1
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The Sole Essential Low Molecular Weight Tropomyosin Isoform of Caenorhabditis elegans Is Essential for Pharyngeal Muscle Function. Cytoskeleton (Hoboken) 2025. [PMID: 40078096 DOI: 10.1002/cm.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms regulate the contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here that C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants lacking all other short isoforms are viable, with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating that the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The sole essential low molecular weight tropomyosin isoform of Caenorhabditis elegans is essential for pharyngeal muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628433. [PMID: 39764053 PMCID: PMC11702560 DOI: 10.1101/2024.12.13.628433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants disrupted for all other short isoforms are viable with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle, and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| |
Collapse
|
3
|
Douvdevany G, Erlich I, Haimovich-Caspi L, Mashiah T, Prondzynski M, Pricolo MR, Alegre-Cebollada J, Linke WA, Carrier L, Kehat I. Imaging of Existing and Newly Translated Proteins Elucidates Mechanisms of Sarcomere Turnover. Circ Res 2024; 135:474-487. [PMID: 38962864 DOI: 10.1161/circresaha.123.323819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND How the sarcomeric complex is continuously turned over in long-living cardiomyocytes is unclear. According to the prevailing model of sarcomere maintenance, sarcomeres are maintained by cytoplasmic soluble protein pools with free recycling between pools and sarcomeres. METHODS We imaged and quantified the turnover of expressed and endogenous sarcomeric proteins, including the giant protein titin, in cardiomyocytes in culture and in vivo, at the single cell and at the single sarcomere level using pulse-chase labeling of Halo-tagged proteins with covalent ligands. RESULTS We disprove the prevailing protein pool model and instead show an ordered mechanism in which only newly translated proteins enter the sarcomeric complex while older ones are removed and degraded. We also show that degradation is independent of protein age and that proteolytic extraction is a rate-limiting step in the turnover. We show that replacement of sarcomeric proteins occurs at a similar rate within cells and across the heart and is slower in adult cells. CONCLUSIONS Our findings establish a unidirectional replacement model for cardiac sarcomeres subunit replacement and identify their turnover principles.
Collapse
Affiliation(s)
- Guy Douvdevany
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Itai Erlich
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Lilac Haimovich-Caspi
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Tomer Mashiah
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (M.P., L.C.)
- German Centre for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany (M.P., L.C.)
- Now with Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA (M.P.)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (M.R.P., J.A.-C.)
| | | | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, Germany (W.A.L.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (M.P., L.C.)
- German Centre for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany (M.P., L.C.)
| | - Izhak Kehat
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| |
Collapse
|
4
|
Barbetti M, Vilella R, Naponelli V, Bilotti I, Magistrati M, Dallabona C, Ielpo D, Andolina D, Sgoifo A, Savi M, Carnevali L. Repeated witness social stress causes cardiomyocyte contractile impairment and intracellular Ca 2+ derangement in female rats. Physiol Behav 2023; 271:114339. [PMID: 37625474 DOI: 10.1016/j.physbeh.2023.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The impact of psychosocial stressors on cardiovascular health in women is of growing interest in both the popular and scientific literature. Rodent models are useful for providing direct experimental evidence of the adverse cardiovascular consequences of psychosocial stressors, yet studies in females are scarce. Here, we investigated the effects of repeated exposure to witness social defeat stress (WS) on cardiomyocyte contractile function and intracellular Ca2+ homeostasis in young adult wild-type Groningen female rats. Female rats bore witness to an aggressive social defeat episode between two males for nine consecutive days or were exposed to a control procedure. Stress-related behaviors were assessed during the first and last WS/control exposure. Twenty-four hours after the last exposure, plasma corticosterone levels were measured, and cardiomyocytes were isolated for analyses of contractile properties and Ca2+ transients, and expression levels of proteins involved in intracellular Ca2+dynamics. The results show an impairment of the intrinsic cardiac mechanical properties and prolonged intracellular Ca2+decay in WS female rats showing social stress-related behavioral (larger amounts of burying behavior) and neuroendocrine (elevated plasma corticosterone levels) phenotypes. Further, the results implicate alterations in the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex in the contractile defects described in cardiomyocytes of WS female rats. In conclusion, this study highlights the utility of the WS model as an ethologically relevant social stressor for investigating pathophysiological processes that occur in the heart of female subjects and may increase vulnerability to social stress-related cardiovascular risk.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Iolanda Bilotti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
5
|
Bouchoucha S, Chikhaoui A, Najjar D, Zayoud K, Zouari M, Nessib MN, Kéfi R, Yacoub-Youssef H. Case report: Exome sequencing revealed disease-causing variants in a patient with spondylospinal thoracic dysostosis. Front Pediatr 2023; 11:1132023. [PMID: 37744435 PMCID: PMC10512740 DOI: 10.3389/fped.2023.1132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Spondylocostal dysostosis is a rare genetic disorder caused by mutations in DLL3, MESP2, LFNG, HES7, TBX6, and RIPPLY2. A particular form of this disorder characterized by the association of spondylocostal dysostosis with multiple pterygia has been reported and called spondylospinal thoracic dysostosis. Both disorders affect the spine and ribs, leading to abnormal development of the spine. Spondylospinal thoracic dysostosis is a rare syndrome characterized by the association of multiple vertebral segmentation defects, thoracic cage deformity, and multiple pterygia. This syndrome can be considered a different form of the described spondylocostal dysostosis. However, no genetic testing has been conducted for this rare disorder so far. Methods We report here the case of an 18-month-old female patient presenting the clinical and radiological features of spondylospinal thoracic dysostosis. To determine the underlying genetic etiology, whole exome sequencing (WES) and Sanger sequencing were performed. Results Using WES, we identified a variant in the TPM2 gene c. 628C>T, already reported in the non-lethal form of multiple pterygium syndrome. In addition, following the analysis of WES data, using bioinformatic tools, for oligogenic diseases, we identified candidate modifier genes, CAP2 and ADCY6, that could impact the clinical manifestations. Conclusion We showed a potential association between TPM2 and the uncommon spondylocostal dysostosis phenotype that would require further validation on larger cohort.
Collapse
Affiliation(s)
- Sami Bouchoucha
- Service Orthopédie, Hôpital D’enfant Béchir Hamza,Tunis, Tunisia
| | - Asma Chikhaoui
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Dorra Najjar
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Khouloud Zayoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Zouari
- Genomics Platform, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | | | - Rym Kéfi
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Eisen B, Binah O. Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24108657. [PMID: 37240001 DOI: 10.3390/ijms24108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality. Over the years, extensive research has been conducted using different DMD animal models, including the mdx mouse. While these models present certain important similarities to human DMD patients, they also have some differences which pose a challenge to researchers. The development of somatic cell reprograming technology has enabled generation of human induced pluripotent stem cells (hiPSCs) which can be differentiated into different cell types. This technology provides a potentially endless pool of human cells for research. Furthermore, hiPSCs can be generated from patients, thus providing patient-specific cells and enabling research tailored to different mutations. DMD cardiac involvement has been shown in animal models to include changes in gene expression of different proteins, abnormal cellular Ca2+ handling, and other aberrations. To gain a better understanding of the disease mechanisms, it is imperative to validate these findings in human cells. Furthermore, with the recent advancements in gene-editing technology, hiPSCs provide a valuable platform for research and development of new therapies including the possibility of regenerative medicine. In this article, we review the DMD cardiac-related research performed so far using human hiPSCs-derived cardiomyocytes (hiPSC-CMs) carrying DMD mutations.
Collapse
Affiliation(s)
- Binyamin Eisen
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ofer Binah
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Barbetti M, Vilella R, Dallabona C, Gerra MC, Bocchi L, Ielpo D, Andolina D, Sgoifo A, Savi M, Carnevali L. Decline of cardiomyocyte contractile performance and bioenergetic function in socially stressed male rats. Heliyon 2022; 8:e11466. [PMID: 36387533 PMCID: PMC9660606 DOI: 10.1016/j.heliyon.2022.e11466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic social stress has been epidemiologically linked to increased risk for cardiovascular disease, yet the underlying pathophysiological mechanisms are still largely elusive. Mitochondrial (dys)function represents a potential intersection point between social stress exposure and (mal)adaptive cardiac responses. In this study, we used a rodent model of social stress to study the extent to which alterations in the cellular mechanical properties of the heart were associated with changes in indexes of mitochondrial function. Male adult rats were exposed to repeated episodes of social defeat stress or left undisturbed (controls). ECG signals were recorded during and after social defeat stress. Twenty-four hours after the last social defeat, cardiomyocytes were isolated for analyses of mechanical properties and intracellular Ca2+ dynamics, mitochondrial respiration, and ATP content. Results indicated that social defeat stress induced potent cardiac sympathetic activation that lasted well beyond stress exposure. Moreover, cardiomyocytes of stressed rats showed poor contractile performance (e.g., slower contraction and relaxation rates) and intracellular Ca2+ derangement (e.g., slower Ca2+ clearing), which were associated with indexes of reduced reserve respiratory capacity and decreased ATP production. In conclusion, this study suggests that repeated social stress provokes impaired cardiomyocyte contractile performance and signs of altered mitochondrial bioenergetics in the rat heart. Future studies are needed to clarify the causal link between cardiac and mitochondrial functional remodeling under conditions of chronic social stress.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Roma, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University Rome, Italy
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Roma, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University Rome, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Corresponding author.
