in mechanotransduction are conserved. Here, we discuss the current knowledge of overlapping and distinct aspects of mechanotransduction between integrin and cadherin adhesion complexes.
Collapse
Affiliation(s)
- Mitchell K L Han
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Johan de Rooij
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
9
|
SHIMIZU Y, KAMIMURA M, YAMAMOTO S, ABDELLATEF SA, YAMAGUCHI K, NAKANISHI J. Facile Preparation of Photoactivatable Surfaces with Tuned Substrate Adhesiveness. ANAL SCI 2016; 32:1183-1188. [DOI: 10.2116/analsci.32.1183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshihisa SHIMIZU
- WPI Research Initiative for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| | - Masao KAMIMURA
- WPI Research Initiative for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| | - Shota YAMAMOTO
- WPI Research Initiative for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| | - Shimaa A. ABDELLATEF
- WPI Research Initiative for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| | - Kazuo YAMAGUCHI
- Department of Chemistry, Faculty of Science, Research Institute for Photofunctionalized Materials, Kanagawa University
| | - Jun NAKANISHI
- WPI Research Initiative for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| |
Collapse
|
10
|
Mikami T, Yoshida K, Sawada H, Esaki M, Yasumura K, Ono M. Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells. Biol Res 2015; 48:48. [PMID: 26330114 PMCID: PMC4556056 DOI: 10.1186/s40659-015-0039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. Results Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. Conclusions The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0039-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taro Mikami
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan. .,Department of Plastic and Reconstructive Surgery, Fujisawa Shounandai Hospital, Fujisawa, Kanagawa-ken, Japan. .,Department of Plastic and Reconstructive Surgery, Yokohama City University Hospital, Yokohama, Kanagawa-ken, Japan.
| | - Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Hajime Sawada
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Michiyo Esaki
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Kazunori Yasumura
- Department of Plastic and Reconstructive Surgery, Yokohama City University Hospital, Yokohama, Kanagawa-ken, Japan.
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| |
Collapse
|
11
|
Trip6 promotes dendritic morphogenesis through dephosphorylated GRIP1-dependent myosin VI and F-actin organization. J Neurosci 2015; 35:2559-71. [PMID: 25673849 DOI: 10.1523/jneurosci.2125-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thyroid receptor-interacting protein 6 (Trip6), a multifunctional protein belonging to the zyxin family of LIM proteins, is involved in various physiological and pathological processes, including cell migration and tumorigenesis. However, the role of Trip6 in neurons remains unknown. Here, we show that Trip6 is expressed in mouse hippocampal neurons and promotes dendritic morphogenesis. Through interaction with the glutamate receptor-interacting protein 1 (GRIP1) and myosin VI, Trip6 is crucial for the total dendritic length and the number of primary dendrites in cultured hippocampal neurons. Trip6 depletion reduces F-actin content and impairs dendritic morphology, and this phenocopies GRIP1 or myosin VI knockdown. Furthermore, phosphorylation of GRIP1(956T) by AKT1 inhibits the interaction between GRIP1 and myosin VI, but facilitates GRIP1 binding to 14-3-3 protein, which is required for regulating F-actin organization and dendritic morphogenesis. Thus, the Trip6-GRIP1-myosin VI interaction and its regulation on F-actin network play a significant role in dendritic morphogenesis.
Collapse
|
12
|
Lai YJ, Li MY, Yang CY, Huang KH, Tsai JC, Wang TW. TRIP6 regulates neural stem cell maintenance in the postnatal mammalian subventricular zone. Dev Dyn 2014; 243:1130-42. [DOI: 10.1002/dvdy.24161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yun-Ju Lai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Ming-Yang Li
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Cheng-Yao Yang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Kao-Hua Huang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Tsu-Wei Wang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
13
|
A photoactivatable nanopatterned substrate for analyzing collective cell migration with precisely tuned cell-extracellular matrix ligand interactions. PLoS One 2014; 9:e91875. [PMID: 24632806 PMCID: PMC3954836 DOI: 10.1371/journal.pone.0091875] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
Collective cell migration is involved in many biological and pathological processes. Various factors have been shown to regulate the decision to migrate collectively or individually, but the impact of cell-extracellular matrix (ECM) interactions is still debated. Here, we developed a method for analyzing collective cell migration by precisely tuning the interactions between cells and ECM ligands. Gold nanoparticles are arrayed on a glass substrate with a defined nanometer spacing by block copolymer micellar nanolithography (BCML), and photocleavable poly(ethylene glycol) (Mw = 12 kDa, PEG12K) and a cyclic RGD peptide, as an ECM ligand, are immobilized on this substrate. The remaining glass regions are passivated with PEG2K-silane to make cells interact with the surface via the nanoperiodically presented cyclic RGD ligands upon the photocleavage of PEG12K. On this nanostructured substrate, HeLa cells are first patterned in photo-illuminated regions, and cell migration is induced by a second photocleavage of the surrounding PEG12K. The HeLa cells gradually lose their cell-cell contacts and become disconnected on the nanopatterned substrate with 10-nm particles and 57-nm spacing, in contrast to their behavior on the homogenous substrate. Interestingly, the relationship between the observed migration collectivity and the cell-ECM ligand interactions is the opposite of that expected based on conventional soft matter models. It is likely that the reduced phosphorylation at tyrosine-861 of focal adhesion kinase (FAK) on the nanopatterned surface is responsible for this unique migration behavior. These results demonstrate the usefulness of the presented method in understanding the process of determining collective and non-collective migration features in defined micro- and nano-environments and resolving the crosstalk between cell-cell and cell-ECM adhesions.
