1
|
Ono S. Segregated localization of two calponin-related proteins within sarcomeric thin filaments in Caenorhabditis elegans striated muscle. Cytoskeleton (Hoboken) 2024; 81:127-140. [PMID: 37792405 PMCID: PMC11249056 DOI: 10.1002/cm.21794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Ono S, Lewis M, Ono K. Mutual dependence between tropomodulin and tropomyosin in the regulation of sarcomeric actin assembly in Caenorhabditis elegans striated muscle. Eur J Cell Biol 2022; 101:151215. [PMID: 35306452 PMCID: PMC9081161 DOI: 10.1016/j.ejcb.2022.151215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mario Lewis
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kanako Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Abstract
Arit Ghosh and Velia Fowler introduce the structural features and functions of tropomodulins - actin-binding proteins that cap the slow-growing (pointed) ends of actin filaments.
Collapse
Affiliation(s)
- Arit Ghosh
- Department of Biological Sciences, University of Delaware, 105 The Grn, 118 Wolf Hall, Newark, DE 19716, USA
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, 105 The Grn, 118 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
4
|
Huang X, Li Z, Hu J, Yang Z, Liu Z, Zhang T, Zhang C, Yuan B. Knockout of Wdr1 results in cardiac hypertrophy and impaired cardiac function in adult mouse heart. Gene 2019; 697:40-47. [PMID: 30794912 DOI: 10.1016/j.gene.2019.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
WDR1 is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, accelerating ADF/cofilin-mediated actin disassembly. We had previously showed that WDR1-mediated actin dynamics is required for postnatal myocardial growth and adult myocardial maintenance in mice, in which the detailed phenotypes of adult cardiomyocyte-specific Wdr1 deletion mice had not been analyzed. In this study, we systematically analyzed the role of Wdr1 in adult mouse heart. Adult cardiomyocyte-specific Wdr1 deletion mice (cKO) exhibited cardiac hypertrophy and myocardial fibrosis. Echocardiographic study and electrocardiography revealed impaired contractile function, prolonged QT interval and Tpeak-Tend interval, and abnormal T-wave amplitude in cKO mice. Increased levels of sarcomeric proteins, adherens junction proteins and cofilin, and severe actin filament (F-actin) accumulations were observed in cKO mice heart. Taken together, this finding demonstrates that WDR1 is a critical factor for normal structure and function of adult mouse heart.
Collapse
Affiliation(s)
- Xia Huang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Ziyi Li
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Zihao Yang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China.
| | - Chenxi Zhang
- Central Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, PR China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China.
| |
Collapse
|
5
|
Chatzifrangkeskou M, Yadin D, Marais T, Chardonnet S, Cohen-Tannoudji M, Mougenot N, Schmitt A, Crasto S, Di Pasquale E, Macquart C, Tanguy Y, Jebeniani I, Pucéat M, Morales Rodriguez B, Goldmann WH, Dal Ferro M, Biferi MG, Knaus P, Bonne G, Worman HJ, Muchir A. Cofilin-1 phosphorylation catalyzed by ERK1/2 alters cardiac actin dynamics in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 2018; 27:3060-3078. [PMID: 29878125 PMCID: PMC6097156 DOI: 10.1093/hmg/ddy215] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - David Yadin
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thibaut Marais
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, UPMC Paris 06, INSERM, UMS29 Omique, F-75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM, UMS28 Phénotypage du Petit Animal, Paris F-75013, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Silvia Crasto
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Elisa Di Pasquale
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Coline Macquart
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Yannick Tanguy
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Imen Jebeniani
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Michel Pucéat
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Wolfgang H Goldmann
