1
|
Tan CH, Cheng KW, Park H, Chou TF, Sternberg PW. LINKIN-associated proteins necessary for tissue integrity during collective cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527750. [PMID: 36798316 PMCID: PMC9934607 DOI: 10.1101/2023.02.08.527750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell adhesion plays essential roles in almost every aspect of metazoan biology. LINKIN (Human: ITFG1, Caenorhabditis elegans: lnkn-1) is a conserved transmembrane protein that has been identified to be necessary for tissue integrity during migration. In C. elegans, loss of lnkn-1 results in the detachment of the lead migratory cell from the rest of the developing male gonad. Previously, three interactors of ITFG1/lnkn-1 - RUVBL1/ruvb-1, RUVBL2/ruvb-2, and alpha-tubulin - were identified by immunoprecipitation-mass spectrometry (IP-MS) analysis using human HEK293T cells and then validated in the nematode male gonad. The ITFG1-RUVBL1 interaction has since been independently validated in a breast cancer cell line model that also implicates the involvement of the pair in metastasis. Here, we showed that epitope-tagged ITFG1 localized to the cell surface of MDA-MB-231 breast cancer cells. Using IP-MS analysis, we identified a new list of potential interactors of ITFG1. Loss-of-function analysis of their C. elegans orthologs found that three of the interactors - ATP9A/tat-5, NME1/ndk-1, and ANAPC2/apc-2 - displayed migratory detachment phenotypes similar to that of lnkn-1. Taken together with the other genes whose reduction-of-function phenotype is similar to that of lnkn-1 (notably cohesion and condensin), suggests the involvement of membrane remodeling and chromosome biology in LINKIN-dependent cell adhesion and supports the hypothesis for a structural role of chromosomes in post-mitotic cells.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology
| |
Collapse
|
2
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Gandhi J, Crosio G, Fernandez AG. Dynein and MEL-28 contribute in parallel to oogenic maturity in C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000421. [PMID: 34337353 PMCID: PMC8319736 DOI: 10.17912/micropub.biology.000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022]
Abstract
dhc-1(or283ts); mel-28(t1684) double mutants have a severely reduced brood size compared to the wild-type and compared to each single mutant. To determine if this low-fecundity phenotype is associated with oocyte maturity defects, we used markers to assess the maturity of oocytes in the proximal gonad. We studied phosphorylated histone H3, a marker normally associated with mature oocytes, and DAO-5, a nucleolar marker normally associated with immature oocytes. We found that in the double mutants, the oocyte occupying the -1 position frequently retains DAO-5 and fails to accumulate phosphorylated histone H3. This suggests that the simultaneous disruption of dynein and MEL-28 can lead to failure of the oocyte maturity program.
Collapse
Affiliation(s)
- Jay Gandhi
- Department of Biology, Fairfield University, 1073 N. Benson Rd., Fairfield, CT USA
| | - Giulia Crosio
- Department of Biology, Fairfield University, 1073 N. Benson Rd., Fairfield, CT USA
| | - Anita G. Fernandez
- Department of Biology, Fairfield University, 1073 N. Benson Rd., Fairfield, CT USA,
Correspondence to: Anita G. Fernandez ()
| |
Collapse
|
4
|
Developmental Control of the Cell Cycle: Insights from Caenorhabditis elegans. Genetics 2019; 211:797-829. [PMID: 30846544 PMCID: PMC6404260 DOI: 10.1534/genetics.118.301643] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
During animal development, a single fertilized egg forms a complete organism with tens to trillions of cells that encompass a large variety of cell types. Cell cycle regulation is therefore at the center of development and needs to be carried out in close coordination with cell differentiation, migration, and death, as well as tissue formation, morphogenesis, and homeostasis. The timing and frequency of cell divisions are controlled by complex combinations of external and cell-intrinsic signals that vary throughout development. Insight into how such controls determine in vivo cell division patterns has come from studies in various genetic model systems. The nematode Caenorhabditis elegans has only about 1000 somatic cells and approximately twice as many germ cells in the adult hermaphrodite. Despite the relatively small number of cells, C. elegans has diverse tissues, including intestine, nerves, striated and smooth muscle, and skin. C. elegans is unique as a model organism for studies of the cell cycle because the somatic cell lineage is invariant. Somatic cells divide at set times during development to produce daughter cells that adopt reproducible developmental fates. Studies in C. elegans have allowed the identification of conserved cell cycle regulators and provided insights into how cell cycle regulation varies between tissues. In this review, we focus on the regulation of the cell cycle in the context of C. elegans development, with reference to other systems, with the goal of better understanding how cell cycle regulation is linked to animal development in general.