Collapse
|
14
|
Kuo JC. Focal adhesions function as a mechanosensor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:55-73. [PMID: 25081614 DOI: 10.1016/b978-0-12-394624-9.00003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that engage with the surrounding extracellular matrix (ECM) via integrin receptors and physically connect with the actin cytoskeleton through the recruitment of numerous FA-associated proteins. FAs undergo a maturation process, which is known to be induced by biochemical or physical cues, to grow and change composition. Varying FA size, distribution, dynamics, and compositions during maturation process is required for transducing the specific signaling networks that reflect the requirements of a cell to sense, adapt, and response to a variety of the environments. While advances have been demonstrated in understanding how important FAs are in mediating various biological processes, less is known about how FA composition is regulated and coordinately transduces the specific signals in mediating the distinct biological outcomes, especially cell migration.
Collapse
Affiliation(s)
- Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
Regulation of cytoskeleton organization by sphingosine in a mouse cell model of progressive ovarian cancer. Biomolecules 2013; 3:386-407. [PMID: 24970173 PMCID: PMC4030958 DOI: 10.3390/biom3030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/16/2023] Open
Abstract
Ovarian cancer is a multigenic disease and molecular events driving ovarian cancer progression are not well established. We have previously reported the dysregulation of the cytoskeleton during ovarian cancer progression in a syngeneic mouse cell model for progressive ovarian cancer. In the present studies, we investigated if the cytoskeleton organization is a potential target for chemopreventive treatment with the bioactive sphingolipid metabolite sphingosine. Long-term treatment with non-toxic concentrations of sphingosine but not other sphingolipid metabolites led to a partial reversal of a cytoskeleton architecture commonly associated with aggressive cancer phenotypes towards an organization reminiscent of non-malignant cell phenotypes. This was evident by increased F-actin polymerization and organization, a reduced focal adhesion kinase expression, increased α-actinin and vinculin levels which together led to the assembly of more mature focal adhesions. Downstream focal adhesion signaling, the suppression of myosin light chain kinase expression and hypophosphorylation of its targets were observed after treatment with sphingosine. These results suggest that sphingosine modulate the assembly of actin stress fibers via regulation of focal adhesions and myosin light chain kinase. The impact of these events on suppression of ovarian cancer by exogenous sphingosine and their potential as molecular markers for treatment efficacy warrants further investigation.
Collapse
|
16
|
Kuo JC. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 2013; 17:704-12. [PMID: 23551528 PMCID: PMC3823174 DOI: 10.1111/jcmm.12054] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/25/2013] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA-related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration-related human diseases.
Collapse
Affiliation(s)
- Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
17
|
Lambert B, Vandeputte J, Remacle S, Bergiers I, Simonis N, Twizere JC, Vidal M, Rezsohazy R. Protein interactions of the transcription factor Hoxa1. BMC DEVELOPMENTAL BIOLOGY 2012; 12:29. [PMID: 23088713 PMCID: PMC3514159 DOI: 10.1186/1471-213x-12-29] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Background Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins. Results To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments. Conclusions The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology.
Collapse
Affiliation(s)
- Barbara Lambert
- Molecular and Cellular Animal Embryology group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.