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Corresponding author.
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Corresponding author.
| |
Collapse
|
8
|
Chang ACY, Pardon G, Chang ACH, Wu H, Ong SG, Eguchi A, Ancel S, Holbrook C, Ramunas J, Ribeiro AJS, LaGory EL, Wang H, Koleckar K, Giaccia A, Mack DL, Childers MK, Denning C, Day JW, Wu JC, Pruitt BL, Blau HM. Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes. Stem Cell Reports 2021; 16:2169-2181. [PMID: 34019816 PMCID: PMC8452491 DOI: 10.1016/j.stemcr.2021.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease that is associated with severe progressive muscle degeneration culminating in death due to cardiorespiratory failure. We previously observed an unexpected proliferation-independent telomere shortening in cardiomyocytes of a DMD mouse model. Here, we provide mechanistic insights using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using traction force microscopy, we show that DMD hiPSC-CMs exhibit deficits in force generation on fibrotic-like bioengineered hydrogels, aberrant calcium handling, and increased reactive oxygen species levels. Furthermore, we observed a progressive post-mitotic telomere shortening in DMD hiPSC-CMs coincident with downregulation of shelterin complex, telomere capping proteins, and activation of the p53 DNA damage response. This telomere shortening is blocked by blebbistatin, which inhibits contraction in DMD cardiomyocytes. Our studies underscore the role of fibrotic stiffening in the etiology of DMD cardiomyopathy. In addition, our data indicate that telomere shortening is progressive, contraction dependent, and mechanosensitive, and suggest points of therapeutic intervention.
Collapse
Affiliation(s)
- Alex C Y Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, A419, Bldg #2, 115 Jinzun Road, Pudong New District, Shanghai 200125, China; Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gaspard Pardon
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Departments of Bioengineering and Mechanical Engineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA; Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA
| | - Andrew C H Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Asuka Eguchi
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | - Sara Ancel
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | - John Ramunas
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | - Alexandre J S Ribeiro
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Departments of Bioengineering and Mechanical Engineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Edward L LaGory
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Honghui Wang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, A419, Bldg #2, 115 Jinzun Road, Pudong New District, Shanghai 200125, China
| | - Kassie Koleckar
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | - Amato Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - David L Mack
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Martin K Childers
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, University Park NG7 2RD, UK
| | - John W Day
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Beth L Pruitt
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Departments of Bioengineering and Mechanical Engineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA; Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Vignier N, Chatzifrangkeskou M, Pinton L, Wioland H, Marais T, Lemaitre M, Le Dour C, Peccate C, Cardoso D, Schmitt A, Wu W, Biferi MG, Naouar N, Macquart C, Beuvin M, Decostre V, Bonne G, Romet-Lemonne G, Worman HJ, Tedesco FS, Jégou A, Muchir A. The non-muscle ADF/cofilin-1 controls sarcomeric actin filament integrity and force production in striated muscle laminopathies. Cell Rep 2021; 36:109601. [PMID: 34433058 PMCID: PMC8411111 DOI: 10.1016/j.celrep.2021.109601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.
Collapse
Affiliation(s)
- Nicolas Vignier
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maria Chatzifrangkeskou
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Thibaut Marais
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, UMS28, Phénotypage du Petit Animal, Paris, France
| | - Caroline Le Dour
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Cécile Peccate
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Déborah Cardoso
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Alain Schmitt
- Université de Paris, INSERM, CNRS, Institut Cochin, 75005 Paris, France
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Maria-Grazia Biferi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Naïra Naouar
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Coline Macquart
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maud Beuvin
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Valérie Decostre
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | | | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK; Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; The Francis Crick Institute, London, UK
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France.
| |
Collapse
|
10
|
Sakata K, Matsuyama S, Kurebayashi N, Hayamizu K, Murayama T, Nakamura K, Kitamura K, Morimoto S, Takeya R. Differential effects of the formin inhibitor SMIFH2 on contractility and Ca 2+ handling in frog and mouse cardiomyocytes. Genes Cells 2021; 26:583-595. [PMID: 34060165 DOI: 10.1111/gtc.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Genetic mutations in actin regulators have been emerging as a cause of cardiomyopathy, although the functional link between actin dynamics and cardiac contraction remains largely unknown. To obtain insight into this issue, we examined the effects of pharmacological inhibition of formins, a major class of actin-assembling proteins. The formin inhibitor SMIFH2 significantly enhanced the cardiac contractility of isolated frog hearts, thereby augmenting cardiac performance. SMIFH2 treatment had no significant effects on the Ca2+ sensitivity of frog muscle fibers. Instead, it unexpectedly increased Ca2+ concentrations of isolated frog cardiomyocytes, suggesting that the inotropic effect is due to enhanced Ca2+ transients. In contrast to frog hearts, the contractility of mouse cardiomyocytes was attenuated by SMIFH2 treatment with decreasing Ca2+ transients. Thus, SMIFH2 has opposing effects on the Ca2+ transient and contractility between frog and mouse cardiomyocytes. We further found that SMIFH2 suppressed Ca2+ -release via type 2 ryanodine receptor (RyR2); this inhibitory effect may explain the species differences, since RyR2 is critical for Ca2+ transients in mouse myocardium but absent in frog myocardium. Although the mechanisms underlying the enhancement of Ca2+ transients in frog cardiomyocytes remain unclear, SMIFH2 differentially affects the cardiac contraction of amphibian and mammalian by differentially modulating their Ca2+ handling.
Collapse
Affiliation(s)
- Koji Sakata
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sho Matsuyama
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kengo Hayamizu
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kunihide Nakamura
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachio Morimoto
- Department of Health Sciences Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
11
|
Müller D, Klamt T, Gentemann L, Heisterkamp A, Kalies SMK. Evaluation of laser induced sarcomere micro-damage: Role of damage extent and location in cardiomyocytes. PLoS One 2021; 16:e0252346. [PMID: 34086732 PMCID: PMC8177425 DOI: 10.1371/journal.pone.0252346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Whereas it is evident that a well aligned and regular sarcomeric structure in cardiomyocytes is vital for heart function, considerably less is known about the contribution of individual elements to the mechanics of the entire cell. For instance, it is unclear whether altered Z-disc elements are the reason or the outcome of related cardiomyopathies. Therefore, it is crucial to gain more insight into this cellular organization. This study utilizes femtosecond laser-based nanosurgery to better understand sarcomeres and their repair upon damage. We investigated the influence of the extent and the location of the Z-disc damage. A single, three, five or ten Z-disc ablations were performed in neonatal rat cardiomyocytes. We employed image-based analysis using a self-written software together with different already published algorithms. We observed that cardiomyocyte survival associated with the damage extent, but not with the cell area or the total number of Z-discs per cell. The cell survival is independent of the damage position and can be compensated. However, the sarcomere alignment/orientation is changing over time after ablation. The contraction time is also independent of the extent of damage for the tested parameters. Additionally, we observed shortening rates between 6–7% of the initial sarcomere length in laser treated cardiomyocytes. This rate is an important indicator for force generation in myocytes. In conclusion, femtosecond laser-based nanosurgery together with image-based sarcomere tracking is a powerful tool to better understand the Z-disc complex and its force propagation function and role in cellular mechanisms.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- * E-mail:
| | - Thorben Klamt
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Stefan Michael Klaus Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
12
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Electrical impedance-based contractile stress measurement of human iPSC-Cardiomyocytes. Biosens Bioelectron 2020; 166:112399. [DOI: 10.1016/j.bios.2020.112399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
|
14
|
Pathak S, Deori N, Sharma A, Nagotu S, Kale A. In vitro, in vivo and in silico rationale for the muscle loss due to therapeutic drugs used in the treatment of Mycobacterium tuberculosis infection. J Biomol Struct Dyn 2020; 40:44-60. [PMID: 32795137 DOI: 10.1080/07391102.2020.1806928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tuberculosis globally affects millions of people every year and is responsible for high rates of mortality and morbidity in tropical countries like India. The treatment of tuberculosis involves using the first line of drugs especially Isoniazid, Pyrazinamide, Streptomycin, Ethambutol and Rifampicin for treatment under the DOTS (Directly Observed Treatment Shots) regime which can last up to minimum of six months. These drugs although widely used against Mycobacterium tuberculosis has given rise to multi drug resistant (MDR) tuberculosis strain. It has been observed widely that prolonged drug treatment for tuberculosis patient has rendered several side effects that include increasing muscle wasting and malnutrition. In our study, we have investigated the role of these major tuberculosis drugs namely Rifampicin, Streptomycin, Isoniazid, Pyrazinamide, and Ethambutol on actin polymerization which are famously known to be a central player in the sarcomere region of the muscle in human body. For in vitro studies, we have used biophysical approaches such as 90° scattering assay (RLS), size exclusion chromatography (SEC), Dynamic light scattering (DLS), Circular dichroism spectroscopy (CD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), kinetic analysis to understand the time taken to break down effect of above mentioned drugs on actin disruption. In vivo analysis was carried out on yeast Δend3 mutants which are rich in F-actin filaments in order to understand the effect of the aforementioned drugs in rendering the muscle wasting phenomenon in tuberculosis. Furthermore, we also carried out in silico analysis to understand the probable modes of binding of these drugs on actin filaments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, India
| | - Nayan Deori
- Organelle Biology and Cellular Ageing Lab (OBCAL), Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Aditi Sharma
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab (OBCAL), Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
15
|
Abstract
Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.