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Matteo Dal Ferro
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Maria-Grazia Biferi
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Howard J Worman
- Department of Medicine
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
6
|
Zhou CY, Wang Y, Pan DD, Sun YY, Cao JX. The effect of ATP marination on the depolymerization of actin filament in goose muscles during postmortem conditioning. Poult Sci 2018; 97:684-694. [PMID: 29121270 DOI: 10.3382/ps/pex318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/29/2017] [Indexed: 01/29/2023] Open
Abstract
In order to study the tenderization mechanism of ATP treatments by depolymerizing actin filaments, breast muscles of Eastern Zhejiang White Geese were randomly divided into 3 groups: control, 10 and 20 mM groups. Shear force (SF), sarcomere length (SL) and myofibrillar fraction index (MFI), the content of F-actin and G-actin, the expression of actin associated proteins (cofilins and tropomodulins) were investigated during conditioning. In 20 mM group, cofilins content increased from 48 to 168 h, while tropomodulins decreased; the content of F-actin decreased from 24 to 168 h, while the increased G-actin was observed upto 48 h. In the control, the degraded tropomodulins were observed at 168 h, and the increased cofilins and G-actin were detected at the same time; the increase of MFI and decrease of F-actin content were shown at 96 and 168 h. Compared to control group, 20 mM group accelerated the transformation of F-actin into G-actin; it showed higher SL and MFI, and lower SF at 48, 96 and 168 h, respectively. We concluded that depolymerization of actin filaments, which was regulated by cofilins and tropomodulins, contributed to myofibrillar fraction and low SF during conditioning.
Collapse
Affiliation(s)
- Chang-Yu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Dao-Dong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Yang-Ying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jin-Xuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Hu J, Shi Y, Xia M, Liu Z, Zhang R, Luo H, Zhang T, Yang Z, Yuan B. WDR1-regulated actin dynamics is required for outflow tract and right ventricle development. Dev Biol 2018; 438:124-137. [PMID: 29654745 DOI: 10.1016/j.ydbio.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
Abstract
Outflow tract (OFT) anomalies account for about 30% of human congenital heart defects detected at birth. The second heart field (SHF) progenitors contribute to OFT and right ventricle (RV) development, but the process largely remains unknown. WDR1 (WD-repeat domain 1) is a major co-factor of actin depolymerizing factor (ADF)/cofilin that actively disassembles ADF/cofilin-bound actin filaments. Its function in embryonic heart development has been unknown. Using Wdr1 floxed mice and Nkx2.5-Cre, we deleted Wdr1 in embryonic heart (Wdr1F/F;Nkx2.5-Cre) and found that these mice exhibited embryonic lethality, and hypoplasia of OFT and RV. To investigate the role of WDR1 in OFT and RV development, we generated SHF progenitors-specific Wdr1 deletion mice (shfKO). shfKO mice began to die at embryonic day 11.5 (E11.5), and displayed decreased size of the proximal OFT and RV at E10.5. In shfKO embryos, neither the number of SHF cells deployment to OFT nor cell proliferation and the cell number were changed, whereas the cellular organization and myofibrillar assembly of cardiomyocytes were severely disrupted. In the proximal OFT and RV of both shfKO and Wdr1F/F;Nkx2.5-Cre embryos, cardiomyocytes were dissociated from the outer compact myocardial layer and loosely and disorderly arranged into multilayered myocardium. Our results demonstrate that WDR1 is indispensable for normal OFT and RV development, and suggest that WDR1-mediated actin dynamics functions in controlling the size of OFT and RV, which might through regulating the spatial arrangement of cardiomyocytes.
Collapse
Affiliation(s)
- Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Yingchao Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Meng Xia
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Hongmei Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.