Collapse
|
19
|
Kuo JC, Han X, Hsiao CT, Yates JR, Waterman CM. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 2011; 13:383-93. [PMID: 21423176 PMCID: PMC3279191 DOI: 10.1038/ncb2216] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 01/13/2011] [Indexed: 12/13/2022]
Abstract
Focal adhesions undergo myosin-II-mediated maturation wherein they grow and change composition to modulate integrin signalling for cell migration, growth and differentiation. To determine how focal adhesion composition is affected by myosin II activity, we performed proteomic analysis of isolated focal adhesions and compared protein abundance in focal adhesions from cells with and without myosin II inhibition. We identified 905 focal adhesion proteins, 459 of which changed in abundance with myosin II inhibition, defining the myosin-II-responsive focal adhesion proteome. The abundance of 73% of the proteins in the myosin-II-responsive focal adhesion proteome was enhanced by contractility, including proteins involved in Rho-mediated focal adhesion maturation and endocytosis- and calpain-dependent focal adhesion disassembly. During myosin II inhibition, 27% of proteins in the myosin-II-responsive focal adhesion proteome, including proteins involved in Rac-mediated lamellipodial protrusion, were enriched in focal adhesions, establishing that focal adhesion protein recruitment is also negatively regulated by contractility. We focused on the Rac guanine nucleotide exchange factor β-Pix, documenting its role in the negative regulation of focal adhesion maturation and the promotion of lamellipodial protrusion and focal adhesion turnover to drive cell migration.
Collapse
Affiliation(s)
- Jean-Cheng Kuo
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Xuemei Han
- Cell Biology, Scripps Research Institute, La Jolla CA 92037
| | - Cheng-Te Hsiao
- Proteomics and Analytical Biochemistry Unit, Research Resources Branch, National Institute on Aging, NIH, Baltimore, MD 21224
| | - John R. Yates
- Cell Biology, Scripps Research Institute, La Jolla CA 92037
| | - Clare M. Waterman
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
20
|
Abstract
Insulin-like growth factor 2 (IGF-2) mRNA-binding proteins (IMPs) are a family of posttranscriptional regulatory factors with well-understood roles in embryonic development and cancer but with poorly characterized functions in normal adult cells and tissues. We now show that IMP-2, the most ubiquitously expressed member of the family, is abundant in human and mouse adult skeletal myoblasts, where it is indispensable for cell motility and for stabilization of microtubules. To explore the functions of IMP-2, we analyzed the transcripts that were differentially regulated in IMP-2-depleted myoblasts and bound to IMP-2 in normal myoblasts. Among them were the mRNAs of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein. By gain- and loss-of-function assays and gel shift experiments, we show that IMP-2 regulates the expression of PINCH-2 and MURF-3 proteins via direct binding to their mRNAs. Upregulation of PINCH-2 in IMP-2-depleted myoblasts is the key event responsible for their decreased motility. Our data reveal how the posttranscriptional regulation of gene expression by IMP-2 contributes to the control of adhesion structures and stable microtubules and demonstrate an important function for IMP-2 in cellular motility.
Collapse
|
21
|
McMichael BK, Meyer SM, Lee BS. c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation. J Biol Chem 2010; 285:26641-51. [PMID: 20547766 DOI: 10.1074/jbc.m110.119909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Osteoclasts resorb bone through the formation of a unique attachment structure called the sealing zone. In this study, a role for thyroid hormone receptor-interacting protein 6 (TRIP6) in sealing zone formation and osteoclast activity was examined. TRIP6 was shown to reside in the sealing zone through its association with tropomyosin 4, an actin-binding protein that regulates sealing dimensions and bone resorptive capacity. Suppression of TRIP6 in mature osteoclasts by RNA interference altered sealing zone dimensions and inhibited bone resorption, whereas overexpression of TRIP6 increased the sealing zone perimeter and enhanced bone resorption. Treatment of osteoclasts with lysophosphatidic acid (LPA), which phosphorylates TRIP6 at tyrosine 55 through a c-Src-dependent mechanism, caused increased association of TRIP6 with the sealing zone, as did overexpression of a TRIP6 cDNA bearing a phosphomimetic mutation at tyrosine 55. Further, LPA treatment caused increases in osteoclast fusion, sealing zone perimeter, and bone resorptive capacity. In contrast, overexpression of TRIP6 containing a nonphosphorylatable amino acid residue at position 55 severely diminished sealing zone formation and bone resorption and suppressed the effects of LPA on the cytoskeleton. LPA effects were mediated through its receptor isoform LPA(2), as indicated by treatments with receptor-specific agonists and antagonists. Thus, these studies suggest that TRIP6 is a critical downstream regulator of c-Src signaling and that its phosphorylation is permissive for its presence in the sealing zone where it plays a positive role in osteoclast bone resorptive capacity.