Collapse
|
16
|
Kumari R, Jiu Y, Carman PJ, Tojkander S, Kogan K, Varjosalo M, Gunning PW, Dominguez R, Lappalainen P. Tropomodulins Control the Balance between Protrusive and Contractile Structures by Stabilizing Actin-Tropomyosin Filaments. Curr Biol 2020; 30:767-778.e5. [PMID: 32037094 DOI: 10.1016/j.cub.2019.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmod1 and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropomyosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Yaming Jiu
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320, Yueyang Road, Xuhui District, 200031 Shanghai, China; University of Chinese Academy of Sciences, Yuquan Road No.19(A), Shijingshan District, 100049 Beijing, China
| | - Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Bldg, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöberginkatu 2, 00014 Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Markku Varjosalo
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Peter W Gunning
- School of Medical Sciences, UNSW, Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Bldg, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
17
|
Cadar AG, Feaster TK, Bersell KR, Wang L, Hong T, Balsamo JA, Zhang Z, Chun YW, Nam YJ, Gotthardt M, Knollmann BC, Roden DM, Lim CC, Hong CC. Real-time visualization of titin dynamics reveals extensive reversible photobleaching in human induced pluripotent stem cell-derived cardiomyocytes. Am J Physiol Cell Physiol 2020; 318:C163-C173. [PMID: 31747312 PMCID: PMC6985833 DOI: 10.1152/ajpcell.00107.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) has been useful in delineating cardiac myofilament biology, and innovations in fluorophore chemistry have expanded the array of microscopic assays used. However, one assumption in FRAP is the irreversible photobleaching of fluorescent proteins after laser excitation. Here we demonstrate reversible photobleaching regarding the photoconvertible fluorescent protein mEos3.2. We used CRISPR/Cas9 genome editing in human induced pluripotent stem cells (hiPSCs) to knock-in mEos3.2 into the COOH terminus of titin to visualize sarcomeric titin incorporation and turnover. Upon cardiac induction, the titin-mEos3.2 fusion protein is expressed and integrated in the sarcomeres of hiPSC-derived cardiomyocytes (CMs). STORM imaging shows M-band clustered regions of bound titin-mEos3.2 with few soluble titin-mEos3.2 molecules. FRAP revealed a baseline titin-mEos3.2 fluorescence recovery of 68% and half-life of ~1.2 h, suggesting a rapid exchange of sarcomeric titin with soluble titin. However, paraformaldehyde-fixed and permeabilized titin-mEos3.2 hiPSC-CMs surprisingly revealed a 55% fluorescence recovery. Whole cell FRAP analysis in paraformaldehyde-fixed, cycloheximide-treated, and untreated titin-mEos3.2 hiPSC-CMs displayed no significant differences in fluorescence recovery. FRAP in fixed HEK 293T expressing cytosolic mEos3.2 demonstrates a 58% fluorescence recovery. These data suggest that titin-mEos3.2 is subject to reversible photobleaching following FRAP. Using a mouse titin-eGFP model, we demonstrate that no reversible photobleaching occurs. Our results reveal that reversible photobleaching accounts for the majority of titin recovery in the titin-mEos3.2 hiPSC-CM model and should warrant as a caution in the extrapolation of reliable FRAP data from specific fluorescent proteins in long-term cell imaging.
Collapse
Affiliation(s)
- Adrian G Cadar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Tromondae K Feaster
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kevin R Bersell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lili Wang
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - TingTing Hong
- Smidt Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joseph A Balsamo
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhentao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Young Wook Chun
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Björn C Knollmann
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Dan M Roden
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chee C Lim
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Charles C Hong
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Lee J, Manoharan V, Cheung L, Lee S, Cha BH, Newman P, Farzad R, Mehrotra S, Zhang K, Khan F, Ghaderi M, Lin YD, Aftab S, Mostafalu P, Miscuglio M, Li J, Mandal BB, Hussain MA, Wan KT, Tang XS, Khademhosseini A, Shin SR. Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering. ACS NANO 2019; 13:12525-12539. [PMID: 31621284 PMCID: PMC7068777 DOI: 10.1021/acsnano.9b03050] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Myocardial microenvironment plays a decisive role in guiding the function and fate of cardiomyocytes, and engineering this extracellular niche holds great promise for cardiac tissue regeneration. Platforms utilizing hybrid hydrogels containing various types of conductive nanoparticles have been a critical tool for constructing engineered cardiac tissues with outstanding mechanical integrity and improved electrophysiological properties. However, there has been no attempt to directly compare the efficacy of these hybrid hydrogels and decipher the mechanisms behind how these platforms differentially regulate cardiomyocyte behavior. Here, we employed gelatin methacryloyl (GelMA) hydrogels containing three different types of carbon-based nanoparticles: carbon nanotubes (CNTs), graphene oxide (GO), and reduced GO (rGO), to investigate the influence of these hybrid scaffolds on the structural organization and functionality of cardiomyocytes. Using immunofluorescent staining for assessing cellular organization and proliferation, we showed that electrically conductive scaffolds (CNT- and rGO-GelMA compared to relatively nonconductive GO-GelMA) played a significant role in promoting desirable morphology of cardiomyocytes and elevated the expression of functional cardiac markers, while maintaining their viability. Electrophysiological analysis revealed that these engineered cardiac tissues showed distinct cardiomyocyte phenotypes and different levels of maturity based on the substrate (CNT-GelMA: ventricular-like, GO-GelMA: atrial-like, and rGO-GelMA: ventricular/atrial mixed phenotypes). Through analysis of gene-expression patterns, we uncovered that the engineered cardiac tissues matured on CNT-GelMA and native cardiac tissues showed comparable expression levels of maturation markers. Furthermore, we demonstrated that engineered cardiac tissues matured on CNT-GelMA have increased functionality through integrin-mediated mechanotransduction (via YAP/TAZ) in contrast to cardiomyocytes cultured on rGO-GelMA.
Collapse
Affiliation(s)
- Junmin Lee
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT), University of California–Los Angeles, Los Angeles, California 90095, United States
| | - Vijayan Manoharan
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Louis Cheung
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Seungkyu Lee
- F. M. Kirby Neurobiology Center, Children’s Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Byung-Hyun Cha
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division of Cardio-Thoracic Surgery, Department of Surgery, University of Arizona College of Medicine, Room 4302D, 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Peter Newman
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Razieh Farzad
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shreya Mehrotra
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Kaizhen Zhang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Fazal Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Masoumeh Ghaderi
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yi-Dong Lin
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Saira Aftab
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Pooria Mostafalu
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mario Miscuglio
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Joan Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Mohammad Asif Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Kai-tak Wan
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ali Khademhosseini
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT), University of California–Los Angeles, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California 90095, United States
- Department of Radiology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California 90095, United States
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Pires RH, Shree N, Manu E, Guzniczak E, Otto O. Cardiomyocyte mechanodynamics under conditions of actin remodelling. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190081. [PMID: 31587648 PMCID: PMC6792454 DOI: 10.1098/rstb.2019.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 01/26/2023] Open
Abstract
The mechanical performance of cardiomyocytes (CMs) is an important indicator of their maturation state and of primary importance for the development of therapies based on cardiac stem cells. As the mechanical analysis of adherent cells at high-throughput remains challenging, we explore the applicability of real-time deformability cytometry (RT-DC) to probe cardiomyocytes in suspension. RT-DC is a microfluidic technology allowing for real-time mechanical analysis of thousands of cells with a throughput exceeding 1000 cells per second. For CMs derived from human-induced pluripotent stem cells, we determined a Young's modulus of 1.25 ± 0.08 kPa which is in close range to previous reports. Upon challenging the cytoskeleton with cytochalasin D (CytoD) to induce filamentous actin depolymerization, we distinguish three different regimes in cellular elasticity. Transitions are observed below 10 nM and above 103 nM and are characterized by a decrease in Young's modulus. These regimes can be linked to cytoskeletal and sarcomeric actin contributions by CM contractility measurements at varying CytoD concentrations, where we observe a significant reduction in pulse duration only above 103 nM while no change is found for compound exposure at lower concentrations. Comparing our results to mechanical cell measurements using atomic force microscopy, we demonstrate for the first time to our knowledge, the feasibility of using a microfluidic technique to measure mechanical properties of large samples of adherent cells while linking our results to the composition of the cytoskeletal network. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Ricardo H. Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Nithya Shree
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Emmanuel Manu
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Ewa Guzniczak
- Heriot-Watt University School of Engineering and Physical Science, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh Campus, Edinburgh EH14 4AS, UK
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| |
Collapse
|
20
|
Atmanli A, Hu D, Deiman FE, van de Vrugt AM, Cherbonneau F, Black LD, Domian IJ. Multiplex live single-cell transcriptional analysis demarcates cellular functional heterogeneity. eLife 2019; 8:49599. [PMID: 31591966 PMCID: PMC6861004 DOI: 10.7554/elife.49599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
A fundamental goal in the biological sciences is to determine how individual cells with varied gene expression profiles and diverse functional characteristics contribute to development, physiology, and disease. Here, we report a novel strategy to assess gene expression and cell physiology in single living cells. Our approach utilizes fluorescently labeled mRNA-specific anti-sense RNA probes and dsRNA-binding protein to identify the expression of specific genes in real-time at single-cell resolution via FRET. We use this technology to identify distinct myocardial subpopulations expressing the structural proteins myosin heavy chain α and myosin light chain 2a in real-time during early differentiation of human pluripotent stem cells. We combine this live-cell gene expression analysis with detailed physiologic phenotyping to capture the functional evolution of these early myocardial subpopulations during lineage specification and diversification. This live-cell mRNA imaging approach will have wide ranging application wherever heterogeneity plays an important biological role.