| |
Collapse
|
8
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
9
|
Fowler VM, Dominguez R. Tropomodulins and Leiomodins: Actin Pointed End Caps and Nucleators in Muscles. Biophys J 2017; 112:1742-1760. [PMID: 28494946 DOI: 10.1016/j.bpj.2017.03.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022] Open
Abstract
Cytoskeletal structures characterized by actin filaments with uniform lengths, including the thin filaments of striated muscles and the spectrin-based membrane skeleton, use barbed and pointed-end capping proteins to control subunit addition/dissociation at filament ends. While several proteins cap the barbed end, tropomodulins (Tmods), a family of four closely related isoforms in vertebrates, are the only proteins known to specifically cap the pointed end. Tmods are ∼350 amino acids in length, and comprise alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, and ABS2). Leiomodins (Lmods) are related in sequence to Tmods, but display important differences, including most notably the lack of TMBS2 and the presence of a C-terminal extension featuring a proline-rich domain and an actin-binding WASP-Homology 2 domain. The Lmod subfamily comprises three somewhat divergent isoforms expressed predominantly in muscle cells. Biochemically, Lmods differ from Tmods, acting as powerful nucleators of actin polymerization, not capping proteins. Structurally, Lmods and Tmods display crucial differences that correlate well with their different biochemical activities. Physiologically, loss of Lmods in striated muscle results in cardiomyopathy or nemaline myopathy, whereas complete loss of Tmods leads to failure of myofibril assembly and developmental defects. Yet, interpretation of some of the in vivo data has led to the idea that Tmods and Lmods are interchangeable or, at best, different variants of two subfamilies of pointed-end capping proteins. Here, we review and contrast the existing literature on Tmods and Lmods, and propose a model of Lmod function that attempts to reconcile the in vitro and in vivo data, whereby Lmods nucleate actin filaments that are subsequently capped by Tmods during sarcomere assembly, turnover, and repair.
Collapse
Affiliation(s)
- Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Zhou C, Wang Y, Pan D, Sun Y, Cao J. The effect of Cytochalasin B and Jasplakinolide on depolymerization of actin filaments in goose muscles during postmortem conditioning. Food Res Int 2016; 90:1-7. [PMID: 29195861 DOI: 10.1016/j.foodres.2016.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/20/2022]
Abstract
Breast muscles of twenty-four Eastern Zhejiang White Geese were randomly divided into three groups: control, Cytochalasin B (Cyt B) and Jasplakinolide (Jasp) treatments during postmortem conditioning. The myofibrillar fraction index (MFI), actin filaments and the levels of F-actin, G-actin and actin associated proteins (cofilins and tropomodulins) during conditioning were investigated. In control, the degraded tropomodulins, increased G-actin and disrupted actin filaments were observed at 4 and 7days; the increase of MFI and decrease of F-actin content were shown during conditioning. Cyt B treatments accelerated the transformation from F-actin to G-actin, weakened actin filaments and increased MFI compared to the control, while Jasp gained the opposite effect against Cyt B. We concluded that depolymerization of actin filaments regulated by tropomodulins contributed to myofibrillar fraction during conditioning. This work provided a new pathway of tenderization by the depolymerization of actin filaments.
Collapse
Affiliation(s)
- Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis. Blood 2015; 126:520-30. [PMID: 25964668 DOI: 10.1182/blood-2014-09-601484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/04/2015] [Indexed: 01/02/2023] Open
Abstract
The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing.