Collapse
Affiliation(s)
- Brooke K McMichael
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
22
|
Diefenbacher ME, Litfin M, Herrlich P, Kassel O. The nuclear isoform of the LIM domain protein Trip6 integrates activating and repressing signals at the promoter-bound glucocorticoid receptor. Mol Cell Endocrinol 2010; 320:58-66. [PMID: 20153803 DOI: 10.1016/j.mce.2010.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/28/2010] [Accepted: 02/07/2010] [Indexed: 01/08/2023]
Abstract
Trip6 belongs to a family of cytosolic LIM domain proteins involved in cell adhesion and migration. Recent findings show that these proteins also regulate transcription. We have previously reported that nTrip6, a nuclear isoform of Trip6, acts as a co-activator for AP-1 and NF-kappaB transcription factors. Here we report that nTrip6 is an essential regulator of glucocorticoid receptor (GR) transcriptional activity. nTrip6 is recruited to GR-bound promoters through an interaction with GR, and increases GR-mediated transcription. nTrip6 is also essential for the transrepression of GR by NF-kappaB and AP-1. The interaction of nTrip6 with NF-kappaB and AP-1 at a GR-bound promoter is required for the repression. Thus, nTrip6 serves as the molecular mediator of the crosstalk between nuclear receptors and other transcription factors in that it assembles these factors at promoters. Our results reveal an essential role for LIM domain proteins in the integration of positive and negative signals at target promoters.
Collapse
Affiliation(s)
- Markus E Diefenbacher
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | | | | | |
Collapse
|
23
|
McLaughlin LM, Govoni GR, Gerke C, Gopinath S, Peng K, Laidlaw G, Chien YH, Jeong HW, Li Z, Brown MD, Sacks DB, Monack D. The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog 2009; 5:e1000671. [PMID: 19956712 PMCID: PMC2777311 DOI: 10.1371/journal.ppat.1000671] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 10/28/2009] [Indexed: 11/24/2022] Open
Abstract
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T lymphocytes compared to mice infected with ΔsseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria. Bacteria belonging to the genus Salmonella are capable of causing long-term chronic systemic infections, and bacteria primarily reside within macrophages in lymphoid tissues and sporadically are shed in the feces. These persistently infected individuals serve as a significant reservoir for disease transmission. Despite the importance of Salmonella as a human pathogen, relatively little is known about the host immune response or virulence mechanisms of long-term systemic infections. Host-adapted Salmonella strains invade and manipulate host cells by releasing specialized bacterial effector proteins into the host cell. We show that one of these bacterial effector proteins, SseI (SrfH), is required for Salmonella to maintain a long-term chronic systemic infection in mice. SseI is able to block the migration of host immune cells and consequentially attenuate the host's ability to clear systemic bacteria. SseI accomplishes this inhibitory activity in part by associating with the host protein IQGAP1, an important regulator of cell migration. The amino acid sequence of SseI is similar to several other protein sequences of known bacterial pathogens, including PMT/ToxA, a toxin, indicating that these factors may function similarly to one another and may comprise a new family of bacterial effector proteins.
Collapse
Affiliation(s)
- Laura M. McLaughlin
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Gregory R. Govoni
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Christiane Gerke
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Smita Gopinath
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Kaitian Peng
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Grace Laidlaw
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Ha-Won Jeong
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Zhigang Li
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Matthew D. Brown
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - David B. Sacks
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Denise Monack
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Crowley JL, Smith TC, Fang Z, Takizawa N, Luna EJ. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol Biol Cell 2008; 20:948-62. [PMID: 19109420 DOI: 10.1091/mbc.e08-08-0867] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.
Collapse
Affiliation(s)
- Jessica L Crowley
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
25
|
Chastre E, Abdessamad M, Kruglov A, Bruyneel E, Bracke M, Di Gioia Y, Beckerle MC, Roy F, Kotelevets L. TRIP6, a novel molecular partner of the MAGI‐1 scaffolding molecule, promotes invasiveness. FASEB J 2008; 23:916-28. [DOI: 10.1096/fj.08-106344] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Alexey Kruglov
- INSERM U773Université Paris 7ParisFrance
- Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesMoscow RegionRussia
| | - Erik Bruyneel
- Laboratory of Experimental CancerologyGhent University HospitalGhentBelgium
| | - Marc Bracke
- Laboratory of Experimental CancerologyGhent University HospitalGhentBelgium
| | | | - Mary C. Beckerle
- Huntsman Cancer Institute, Departments of Biology and Oncological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Frans Roy
- Departments of Molecular Biomedical Research and Molecular BiologyVLB‐Ghent UniversityGhentBelgium
| | | |
Collapse
|