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biomedical Engineering, Tufts University, Medford, United States
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biomedical Engineering, Boston University, Boston, United States
| | - Frederik Ernst Deiman
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Annebel Marjolein van de Vrugt
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - François Cherbonneau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, United States
| | - Ibrahim John Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
21
|
Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis. Dev Cell 2019; 51:62-77.e5. [PMID: 31495694 DOI: 10.1016/j.devcel.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.
Collapse
|
22
|
Das S, Kim SW, Choi YJ, Lee S, Lee SH, Kong JS, Park HJ, Cho DW, Jang J. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater 2019; 95:188-200. [PMID: 30986526 DOI: 10.1016/j.actbio.2019.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
Engineered heart tissue (EHT) has ample potential as a model for in vitro tissue modeling or tissue regeneration. Using 3D cell printing technology, various hydrogels have been utilized as bioinks to fabricate EHT to date. However, its efficacy has remained limited due to poor functional properties of the cultured cardiomyocytes stemming from a lack of proper microenvironmental cues. Specifically, the surrounding matrix plays a key role in modulating cardiomyocyte differentiation and maturation. Recently, the use of heart tissue-derived extracellular matrix (hdECM) bioink has come to be seen as one of the most promising candidates due to its functional and structural similarities to native tissue. Here, we demonstrated a correlation between the synthesis of cardiomyocyte-specific proteins and the surrounding microenvironment irrespective of the similar material chemistry. Primary cardiomyocytes isolated from neonatal rats were encapsulated in different composition and concentration of bioinks (hdECM and collagen). The bioinks were sequentially printed using an extrusion-based 3D bioprinter and cultured either statically or dynamically. Qualitative and quantitative evaluation revealed enhanced maturation of cardiomyocytes in hdECM, unlike the collagen group under similar culture conditions. Specifically, 3D-printed EHT using a low concentration of hdECM promoted early differentiation of cardiomyocytes. Hence, the present study provides experimental insights regarding the establishment of a 3D-printed cardiac tissue model, highlighting that the matrix and the culture microenvironment can be decisive factors for cell-material interactions that affect cardiomyocyte maturation. STATEMENT OF SIGNIFICANCE: The regulation of signal transduction and responses to extracellular matrices (ECMs) is of particular relevance in tissue maturation. In particular, there is a clear need to understand the structural and phenotypical modulation in cardiomyocytes with respect to the surrounding microenvironment. Exploration of the key regulators, such as the compositional and the biophysical properties of bioinks associated directly with cell-cell and cell-matrix interactions would assist with the fabrication of cardiac tissue constructs with enhanced functionality. Hence, we documented the synergistic effects of surrounding matrices and culture conditions on the maturation of cardiomyocytes. Additionally, we highlighted the potential of using 3D bioprinting techniques to fabricate uniformly aligned cardiac constructs for mid- to high-throughput drug testing platforms that have great reproducibility and versatility.
Collapse
|
23
|
Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Ribeiro AJS, Zabka T, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Adverse Drug-Induced Inotropic Effects in Early Drug Development. Part 1: General Considerations for Development of Novel Testing Platforms. Front Pharmacol 2019; 10:884. [PMID: 31447679 PMCID: PMC6697071 DOI: 10.3389/fphar.2019.00884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Drug-induced effects on cardiac contractility can be assessed through the measurement of the maximal rate of pressure increase in the left ventricle (LVdP/dtmax) in conscious animals, and such studies are often conducted at the late stage of preclinical drug development. Detection of such effects earlier in drug research using simpler, in vitro test systems would be a valuable addition to our strategies for identifying the best possible drug development candidates. Thus, testing platforms with reasonably high throughput, and affordable costs would be helpful for early screening purposes. There may also be utility for testing platforms that provide mechanistic information about how a given drug affects cardiac contractility. Finally, there could be in vitro testing platforms that could ultimately contribute to the regulatory safety package of a new drug. The characteristics needed for a successful cell or tissue-based testing platform for cardiac contractility will be dictated by its intended use. In this article, general considerations are presented with the intent of guiding the development of new testing platforms that will find utility in drug research and development. In the following article (part 2), specific aspects of using human-induced stem cell-derived cardiomyocytes for this purpose are addressed.
Collapse
Affiliation(s)
- Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Tanja Zabka
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
24
|
Frank D, Rangrez AY, Friedrich C, Dittmann S, Stallmeyer B, Yadav P, Bernt A, Schulze-Bahr E, Borlepawar A, Zimmermann WH, Peischard S, Seebohm G, Linke WA, Baba HA, Krüger M, Unger A, Usinger P, Frey N, Schulze-Bahr E. Cardiac α-Actin (
ACTC1
) Gene Mutation Causes Atrial-Septal Defects Associated With Late-Onset Dilated Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002491. [DOI: 10.1161/circgen.119.002491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Familial atrial septal defect (ASD) has previously been attributed primarily to mutations in cardiac transcription factors. Here, we report a large, multi-generational family (78 members) with ASD combined with a late-onset dilated cardiomyopathy and further characterize the consequences of mutant α-actin.
Methods:
We combined a genome-wide linkage analysis with cell biology, microscopy, and molecular biology tools to characterize a novel
ACTC1
(cardiac α-actin) mutation identified in association with ASD and late-onset dilated cardiomyopathy in a large, multi-generational family.
Results:
Using a genome-wide linkage analysis, the ASD disease locus was mapped to chromosome 15q14 harboring the
ACTC1
gene. In 15 affected family members, a heterozygous, nonsynonymous, and fully penetrant mutation (p. Gly247Asp) was identified in exon 5 of
ACTC1
that was absent in all healthy family members (n=63). In silico tools predicted deleterious consequences of this variant that was found absent in control databases. Ultrastructural analysis of myocardial tissue of one of the mutation carriers showed sarcomeric disarray, myofibrillar degeneration, and increased apoptosis, while cardiac proteomics revealed a significant increase in extracellular matrix proteins. Consistently, structural defects and increased apoptosis were also observed in neonatal rat ventricular cardiomyocytes overexpressing the mutant, but not native human ACTC1. Molecular dynamics studies and additional mechanistic analyses in cardiomyocytes confirmed actin polymerization/turnover defects, thereby affecting contractility.
Conclusions:
A combined phenotype of ASD and late-onset heart failure was caused by a heterozygous, nonsynonymous ACTC1 mutation. Mechanistically, we found a shared molecular mechanism of defective actin signaling and polymerization in both cardiac development and contractile function. Detection of ACTC1 mutations in patients with ASD may thus have further clinical implications with regard to monitoring for (late-onset) dilated cardiomyopathy.
Collapse
Affiliation(s)
- Derk Frank
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel (D.F., A.Y.R., A. Bernt, A. Borlepawar, P.U., N.F.)
- Co-affiliated with DZHK (German Centre for Cardiovascular Research), sites Hamburg/Kiel/Lübeck and Göttingen, Germany (D.F., A.Y.R., A. Bernt, A. Borlepawar, W.H.-Z., W.A.L., N.F.)