Collapse
|
13
|
Ono S. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec (Hoboken) 2015; 297:1548-59. [PMID: 25125169 DOI: 10.1002/ar.22965] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023]
Abstract
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessory proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Lewis RA, Yamashiro S, Gokhin DS, Fowler VM. Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3. Cytoskeleton (Hoboken) 2014; 71:395-411. [PMID: 24922351 DOI: 10.1002/cm.21179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
Abstract
Tropomodulins (Tmods) interact with tropomyosins (TMs) via two TM-binding sites and cap the pointed ends of TM-coated actin filaments. To study the functional interplay between TM binding and TM-actin filament capping by Tmods, we introduced disabling mutations into the first, second, or both TM-binding sites of full-length Tmod1 (Tmod1-L27G, Tmod1-I131D, and Tmod1-L27G/I131D, respectively) and full-length Tmod3 (Tmod3-L29G, Tmod3-L134D, and Tmod3-L29G/L134D, respectively). Tmod1 and Tmod3 showed somewhat different TM-binding site utilization, but nearly all TM binding was abolished in Tmod1-L27G/I131D and Tmod3-L29G/L134D. Disruption of Tmod-TM binding had a modest effect on Tmod1's ability and no effect on Tmod3's ability to stabilize TM-actin pointed ends against latrunculin A-induced depolymerization. However, disruption of Tmod-TM binding did significantly impair the ability of Tmod3 to reduce elongation rates at pointed ends with α/βTM, albeit less so with TM5NM1, and not at all with TM5b. For Tmod1, disruption of Tmod-TM binding only slightly impaired its ability to reduce elongation rates with α/βTM and TM5NM1, but not at all with TM5b. Thus, Tmod-TM binding has a greater influence on Tmods' ability to inhibit subunit association as compared to dissociation from TM-actin pointed ends, particularly for α/βTM, with Tmod3's activity being more dependent on TM binding than Tmod1's activity. Nevertheless, disruption of Tmod1-TM binding precluded Tmod1 targeting to thin filament pointed ends in cardiac myocytes, suggesting that the functional effects of Tmod-TM binding on TM-coated actin filament capping can be significantly modulated by the in vivo conformation of the pointed end or other factors in the intracellular environment.
Collapse
Affiliation(s)
- Raymond A Lewis
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
15
|
Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, Lu S, Chen J, Yang Z. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1967-80. [PMID: 24840128 DOI: 10.1016/j.ajpath.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/26/2014] [Accepted: 04/07/2014] [Indexed: 11/25/2022]
Abstract
Actin dynamics are critical for muscle development and function, and mutations leading to deregulation of actin dynamics cause various forms of heritable muscle diseases. AIP1 is a major cofactor of the actin depolymerizing factor/cofilin in eukaryotes, promoting actin depolymerizing factor/cofilin-mediated actin disassembly. Its function in vertebrate muscle has been unknown. To investigate functional roles of AIP1 in myocardium, we generated conditional knockout (cKO) mice with cardiomyocyte-specific deletion of Wdr1, the mammalian homolog of yeast AIP1. Wdr1 cKO mice began to die at postnatal day 13 (P13), and none survived past P24. At P12, cKO mice exhibited cardiac hypertrophy and impaired contraction of the left ventricle. Electrocardiography revealed reduced heart rate, abnormal P wave, and abnormal T wave at P10 and prolonged QT interval at P12. Actin filament (F-actin) accumulations began at P10 and became prominent at P12 in the myocardium of cKO mice. Within regions of F-actin accumulation in myofibrils, the sarcomeric components α-actinin and tropomodulin-1 exhibited disrupted patterns, indicating that F-actin accumulations caused by Wdr1 deletion result in disruption of sarcomeric structure. Ectopic cofilin colocalized with F-actin aggregates. In adult mice, Wdr1 deletion resulted in similar but much milder phenotypes of heart hypertrophy, F-actin accumulations within myofibrils, and lethality. Taken together, these results demonstrate that AIP1-regulated actin dynamics play essential roles in heart function in mice.