Collapse
|
5
|
Yoon S, Kawasaki I, Shim YH. The B-type cyclin CYB-1 maintains the proper position and number of centrosomes during spermatogenesis in Caenorhabditis elegans. J Cell Sci 2017; 130:2722-2735. [PMID: 28705837 DOI: 10.1242/jcs.204578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/06/2017] [Indexed: 01/22/2023] Open
Abstract
Depletion of cyb-1, a major B-type cyclin expressed during Caenorhabditis elegans spermatogenesis, causes a meiotic division arrest in diakinesis-stage spermatocytes with multiple and mispositioned centrosomes. Association of the two nuclear membrane proteins SUN-1 and ZYG-12 is essential for centrosome-nuclear envelope attachment. We found that depletion of sun-1 causes centrosome defects similar to those caused by cyb-1 depletion in diakinesis-stage spermatocytes. In addition, Ser8 and Ser43 residues in SUN-1 are dephosphorylated in cyb-1-depleted diakinesis-stage spermatocytes. Nevertheless, dephosphorylation of these residues was not sufficient to reproduce the cyb-1-related centrosome defects. We then found that the ZYG-12::GFP signal in the nuclear envelope was significantly reduced in the cyb-1-depleted diakinesis-stage spermatocytes. However, only mispositioned but not multiplied centrosomes were observed in zyg-12 mutant diakinesis-stage spermatocytes, suggesting that zyg-12 is not involved in the centrosome duplication at this stage. Our results suggest that CYB-1 functions to maintain proper positioning of centrosomes during spermatogenesis by regulating phosphorylation of SUN-1, which is possibly crucial for the association between SUN-1 and ZYG-12. This phosphorylation of SUN-1 may also regulate centrosome duplication independently of ZYG-12.
Collapse
Affiliation(s)
- Sunghee Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Wei H, Yan B, Gagneur J, Conradt B. Caenorhabditis elegans CES-1 Snail Represses pig-1 MELK Expression To Control Asymmetric Cell Division. Genetics 2017; 206:2069-2084. [PMID: 28652378 PMCID: PMC5560807 DOI: 10.1534/genetics.117.202754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
Snail-like transcription factors affect stem cell function through mechanisms that are incompletely understood. In the Caenorhabditis elegans neurosecretory motor neuron (NSM) neuroblast lineage, CES-1 Snail coordinates cell cycle progression and cell polarity to ensure the asymmetric division of the NSM neuroblast and the generation of two daughter cells of different sizes and fates. We have previously shown that CES-1 Snail controls cell cycle progression by repressing the expression of cdc-25.2 CDC25. However, the mechanism through which CES-1 Snail affects cell polarity has been elusive. Here, we systematically searched for direct targets of CES-1 Snail by genome-wide profiling of CES-1 Snail binding sites and identified >3000 potential CES-1 Snail target genes, including pig-1, the ortholog of the oncogene maternal embryonic leucine zipper kinase (MELK). Furthermore, we show that CES-1 Snail represses pig-1 MELK transcription in the NSM neuroblast lineage and that pig-1 MELK acts downstream of ces-1 Snail to cause the NSM neuroblast to divide asymmetrically by size and along the correct cell division axis. Based on our results we propose that by regulating the expression of the MELK gene, Snail-like transcription factors affect the ability of stem cells to divide asymmetrically and, hence, to self-renew. Furthermore, we speculate that the deregulation of MELK contributes to tumorigenesis by causing cells that normally divide asymmetrically to divide symmetrically instead.