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel (D.F., A.Y.R., A. Bernt, A. Borlepawar, P.U., N.F.)
- Co-affiliated with DZHK (German Centre for Cardiovascular Research), sites Hamburg/Kiel/Lübeck and Göttingen, Germany (D.F., A.Y.R., A. Bernt, A. Borlepawar, W.H.-Z., W.A.L., N.F.)
| | - Corinna Friedrich
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
- Institute for Human Genetics (C.F), University Hospital Münster
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
| | - Pankaj Yadav
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg (P.Y.)
| | - Alexander Bernt
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel (D.F., A.Y.R., A. Bernt, A. Borlepawar, P.U., N.F.)
- Co-affiliated with DZHK (German Centre for Cardiovascular Research), sites Hamburg/Kiel/Lübeck and Göttingen, Germany (D.F., A.Y.R., A. Bernt, A. Borlepawar, W.H.-Z., W.A.L., N.F.)
| | - Ellen Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
| | - Ankush Borlepawar
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel (D.F., A.Y.R., A. Bernt, A. Borlepawar, P.U., N.F.)
- Co-affiliated with DZHK (German Centre for Cardiovascular Research), sites Hamburg/Kiel/Lübeck and Göttingen, Germany (D.F., A.Y.R., A. Bernt, A. Borlepawar, W.H.-Z., W.A.L., N.F.)
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (W.H.-Z.)
- Co-affiliated with DZHK (German Centre for Cardiovascular Research), sites Hamburg/Kiel/Lübeck and Göttingen, Germany (D.F., A.Y.R., A. Bernt, A. Borlepawar, W.H.-Z., W.A.L., N.F.)
| | - Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
| | - Wolfgang A. Linke
- Institute of Physiology II (W.A.L.), University Hospital Münster
- Co-affiliated with DZHK (German Centre for Cardiovascular Research), sites Hamburg/Kiel/Lübeck and Göttingen, Germany (D.F., A.Y.R., A. Bernt, A. Borlepawar, W.H.-Z., W.A.L., N.F.)
| | - Hideo A. Baba
- Institute of Pathology, University of Duisburg-Essen (H.A.B.)
| | - Marcus Krüger
- Center for Molecular Medicine Cologne (CMMC), Proteomics Facility, University of Cologne (M.K.)
| | - Andreas Unger
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
| | - Philip Usinger
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel (D.F., A.Y.R., A. Bernt, A. Borlepawar, P.U., N.F.)
| | - Norbert Frey
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel (D.F., A.Y.R., A. Bernt, A. Borlepawar, P.U., N.F.)
- Co-affiliated with DZHK (German Centre for Cardiovascular Research), sites Hamburg/Kiel/Lübeck and Göttingen, Germany (D.F., A.Y.R., A. Bernt, A. Borlepawar, W.H.-Z., W.A.L., N.F.)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine (C.F., S.D., B.S., Ellen Schulze-Bahr, S.P., G.S., A.U., Eric Schulze-Bahr), University Hospital Münster
| |
Collapse
|
25
|
Yamashiro S, Watanabe N. Quantitative high-precision imaging of myosin-dependent filamentous actin dynamics. J Muscle Res Cell Motil 2019; 41:163-173. [PMID: 31313218 DOI: 10.1007/s10974-019-09541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
26
|
Grimes KM, Prasad V, McNamara JW. Supporting the heart: Functions of the cardiomyocyte's non-sarcomeric cytoskeleton. J Mol Cell Cardiol 2019; 131:187-196. [PMID: 30978342 DOI: 10.1016/j.yjmcc.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The non-contractile cytoskeleton in cardiomyocytes is comprised of cytoplasmic actin, microtubules, and intermediate filaments. In addition to providing mechanical support to these cells, these structures are important effectors of tension-sensing and signal transduction and also provide networks for the transport of proteins and organelles. The majority of our knowledge on the function and structure of these cytoskeletal networks comes from research on proliferative cell types. However, in recent years, researchers have begun to show that there are important cardiomyocyte-specific functions of the cytoskeleton. Here we will discuss the current state of cytoskeletal biology in cardiomyocytes, as well as research from other cell types, that together suggest there is a wealth of knowledge on cardiac health and disease waiting to be uncovered through exploration of the complex signaling networks of cardiomyocyte non-sarcomeric cytoskeletal proteins.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
27
|
Regulation of Actin Dynamics in the C. elegans Somatic Gonad. J Dev Biol 2019; 7:jdb7010006. [PMID: 30897735 PMCID: PMC6473838 DOI: 10.3390/jdb7010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
The reproductive system of the hermaphroditic nematode C. elegans consists of a series of contractile cell types—including the gonadal sheath cells, the spermathecal cells and the spermatheca–uterine valve—that contract in a coordinated manner to regulate oocyte entry and exit of the fertilized embryo into the uterus. Contraction is driven by acto-myosin contraction and relies on the development and maintenance of specialized acto-myosin networks in each cell type. Study of this system has revealed insights into the regulation of acto-myosin network assembly and contractility in vivo.
Collapse
|
28
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|
29
|
Aspit L, Levitas A, Etzion S, Krymko H, Slanovic L, Zarivach R, Etzion Y, Parvari R. CAP2 mutation leads to impaired actin dynamics and associates with supraventricular tachycardia and dilated cardiomyopathy. J Med Genet 2018; 56:228-235. [DOI: 10.1136/jmedgenet-2018-105498] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 11/04/2022]
Abstract
BackgroundDilated cardiomyopathy (DCM) is a primary myocardial disease leading to contractile dysfunction, progressive heart failure and excessive risk of sudden cardiac death. Around half of DCM cases are idiopathic, and genetic factors seem to play an important role.AimWe investigated a possible genetic cause of DCM in two consanguineous children from a Bedouin family.Methods and resultsUsing exome sequencing and searching for rare homozygous variations, we identified a nucleotide change in the donor splice consensus sequence of exon 7 in CAP2 as the causative mutation. Using patient-derived fibroblasts, we demonstrated that the mutation causes skipping of exons 6 and 7. The resulting protein is missing 64 amino acids in its N-CAP domain that should prevent its correct folding. CAP2 protein level was markedly reduced without notable compensation by the homolog CAP1. However, β-actin mRNA was elevated as demonstrated by real-time qPCR. In agreement with the essential role of CAP2 in actin filament polymerization, we demonstrate that the mutation affects the kinetics of repolymerization of actin in patient fibroblasts.ConclusionsThis is the first report of a recessive deleterious mutation in CAP2 and its association with DCM in humans. The clinical phenotype recapitulates the damaging effects on the heart observed in Cap2 knockout mice including DCM and cardiac conduction disease, but not the other effects on growth, viability, wound healing and eye development. Our data underscore the importance of the proper kinetics of actin polymerization for normal function of the human heart.
Collapse
|
30
|
Mkrtschjan MA, Solís C, Wondmagegn AY, Majithia J, Russell B. PKC epsilon signaling effect on actin assembly is diminished in cardiomyocytes when challenged to additional work in a stiff microenvironment. Cytoskeleton (Hoboken) 2018; 75:363-371. [PMID: 30019430 DOI: 10.1002/cm.21472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
Abstract
The stiffness of the microenvironment surrounding a cell can result in cytoskeletal remodeling, leading to altered cell function and tissue macrostructure. In this study, we tuned the stiffness of the underlying substratum on which neonatal rat cardiomyocytes were grown in culture to mimic normal (10 kPa), pathological stiffness of fibrotic myocardium (100 kPa), and a nonphysiological extreme (glass). Cardiomyocytes were then challenged by beta adrenergic stimulation through isoproterenol treatment to investigate the response to acute work demand for cells grown on surfaces of varying stiffness. In particular, the PKCɛ signaling pathway and its role in actin assembly dynamics were examined. Significant changes in contractile metrics were seen on cardiomyocytes grown on different surfaces, but all cells responded to isoproterenol treatment, eventually reaching similar time to peak tension. In contrast, the assembly rate of actin was significantly higher on stiff surfaces, so that only cells grown on soft surfaces were able to respond to acute isoproterenol treatment. Förster Resonance Energy Transfer of immunofluorescence on the cytoskeletal fraction of cardiomyocytes confirmed that the molecular interaction of PKCɛ with the actin capping protein, CapZ, was very low on soft substrata but significantly increased with isoproterenol treatment, or on stiff substrata. Therefore, the stiffness of the culture surface chosen for in vitro experiments might mask the normal signaling and affect the ability to translate basic science more effectively into human therapy.