Collapse
Affiliation(s)
- Baiyin Yuan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Ping Wan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Dandan Chu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Junwei Nie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Yunshan Cao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Wen Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Shuangshuang Lu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Jiong Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Cox-Paulson E, Cannataro V, Gallagher T, Hoffman C, Mantione G, Mcintosh M, Silva M, Vissichelli N, Walker R, Simske J, Ono S, Hoops H. The minus-end actin capping protein, UNC-94/tropomodulin, regulates development of the Caenorhabditis elegans intestine. Dev Dyn 2014; 243:753-64. [PMID: 24677443 DOI: 10.1002/dvdy.24118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/25/2013] [Accepted: 01/31/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Tropomodulins are actin-capping proteins that regulate the stability of the slow-growing, minus-ends of actin filaments. The C. elegans tropomodulin homolog, UNC-94, has sequence and functional similarity to vertebrate tropomodulins. We investigated the role of UNC-94 in C. elegans intestinal morphogenesis. RESULTS In the embryonic C. elegans intestine, UNC-94 localizes to the terminal web, an actin- and intermediate filament-rich structure that underlies the apical membrane. Loss of UNC-94 function results in areas of flattened intestinal lumen. In worms homozygous for the strong loss-of-function allele, unc-94(tm724), the terminal web is thinner and the amount of F-actin is reduced, pointing to a role for UNC-94 in regulating the structure of the terminal web. The non-muscle myosin, NMY-1, also localizes to the terminal web, and we present evidence that increasing actomyosin contractility by depleting the myosin phosphatase regulatory subunit, mel-11, can rescue the flattened lumen phenotype of unc-94 mutants. CONCLUSIONS The data support a model in which minus-end actin capping by UNC-94 promotes proper F-actin structure and contraction in the terminal web, yielding proper shape of the intestinal lumen. This establishes a new role for a tropomodulin in regulating lumen shape during tubulogenesis.
Collapse
|
17
|
Molnár I, Migh E, Szikora S, Kalmár T, Végh AG, Deák F, Barkó S, Bugyi B, Orfanos Z, Kovács J, Juhász G, Váró G, Nyitrai M, Sparrow J, Mihály J. DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila. PLoS Genet 2014; 10:e1004166. [PMID: 24586196 PMCID: PMC3937221 DOI: 10.1371/journal.pgen.1004166] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.
Collapse
Affiliation(s)
- Imre Molnár
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Ede Migh
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Tibor Kalmár
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Attila G. Végh
- Institute of Biophysics, Biological Research Centre HAS, Szeged, Hungary
| | - Ferenc Deák
- Institute of Biochemistry, Biological Research Centre HAS, Szeged, Hungary
| | - Szilvia Barkó
- University of Pécs, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Department of Biophysics, Pécs, Hungary
| | | | - János Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - György Váró
- Institute of Biophysics, Biological Research Centre HAS, Szeged, Hungary
| | - Miklós Nyitrai
- University of Pécs, Department of Biophysics, Pécs, Hungary
- Hungarian Academy of Sciences, Office for Subsidized Research Units, Budapest, Hungary
| | - John Sparrow
- Department of Biology, University of York, York, United Kingdom
| | - József Mihály
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
- * E-mail:
| |
Collapse
|
18
|
ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin. Biochem J 2013; 453:249-59. [PMID: 23672398 DOI: 10.1042/bj20130491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.
Collapse
|
19
|
Colpan M, Moroz NA, Kostyukova AS. Tropomodulins and tropomyosins: working as a team. J Muscle Res Cell Motil 2013; 34:247-60. [PMID: 23828180 DOI: 10.1007/s10974-013-9349-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tmod and TM are crucial constituents of the actin filament network, making their presence indispensable in living cells. Tropomyosin (TM) is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin (Tmod), which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tmod consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two TM-binding sites and one TM-dependent actin-binding site, whereas the C-terminal domain contains a TM-independent actin-binding site. Tmod binds to two TM molecules and at least one actin molecule during capping. The interaction of Tmod with TM is a key regulatory factor for actin filament organization. The binding efficacy of Tmod to TM is isoform-dependent. The affinities of Tmod/TM binding influence the proper localization and capping efficiency of Tmod at the pointed end of actin filaments in cells. Here we describe how a small difference in the sequence of the TM-binding sites of Tmod may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod-TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure.