Collapse
Affiliation(s)
- Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher Solís
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Admasu Y Wondmagegn
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Janki Majithia
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Chatzifrangkeskou M, Yadin D, Marais T, Chardonnet S, Cohen-Tannoudji M, Mougenot N, Schmitt A, Crasto S, Di Pasquale E, Macquart C, Tanguy Y, Jebeniani I, Pucéat M, Morales Rodriguez B, Goldmann WH, Dal Ferro M, Biferi MG, Knaus P, Bonne G, Worman HJ, Muchir A. Cofilin-1 phosphorylation catalyzed by ERK1/2 alters cardiac actin dynamics in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 2018; 27:3060-3078. [PMID: 29878125 PMCID: PMC6097156 DOI: 10.1093/hmg/ddy215] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - David Yadin
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thibaut Marais
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, UPMC Paris 06, INSERM, UMS29 Omique, F-75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM, UMS28 Phénotypage du Petit Animal, Paris F-75013, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Silvia Crasto
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Elisa Di Pasquale
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Coline Macquart
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Yannick Tanguy
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Imen Jebeniani
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Michel Pucéat
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Wolfgang H Goldmann
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Matteo Dal Ferro
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Maria-Grazia Biferi
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Howard J Worman
- Department of Medicine
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
32
|
Interaction between cardiac myosin-binding protein C and formin Fhod3. Proc Natl Acad Sci U S A 2018; 115:E4386-E4395. [PMID: 29686099 DOI: 10.1073/pnas.1716498115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.
Collapse
|
33
|
Zhang C, Wang W, He W, Xi N, Wang Y, Liu L. Dynamic Model for Characterizing Contractile Behaviors and Mechanical Properties of a Cardiomyocyte. Biophys J 2018; 114:188-200. [PMID: 29320686 PMCID: PMC5773758 DOI: 10.1016/j.bpj.2017.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023] Open
Abstract
Studies on the contractile dynamics of heart cells have attracted broad attention for the development of both heart disease therapies and cardiomyocyte-actuated micro-robotics. In this study, a linear dynamic model of a single cardiomyocyte cell was proposed at the subcellular scale to characterize the contractile behaviors of heart cells, with system parameters representing the mechanical properties of the subcellular components of living cardiomyocytes. The system parameters of the dynamic model were identified with the cellular beating pattern measured by a scanning ion conductance microscope. The experiments were implemented with cardiomyocytes in one control group and two experimental groups with the drugs cytochalasin-D or nocodazole, to identify the system parameters of the model based on scanning ion conductance microscope measurements, measurement of the cellular Young's modulus with atomic force microscopy indentation, measurement of cellular contraction forces using the micro-pillar technique, and immunofluorescence staining and imaging of the cytoskeleton. The proposed mathematical model was both indirectly and qualitatively verified by the variation in cytoskeleton, beating amplitude, and contractility of cardiomyocytes among the control and the experimental groups, as well as directly and quantitatively validated by the simulation and the significant consistency of 90.5% in the comparison between the ratios of the Young's modulus and the equivalent comprehensive cellular elasticities of cells in the experimental groups to those in the control group. Apart from mechanical properties (mass, elasticity, and viscosity) of subcellular structures, other properties of cardiomyocytes have also been studied, such as the properties of the relative action potential pattern and cellular beating frequency. This work has potential implications for research on cytobiology, drug screening, mechanisms of the heart, and cardiomyocyte-based bio-syncretic robotics.
Collapse
Affiliation(s)
- Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.
| | - Wenhui He
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Xi
- Emerging Technologies Institute, Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong Pokfulam, Pokfulam, Hong Kong
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.
| |
Collapse
|
34
|
Ushijima T, Fujimoto N, Matsuyama S, Kan-O M, Kiyonari H, Shioi G, Kage Y, Yamasaki S, Takeya R, Sumimoto H. The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice. J Biol Chem 2017; 293:148-162. [PMID: 29158260 DOI: 10.1074/jbc.m117.813931] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/16/2017] [Indexed: 01/22/2023] Open
Abstract
Cardiac development and function require actin-myosin interactions in the sarcomere, a highly organized contractile structure. Sarcomere assembly mediated by formin homology 2 domain-containing 3 (Fhod3), a member of formins that directs formation of straight actin filaments, is essential for embryonic cardiogenesis. However, the role of Fhod3 in the neonatal and adult stages has remained unknown. Here, we generated floxed Fhod3 mice to bypass the embryonic lethality of an Fhod3 knockout (KO). Perinatal KO of Fhod3 in the heart caused juvenile lethality at around day 10 after birth with enlarged hearts composed of severely impaired myofibrils, indicating that Fhod3 is crucial for postnatal heart development. Tamoxifen-induced conditional KO of Fhod3 in the adult heart neither led to lethal effects nor did it affect sarcomere structure and localization of sarcomere components. However, adult Fhod3-deleted mice exhibited a slight cardiomegaly and mild impairment of cardiac function, conditions that were sustained over 1 year without compensation during aging. In addition to these age-related changes, systemic stimulation with the α1-adrenergic receptor agonist phenylephrine, which induces sustained hypertension and hypertrophy development, induced expression of fetal cardiac genes that was more pronounced in adult Fhod3-deleted mice than in the control mice, suggesting that Fhod3 modulates hypertrophic changes in the adult heart. We conclude that Fhod3 plays a crucial role in both postnatal cardiac development and functional maintenance of the adult heart.
Collapse
Affiliation(s)
- Tomoki Ushijima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Noriko Fujimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Sho Matsuyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Meikun Kan-O
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Kobe 650-0047; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Yohko Kage
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryu Takeya
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692.
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582.
| |
Collapse
|
35
|
Wang L, Wu Y, Hu T, Guo B, Ma PX. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomater 2017; 59:68-81. [PMID: 28663141 DOI: 10.1016/j.actbio.2017.06.036] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/25/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022]
Abstract
Mimicking the nanofibrous structure similar to extracellular matrix and conductivity for electrical propagation of native myocardium would be highly beneficial for cardiac tissue engineering and cardiomyocytes-based bioactuators. Herein, we developed conductive nanofibrous sheets with electrical conductivity and nanofibrous structure composed of poly(l-lactic acid) (PLA) blending with polyaniline (PANI) for cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Incorporating of varying contents of PANI from 0wt% to 3wt% into the PLA polymer, the electrospun nanofibrous sheets showed enhanced conductivity while maintaining the same fiber diameter. These PLA/PANI conductive nanofibrous sheets exhibited good cell viability and promoting effect on differentiation of H9c2 cardiomyoblasts in terms of maturation index and fusion index. Moreover, PLA/PANI nanofibrous sheets enhanced the cell-cell interaction, maturation and spontaneous beating of primary cardiomyocytes. Furthermore, the cardiomyocytes-laden PLA/PANI conductive nanofibrous sheets can form 3D bioactuators with tubular and folding shapes, and spontaneously beat with much higher frequency and displacement than that on cardiomyocytes-laden PLA nanofibrous sheets. Therefore, these PLA/PANI conductive nanofibrous sheets with conductivity and extracellular matrix like nanostructure demonstrated promising potential in cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. STATEMENT OF SIGNIFICANCE Cardiomyocytes-based bioactuators have been paid more attention due to their spontaneous motion by integrating cardiomyocytes into polymer structures, but developing suitable scaffolds for bioactuators remains challenging. Electrospun nanofibrous scaffolds have been widely used in cardiac tissue engineering because they can mimic the extracellular matrix of myocardium. Developing conductive nanofibrous scaffolds by electrospinning would be beneficial for cardiomyocytes-based bioactuators, but such scaffolds have been rarely reported. This work presented a conductive nanofibrous sheet based on polylactide and polyaniline via electrospinning with tunable conductivity. These conductive nanofibrous sheets performed the ability to enhance cardiomyocytes maturation and spontaneous beating, and further formed cardiomyocytes-based 3D bioactuators with tubular and folding shapes, which indicated their great potential in cardiac tissue engineering and bioactuators applications.
Collapse
|
36
|
Fowler VM, Dominguez R. Tropomodulins and Leiomodins: Actin Pointed End Caps and Nucleators in Muscles. Biophys J 2017; 112:1742-1760. [PMID: 28494946 DOI: 10.1016/j.bpj.2017.03.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022] Open
Abstract
Cytoskeletal structures characterized by actin filaments with uniform lengths, including the thin filaments of striated muscles and the spectrin-based membrane skeleton, use barbed and pointed-end capping proteins to control subunit addition/dissociation at filament ends. While several proteins cap the barbed end, tropomodulins (Tmods), a family of four closely related isoforms in vertebrates, are the only proteins known to specifically cap the pointed end. Tmods are ∼350 amino acids in length, and comprise alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, and ABS2). Leiomodins (Lmods) are related in sequence to Tmods, but display important differences, including most notably the lack of TMBS2 and the presence of a C-terminal extension featuring a proline-rich domain and an actin-binding WASP-Homology 2 domain. The Lmod subfamily comprises three somewhat divergent isoforms expressed predominantly in muscle cells. Biochemically, Lmods differ from Tmods, acting as powerful nucleators of actin polymerization, not capping proteins. Structurally, Lmods and Tmods display crucial differences that correlate well with their different biochemical activities. Physiologically, loss of Lmods in striated muscle results in cardiomyopathy or nemaline myopathy, whereas complete loss of Tmods leads to failure of myofibril assembly and developmental defects. Yet, interpretation of some of the in vivo data has led to the idea that Tmods and Lmods are interchangeable or, at best, different variants of two subfamilies of pointed-end capping proteins. Here, we review and contrast the existing literature on Tmods and Lmods, and propose a model of Lmod function that attempts to reconcile the in vitro and in vivo data, whereby Lmods nucleate actin filaments that are subsequently capped by Tmods during sarcomere assembly, turnover, and repair.