Collapse
Affiliation(s)
- Mert Colpan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 118 Dana Hall, Spokane St., Pullman, WA, 99164, USA
| | | | | |
Collapse
|
20
|
Cadherins and their partners in the nematode worm Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:239-62. [PMID: 23481198 DOI: 10.1016/b978-0-12-394311-8.00011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extreme simplicity of Caenorhabditis elegans makes it an ideal system to study the basic principles of cadherin function at the level of single cells within the physiologically relevant context of a developing animal. The genetic tractability of C. elegans also means that components of cadherin complexes can be identified through genetic modifier screens, allowing a comprehensive in vivo characterization of the macromolecular assemblies involved in cadherin function during tissue formation and maintenance in C. elegans. This work shows that a single cadherin system, the classical cadherin-catenin complex, is essential for diverse morphogenetic events during embryogenesis through its interactions with a range of mostly conserved proteins that act to modulate its function. The role of other members of the cadherin family in C. elegans, including members of the Fat-like, Flamingo/CELSR and calsyntenin families is less well characterized, but they have clear roles in neuronal development and function.
Collapse
|
21
|
Cox-Paulson EA, Walck-Shannon E, Lynch AM, Yamashiro S, Zaidel-Bar R, Eno CC, Ono S, Hardin J. Tropomodulin protects α-catenin-dependent junctional-actin networks under stress during epithelial morphogenesis. Curr Biol 2012; 22:1500-5. [PMID: 22771044 DOI: 10.1016/j.cub.2012.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/09/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
α-catenin is central to recruitment of actin networks to the cadherin-catenin complex, but how such networks are subsequently stabilized against stress applied during morphogenesis is poorly understood. To identify proteins that functionally interact with α-catenin in this process, we performed enhancer screening using a weak allele of the C. elegans α-catenin, hmp-1, thereby identifying UNC-94/tropomodulin. Tropomodulins (Tmods) cap the minus ends of F-actin in sarcomeres. They also regulate lamellipodia, can promote actin nucleation, and are required for normal cardiovascular development and neuronal growth-cone morphology. Tmods regulate the morphology of cultured epithelial cells, but their role in epithelia in vivo remains unexplored. We find that UNC-94 is enriched within a HMP-1-dependent junctional-actin network at epidermal adherens junctions subject to stress during morphogenesis. Loss of UNC-94 leads to discontinuity of this network, and high-speed filming of hmp-1(fe4);unc-94(RNAi) embryos reveals large junctional displacements that depend on the Rho pathway. In vitro, UNC-94 acts in combination with HMP-1, leading to longer actin bundles than with HMP-1 alone. Our data suggest that Tmods protect actin filaments recruited by α-catenin from minus-end subunit loss, enabling them to withstand the stresses of morphogenesis.
Collapse
Affiliation(s)
- Elisabeth A Cox-Paulson
- Department of Biology, State University of New York at Geneseo, 353 Integrated Science Center, 1 College Circle, Geneseo, NY 14454, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nomura K, Ono K, Ono S. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle. J Cell Sci 2012; 125:4077-89. [PMID: 22623720 DOI: 10.1242/jcs.104950] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.
Collapse
Affiliation(s)
- Kazumi Nomura
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
23
|
Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton (Hoboken) 2012; 69:337-70. [PMID: 22488942 DOI: 10.1002/cm.21031] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/31/2023]
Abstract
Tropomodulins are a family of four proteins (Tmods 1-4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a TM-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods' functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1-3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Dwyer J, Iskratsch T, Ehler E. Actin in striated muscle: recent insights into assembly and maintenance. Biophys Rev 2011; 4:17-25. [PMID: 28510000 DOI: 10.1007/s12551-011-0062-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/17/2011] [Indexed: 01/28/2023] Open
Abstract
Striated muscle cells are characterised by a para-crystalline arrangement of their contractile proteins actin and myosin in sarcomeres, the basic unit of the myofibrils. A multitude of proteins is required to build and maintain the structure of this regular arrangement as well as to ensure regulation of contraction and to respond to alterations in demand. This review focuses on the actin filaments (also called thin filaments) of the sarcomere and will discuss how they are assembled during myofibrillogenesis and in hypertrophy and how their integrity is maintained in the working myocardium.
Collapse
Affiliation(s)
- Joseph Dwyer
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Thomas Iskratsch
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.,Biological Sciences, Columbia University, 713 Fairchild Center, New York, NY, 10027, USA
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
25
|
Tropomodulin capping of actin filaments in striated muscle development and physiology. J Biomed Biotechnol 2011; 2011:103069. [PMID: 22013379 PMCID: PMC3196151 DOI: 10.1155/2011/103069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.
Collapse
|
26
|
Biochemical and cell biological analysis of actin in the nematode Caenorhabditis elegans. Methods 2011; 56:11-7. [PMID: 21945576 DOI: 10.1016/j.ymeth.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 11/21/2022] Open
Abstract
The nematode Caenorhabditis elegans has long been a useful model organism for muscle research. Its body wall muscle is obliquely striated muscle and exhibits structural similarities with vertebrate striated muscle. Actin is the core component of the muscle thin filaments, which are highly ordered in sarcomeric structures in striated muscle. Genetic studies have identified genes that regulate proper organization and function of actin filaments in C. elegans muscle, and sequence of the worm genome has revealed a number of conserved candidate genes that may regulate actin. To precisely understand the functions of actin-binding proteins, such genetic and genomic studies need to be complemented by biochemical characterization of these actin-binding proteins in vitro. This article describes methods for purification and biochemical characterization of actin from C. elegans. Although rabbit muscle actin is commonly used to characterize actin-binding proteins from many eukaryotic organisms, we detect several quantitative differences between C. elegans actin and rabbit muscle actin, highlighting that use of actin from an appropriate source is important in some cases. Additionally, we describe probes for cell biological analysis of actin in C. elegans.
Collapse
|
27
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
28
|
Skwarek-Maruszewska A, Boczkowska M, Zajac AL, Kremneva E, Svitkina T, Dominguez R, Lappalainen P. Different localizations and cellular behaviors of leiomodin and tropomodulin in mature cardiomyocyte sarcomeres. Mol Biol Cell 2010; 21:3352-61. [PMID: 20685966 PMCID: PMC2947471 DOI: 10.1091/mbc.e10-02-0109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Leiomodin (Lmod) is a muscle-specific F-actin-nucleating protein that is related to the F-actin pointed-end-capping protein tropomodulin (Tmod). However, Lmod contains a unique ∼150-residue C-terminal extension that is required for its strong nucleating activity. Overexpression or depletion of Lmod compromises sarcomere organization, but the mechanism by which Lmod contributes to myofibril assembly is not well understood. We show that Tmod and Lmod localize through fundamentally different mechanisms to the pointed ends of two distinct subsets of actin filaments in myofibrils. Tmod localizes to two narrow bands immediately adjacent to M-lines, whereas Lmod displays dynamic localization to two broader bands, which are generally more separated from M-lines. Lmod's localization and F-actin nucleation activity are enhanced by interaction with tropomyosin. Unlike Tmod, the myofibril localization of Lmod depends on sustained muscle contraction and actin polymerization. We further show that Lmod expression correlates with the maturation of myofibrils in cultured cardiomyocytes and that it associates with sarcomeres only in differentiated myofibrils. Collectively, the data suggest that Lmod contributes to the final organization and maintenance of sarcomere architecture by promoting tropomyosin-dependent actin filament nucleation.