Collapse
Affiliation(s)
- Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Stretch-induced actomyosin contraction in epithelial tubes: Mechanotransduction pathways for tubular homeostasis. Semin Cell Dev Biol 2017; 71:146-152. [PMID: 28610943 DOI: 10.1016/j.semcdb.2017.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
Abstract
Many tissues in our body have a tubular shape and are constantly exposed to various stresses. Luminal pressure imposes tension on the epithelial and myoepithelial or smooth muscle cells surrounding the lumen of the tubes. Contractile forces generated by actomyosin assemblies within these cells oppose the luminal pressure and must be calibrated to maintain tube diameter homeostasis and tissue integrity. In this review, we discuss mechanotransduction pathways that can lead from sensation of cell stretch to activation of actomyosin contractility, providing rapid mechanochemical feedback for proper tubular tissue function.
Collapse
|
38
|
Hissa B, Oakes PW, Pontes B, Ramírez-San Juan G, Gardel ML. Cholesterol depletion impairs contractile machinery in neonatal rat cardiomyocytes. Sci Rep 2017; 7:43764. [PMID: 28256617 PMCID: PMC5335656 DOI: 10.1038/srep43764] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Cholesterol regulates numerous cellular processes. Depleting its synthesis in skeletal myofibers induces vacuolization and contraction impairment. However, little is known about how cholesterol reduction affects cardiomyocyte behavior. Here, we deplete cholesterol by incubating neonatal cardiomyocytes with methyl-beta-cyclodextrin. Traction force microscopy shows that lowering cholesterol increases the rate of cell contraction and generates defects in cell relaxation. Cholesterol depletion also increases membrane tension, Ca2+ spikes frequency and intracellular Ca2+ concentration. These changes can be correlated with modifications in caveolin-3 and L-Type Ca2+ channel distributions across the sarcolemma. Channel regulation is also compromised since cAMP-dependent PKA activity is enhanced, increasing the probability of L-Type Ca2+ channel opening events. Immunofluorescence reveals that cholesterol depletion abrogates sarcomeric organization, changing spacing and alignment of α-actinin bands due to increase in proteolytic activity of calpain. We propose a mechanism in which cholesterol depletion triggers a signaling cascade, culminating with contraction impairment and myofibril disruption in cardiomyocytes.
Collapse
Affiliation(s)
- Barbara Hissa
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Patrick W. Oakes
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guillermina Ramírez-San Juan
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Margaret L. Gardel
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This article discusses recent advances and unsolved questions in our understanding of actin filament organization and dynamics in the red blood cell (RBC) membrane skeleton, a two-dimensional quasi-hexagonal network consisting of (α1β1)2-spectrin tetramers interconnecting short actin filament-based junctional complexes. RECENT FINDINGS In contrast to the long-held view that RBC actin filaments are static structures that do not exchange subunits with the cytosol, RBC actin filaments are dynamic structures that undergo subunit exchange and turnover, as evidenced by monomer incorporation experiments with rhodamine-actin and filament disruption experiments with actin-targeting drugs. The malaria-causing parasite, Plasmodium falciparum, co-opts RBC actin dynamics to construct aberrantly branched actin filament networks. Even though RBC actin filaments are dynamic, RBC actin filament lengths are highly uniform (∼37 nm). RBC actin filament lengths are thought to be stabilized by the capping proteins, tropomodulin-1 and αβ-adducin, as well as the side-binding protein tropomyosin, present in an equimolar combination of two isoforms, TM5b (Tpm1.9) and TM5NM1 (Tpm3.1). SUMMARY New evidence indicates that RBC actin filaments are not simply passive cytolinkers, but rather dynamic structures whose assembly and disassembly play important roles in RBC membrane function.
Collapse
|
40
|
Auld AL, Folker ES. Nucleus-dependent sarcomere assembly is mediated by the LINC complex. Mol Biol Cell 2016; 27:2351-9. [PMID: 27307582 PMCID: PMC4966977 DOI: 10.1091/mbc.e16-01-0021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022] Open
Abstract
Two defining characteristics of muscle cells are the many precisely positioned nuclei and the linearly arranged sarcomeres, yet the relationship between these two features is not known. We show that nuclear positioning precedes sarcomere formation. Furthermore, ZASP-GFP, a Z-line protein, colocalizes with F-actin in puncta at the cytoplasmic face of nuclei before sarcomere assembly. In embryos with mispositioned nuclei, ZASP-GFP is still recruited to the nuclei before its incorporation into sarcomeres. Furthermore, the first sarcomeres appear in positions close to the nuclei, regardless of nuclear position. These data suggest that the interaction between sarcomere proteins and nuclei is not dependent on properly positioned nuclei. Mechanistically, ZASP-GFP localization to the cytoplasmic face of the nucleus did require the linker of nucleoskeleton and cytoskeleton (LINC) complex. Muscle-specific depletion of klarsicht (nesprin) or klariod (SUN) blocked the recruitment of ZASP-GFP to the nucleus during the early stages of sarcomere assembly. As a result, sarcomeres were poorly formed and the general myofibril network was less stable, incomplete, and/or torn. These data suggest that the nucleus, through the LINC complex, is crucial for the proper assembly and stability of the sarcomere network.
Collapse
Affiliation(s)
| | - Eric S Folker
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
41
|
Leber Y, Ruparelia AA, Kirfel G, van der Ven PFM, Hoffmann B, Merkel R, Bryson-Richardson RJ, Fürst DO. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum Mol Genet 2016; 25:2776-2788. [PMID: 27206985 DOI: 10.1093/hmg/ddw135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/12/2022] Open
Abstract
Filamin c (FLNc) is a large dimeric actin-binding protein located at premyofibrils, myofibrillar Z-discs and myofibrillar attachment sites of striated muscle cells, where it is involved in mechanical stabilization, mechanosensation and intracellular signaling. Mutations in the gene encoding FLNc give rise to skeletal muscle diseases and cardiomyopathies. Here, we demonstrate by fluorescence recovery after photobleaching that a large fraction of FLNc is highly mobile in cultured neonatal mouse cardiomyocytes and in cardiac and skeletal muscles of live transgenic zebrafish embryos. Analysis of cardiomyocytes from Xirp1 and Xirp2 deficient animals indicates that both Xin actin-binding repeat-containing proteins stabilize FLNc selectively in premyofibrils. Using a novel assay to analyze myofibrillar microdamage and subsequent repair in cultured contracting cardiomyocytes by live cell imaging, we demonstrate that repair of damaged myofibrils is achieved within only 4 h, even in the absence of de novo protein synthesis. FLNc is immediately recruited to these sarcomeric lesions together with its binding partner aciculin and precedes detectable assembly of filamentous actin and recruitment of other myofibrillar proteins. These data disclose an unprecedented degree of flexibility of the almost crystalline contractile machinery and imply FLNc as a dynamic signaling hub, rather than a primarily structural protein. Our myofibrillar damage/repair model illustrates how (cardio)myocytes are kept functional in their mechanically and metabolically strained environment. Our results help to better understand the pathomechanisms and pathophysiology of early stages of FLNc-related myofibrillar myopathy and skeletal and cardiac diseases preceding pathological protein aggregation.
Collapse
Affiliation(s)
- Yvonne Leber
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Avnika A Ruparelia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Gregor Kirfel
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Bernd Hoffmann
- Department of Biomechanics (ICS-7), Institute of Complex Systems, Forschungszentrum Jülich, D52428 Jülich, Germany and
| | - Rudolf Merkel
- Department of Biomechanics (ICS-7), Institute of Complex Systems, Forschungszentrum Jülich, D52428 Jülich, Germany and.,Department of Biomechanics, Institute for Physical and Theoretical Chemistry, University of Bonn, D53115 Bonn, Germany
| | | | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| |
Collapse
|
42
|
Steffen A, Stradal TEB, Rottner K. Signalling Pathways Controlling Cellular Actin Organization. Handb Exp Pharmacol 2016; 235:153-178. [PMID: 27757765 DOI: 10.1007/164_2016_35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|
43
|
Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality. Proc Natl Acad Sci U S A 2015; 112:13573-8. [PMID: 26487682 DOI: 10.1073/pnas.1508273112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.
Collapse
|
44
|
How Leiomodin and Tropomodulin use a common fold for different actin assembly functions. Nat Commun 2015; 6:8314. [PMID: 26370058 PMCID: PMC4571291 DOI: 10.1038/ncomms9314] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/07/2015] [Indexed: 11/08/2022] Open
Abstract
How proteins sharing a common fold have evolved different functions is a fundamental question in biology. Tropomodulins (Tmods) are prototypical actin filament pointed-end-capping proteins, whereas their homologues, Leiomodins (Lmods), are powerful filament nucleators. We show that Tmods and Lmods do not compete biochemically, and display similar but distinct localization in sarcomeres. Changes along the polypeptide chains of Tmods and Lmods exquisitely adapt their functions for capping versus nucleation. Tmods have alternating tropomyosin (TM)- and actin-binding sites (TMBS1, ABS1, TMBS2 and ABS2). Lmods additionally contain a C-terminal extension featuring an actin-binding WH2 domain. Unexpectedly, the different activities of Tmods and Lmods do not arise from the Lmod-specific extension. Instead, nucleation by Lmods depends on two major adaptations-the loss of pointed-end-capping elements present in Tmods and the specialization of the highly conserved ABS2 for recruitment of two or more actin subunits. The WH2 domain plays only an auxiliary role in nucleation.
Collapse
|
45
|
Espulgar W, Aoki W, Ikeuchi T, Mita D, Saito M, Lee JK, Tamiya E. Centrifugal microfluidic platform for single-cell level cardiomyocyte-based drug profiling and screening. LAB ON A CHIP 2015. [PMID: 26215661 DOI: 10.1039/c5lc00652j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Drug screening and profiling is an important phase in drug discovery, development, and marketing. However, some profiling tests are not routinely done because of the needed additional technical skills and costly maintenance, which leads to cases of unexpected side effects or adverse drug reactions (ADRs). This study presents the design and operation of a microfluidic chip for single-cell level drug screening and profiling as an alternative platform for this purpose. Centrifugation was utilized to trap isolated single and groups of primary cultured neonatal rat cardiomyocytes in the same chip. In the off-spin operation of the chip, the cells can be observed under a microscope and movies of the beat motion can be recorded. The beat profiles of the cells were generated by image correlation analysis of the recorded video to study the contractile characteristics (beating rate, beating strength, and inter-beat duration). By utilizing this non-invasive tool, long term continuous monitoring, right after trapping, was made possible and cell growth and dynamics were successfully observed in the chip. Media and liquid replacement does not require further centrifugation but instead utilizes capillary flow only. The effect of carbachol (100 μM) and isoproterenol (4 μg mL(-1)) on single cells and groups of cells was demonstrated and the feature for immunostaining (β-actin) applicability of the chip was revealed. Furthermore, these findings can be helpful for the headway of non-invasive profiling of cardiomyocytes and for future chip design and operation of high-throughput lab-on-a-chip devices.
Collapse
Affiliation(s)
- W Espulgar
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Liu CY, Matsusaki M, Akashi M. Control of Cell–Cell Distance and Cell Densities in Millimeter-Sized 3D Tissues Constructed by Collagen Nanofiber Coating Techniques. ACS Biomater Sci Eng 2015; 1:639-645. [DOI: 10.1021/acsbiomaterials.5b00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chun-Yen Liu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin. Proc Natl Acad Sci U S A 2015; 112:E4168-77. [PMID: 26153420 DOI: 10.1073/pnas.1507587112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region. Both aspects of R258C function therefore need investigation. Total internal reflection fluorescence (TIRF) microscopy was used to quantify the growth of single actin filaments as a function of time. R258C filaments are less stable than WT and more susceptible to severing by cofilin. Smooth muscle tropomyosin offers little protection from cofilin cleavage, unlike its effect on WT actin. Unexpectedly, profilin binds tighter to the R258C monomer, which will increase the pool of globular actin (G-actin). In an in vitro motility assay, smooth muscle myosin moves R258C filaments more slowly than WT, and the slowing is exacerbated by smooth muscle tropomyosin. Under loaded conditions, small ensembles of myosin are unable to produce force on R258C actin-tropomyosin filaments, suggesting that tropomyosin occupies an inhibitory position on actin. Many of the observed defects cannot be explained by a direct interaction with the mutated residue, and thus the mutation allosterically affects multiple regions of the monomer. Our results align with the hypothesis that defective contractile function contributes to the pathogenesis of TAAD.
Collapse
|
48
|
Geach TJ, Hirst EMA, Zimmerman LB. Contractile activity is required for Z-disc sarcomere maturation in vivo. Genesis 2015; 53:299-307. [PMID: 25845369 PMCID: PMC4676352 DOI: 10.1002/dvg.22851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 01/16/2023]
Abstract
Sarcomere structure underpins structural integrity, signaling, and force transmission in the muscle. In embryos of the frog Xenopus tropicalis, muscle contraction begins even while sarcomerogenesis is ongoing. To determine whether contractile activity plays a role in sarcomere formation in vivo, chemical tools were used to block acto-myosin contraction in embryos of the frog X. tropicalis, and Z-disc assembly was characterized in the paralyzed dicky ticker mutant. Confocal and ultrastructure analysis of paralyzed embryos showed delayed Z-disc formation and defects in thick filament organization. These results suggest a previously undescribed role for contractility in sarcomere maturation in vivo. genesis 53:299–307, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy J Geach
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Elizabeth M A Hirst
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Lyle B Zimmerman
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| |
Collapse
|
49
|
Subramanian K, Gianni D, Balla C, Assenza GE, Joshi M, Semigran MJ, Macgillivray TE, Van Eyk JE, Agnetti G, Paolocci N, Bamburg JR, Agrawal PB, Del Monte F. Cofilin-2 phosphorylation and sequestration in myocardial aggregates: novel pathogenetic mechanisms for idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2015; 65:1199-1214. [PMID: 25814227 PMCID: PMC4379451 DOI: 10.1016/j.jacc.2015.01.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recently, tangles and plaque-like aggregates have been identified in certain cases of dilated cardiomyopathy (DCM), traditionally labeled idiopathic (iDCM), where there is no specific diagnostic test or targeted therapy. This suggests a potential underlying cause for some of the iDCM cases. [Corrected] OBJECTIVES This study sought to identify the make-up of myocardial aggregates to understand the molecular mechanisms of these cases of DCM; this strategy has been central to understanding Alzheimer's disease. METHODS Aggregates were extracted from human iDCM samples with high congophilic reactivity (an indication of plaque presence), and the findings were validated in a larger cohort of samples. We tested the expression, distribution, and activity of cofilin in human tissue and generated a cardiac-specific knockout mouse model to investigate the functional impact of the human findings. We also modeled cofilin inactivity in vitro by using pharmacological and genetic gain- and loss-of-function approaches. RESULTS Aggregates in human myocardium were enriched for cofilin-2, an actin-depolymerizing protein known to participate in neurodegenerative diseases and nemaline myopathy. Cofilin-2 was predominantly phosphorylated, rendering it inactive. Cardiac-specific haploinsufficiency of cofilin-2 in mice recapitulated the human disease's morphological, functional, and structural phenotype. Pharmacological stimulation of cofilin-2 phosphorylation and genetic overexpression of the phosphomimetic protein promoted the accumulation of "stress-like" fibers and severely impaired cardiomyocyte contractility. CONCLUSIONS Our study provides the first biochemical characterization of prefibrillar myocardial aggregates in humans and the first report to link cofilin-2 to cardiomyopathy. The findings suggest a common pathogenetic mechanism connecting certain iDCMs and other chronic degenerative diseases, laying the groundwork for new therapeutic strategies.
Collapse
Affiliation(s)
- Khaushik Subramanian
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Davide Gianni
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Cristina Balla
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Cardiology, Sapienza University, Rome, Italy
| | | | - Mugdha Joshi
- Divisions of Newborn Medicine and Genetics and Program in Genomics, Children's Hospital, Boston, Massachusetts
| | - Marc J Semigran
- Heart Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Jennifer E Van Eyk
- National Heart Lung Blood Institute Proteomics Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Giulio Agnetti
- National Heart Lung Blood Institute Proteomics Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Nazareno Paolocci
- Heart and Vascular Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics and Program in Genomics, Children's Hospital, Boston, Massachusetts
| | - Federica Del Monte
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Heart Center, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
50
|
Gokhin DS, Nowak RB, Khoory JA, Piedra ADL, Ghiran IC, Fowler VM. Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane. Mol Biol Cell 2015; 26:1699-710. [PMID: 25717184 PMCID: PMC4436781 DOI: 10.1091/mbc.e14-12-1583] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/17/2015] [Indexed: 11/11/2022] Open
Abstract
The short actin filaments in the spectrin-actin membrane skeleton of human red blood cells (RBCs) are capable of dynamic subunit exchange and mobility. Actin dynamics in RBCs regulates the biomechanical properties of the RBC membrane. Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Roberta B Nowak
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Joseph A Khoory
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | | | - Ionita C Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|