Collapse
Affiliation(s)
- Aneta Skwarek-Maruszewska
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | | | | | | | | | | | | |
Collapse
|
29
|
Ono K, Ono S. Actin-ADF/cofilin rod formation in Caenorhabditis elegans muscle requires a putative F-actin binding site of ADF/cofilin at the C-terminus. ACTA ACUST UNITED AC 2009; 66:398-408. [PMID: 19459188 DOI: 10.1002/cm.20383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Under a number of stress or pathological conditions, actin and actin depolymerizing factor (ADF)/cofilin form rod-like structures that contain abnormal bundles of actin filaments that are heavily decorated with ADF/cofilin. However, the mechanism of actin rod formation and the physiological role of actin rods are not clearly understood. Here, we report that overexpression of green fluorescent protein-fused UNC-60B, a muscle-specific ADF/cofilin isoform, in Caenorhabditis elegans body wall muscle induces formation of rod-like structures. The rods contained GFP-UNC-60B, actin-interacting protein 1 (AIP1), and actin, but not other major actin-associated proteins, thus resembling actin-ADF/cofilin rods found in other organisms. However, depletion or overexpression of AIP1 did not affect formation of the actin-GFP-UNC-60B rods, suggesting that AIP1 does not play a significant role in the rod assembly. Truncation of the C-terminal tail, a putative F-actin binding site, of UNC-60B abolished induction of the rod formation, strongly suggesting that stable association of UNC-60B with F-actin, which is mediated by its C-terminus, is required for inducing actin-ADF/cofilin rods. This study suggests that C. elegans can be a new model to study functions of actin-ADF/cofilin rods.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
30
|
Skwarek-Maruszewska A, Hotulainen P, Mattila PK, Lappalainen P. Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J Cell Sci 2009; 122:2119-26. [DOI: 10.1242/jcs.046805] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to the highly dynamic actin cytoskeleton in non-muscle cells, actin filaments in muscle sarcomeres are thought to be relatively stable and undergo dynamics only at their ends. However, many proteins that promote rapid actin dynamics are also expressed in striated muscles. We show that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, we found that turnover of these filaments depends on contractility of the cardiomyocytes. Studies using an actin-polymerization inhibitor suggest that the pool of dynamic actin filaments is composed of filaments that do not contribute to contractility. Furthermore, we provide evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. These data indicate that an excess of actin filaments is produced during sarcomere assembly, and that contractility is applied to recognize non-productive filaments that are subsequently destined for depolymerization. Consequently, contractility-induced actin dynamics plays an important role in sarcomere maturation.
Collapse
Affiliation(s)
| | - Pirta Hotulainen
- Institute of Biotechnology, PO Box 56, 00014, University of Helsinki, Finland
| | - Pieta K. Mattila
- Institute of Biotechnology, PO Box 56, 00014, University of Helsinki, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, PO Box 56, 00014, University of Helsinki, Finland
| |
Collapse
|
31
|
Littlefield RS, Fowler VM. Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 2008; 19:511-9. [PMID: 18793739 DOI: 10.1016/j.semcdb.2008.08.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 08/19/2008] [Indexed: 01/18/2023]
Abstract
The actin (thin) filaments in striated muscle are highly regulated and precisely specified in length to optimally overlap with the myosin (thick) filaments for efficient myofibril contraction. Here, we review and critically discuss recent evidence for how thin filament lengths are controlled in vertebrate skeletal, vertebrate cardiac, and invertebrate (arthropod) sarcomeres. Regulation of actin polymerization dynamics at the slow-growing (pointed) ends by the capping protein tropomodulin provides a unified explanation for how thin filament lengths are physiologically optimized in all three muscle types. Nebulin, a large protein thought to specify thin filament lengths in vertebrate skeletal muscle through a ruler mechanism, may not control pointed-end actin dynamics directly, but instead may stabilize a large core region of the thin filament. We suggest that this stabilizing function for nebulin modifies the lengths primarily specified by pointed-end actin dynamics to generate uniform filament lengths in vertebrate skeletal muscle. We suggest that nebulette, a small homolog of nebulin, may stabilize a correspondingly shorter core region and allow individual thin filament lengths to vary according to working sarcomere lengths in vertebrate cardiac muscle. We present a unified model for thin filament length regulation where these two mechanisms cooperate to tailor thin filament lengths for specific contractile environments in diverse muscles.
Collapse
Affiliation(s)
- Ryan S Littlefield
- Center for Cell Dynamics, University of Washington, Friday Harbor Laboratories, Friday Harbor, WA 98250, USA
| | | |
Collapse
|