Collapse
Affiliation(s)
- Hai Wei
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Bo Yan
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Julien Gagneur
- Gene Center Munich, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Barbara Conradt
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Sung M, Kawasaki I, Shim YH. Depletion of cdc-25.3, a Caenorhabditis elegans orthologue of cdc25, increases physiological germline apoptosis. FEBS Lett 2017. [PMID: 28627101 DOI: 10.1002/1873-3468.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In Caenorhabditis elegans hermaphrodites, physiological germline apoptosis is higher in cdc-25.3 mutants than in wild-type. The elevated germline apoptosis in cdc-25.3 mutants seems to be induced by accumulation of double-stranded DNA breaks (DSBs). Both DNA damage and synapsis checkpoint genes are required to increase the germline apoptosis. Notably, the number of germ cells that lose P-granule components, PGL-1 and PGL-3, increase in cdc-25.3 mutants, and the increase in germline apoptosis requires the activity of SIR-2.1, a Sirtuin orthologue. These results suggest that elevation of germline apoptosis in cdc-25.3 mutants is induced by accumulation of DSBs, leading to a loss of PGL-1 and PGL-3 in germ cells, which promotes cytoplasmic translocation of SIR-2.1, and finally activates the core apoptotic machinery.
Collapse
Affiliation(s)
- Minhee Sung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
8
|
Ruan Q, Xu Y, Xu R, Wang J, Hua Y, Wang M, Duan J. The Adverse Effects of Triptolide on the Reproductive System of Caenorhabditis elegans: Oogenesis Impairment and Decreased Oocyte Quality. Int J Mol Sci 2017; 18:E464. [PMID: 28230788 PMCID: PMC5343997 DOI: 10.3390/ijms18020464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have revealed that Triptolide damages female reproductive capacity, but the mechanism is unclear. In this study, we used Caenorhabditis elegans to investigate the effects of Triptolide on the germline and explore its possible mechanisms. Our data show that exposure for 4 h to 50 and 100 mg/L Triptolide reduced C. elegans fertility, led to depletion and inactivation of spermatids with the changes in the expression levels of related genes, and increased the number of unfertilized oocytes through damaging chromosomes and DNA damage repair mechanisms. After 24 and 48 h of the 4 h exposure to 50 and 100 mg/L Triptolide, we observed shrink in distal tip cells, an increase in the number of apoptotic cells, a decrease in the number of mitotic germ cells and oocytes in diakinesis stage, and chromatin aggregates in -1 oocytes. Moreover, expression patterns of the genes associated with mitotic germ cell proliferation, apoptosis, and oocyte quality were altered after Triptolide exposure. Therefore, Triptolide may damage fertility of nematodes by hampering the development of oocytes at different developmental stages. Alterations in the expression patterns of genes involved in oocyte development may explain the corresponding changes in oocyte development in nematodes exposed to Triptolide.
Collapse
Affiliation(s)
- Qinli Ruan
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yun Xu
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Rui Xu
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jiaying Wang
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Meng Wang
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Oh S, Yoon S, Youn E, Kawasaki I, Shim YH. cdc-25.2, a Caenorhabditis elegans ortholog of cdc25, is required for male tail morphogenesis. Biochem Biophys Res Commun 2017; 482:1213-1218. [PMID: 27923661 DOI: 10.1016/j.bbrc.2016.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/02/2016] [Indexed: 01/25/2023]
Abstract
Cell division cycle 25 (Cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression by activating cyclin-dependent kinases (Cdks) which are inactivated by Wee1/Myt1 kinases. It was previously reported that cdc-25.2 promotes oocyte maturation and intestinal cell divisions in Caenorhabditis elegans hermaphrodites. Here, we report a novel function of cdc-25.2 in male tail development which was significantly deformed by cdc-25.2 RNAi depletion and in cdc-25.2 mutant males. The deformation was also observed after RNAi depletion of other cell cycle regulators, cdk-1, cyb-3, cyd-1, and cyl-1. Furthermore, wee-1.3 counteracted cdc-25.2 in male tail development as observed in oocyte maturation and intestine development. The number of cells in ray precursor cell lineages was significantly reduced in cdc-25.2 depleted males. These results indicate that CDC-25.2 is essential for cell divisions in ray precursor cell lineages for proper male tail development.
Collapse
Affiliation(s)
- Sangmi Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunghee Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Esther Youn
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
10
|
Lee YU, Son M, Kim J, Shim YH, Kawasaki I. CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions. Cell Cycle 2016; 15:654-66. [PMID: 27104746 DOI: 10.1080/15384101.2016.1146839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine.
Collapse
Affiliation(s)
- Yong-Uk Lee
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea
| | - Miseol Son
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea
| | - Jiyoung Kim
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea.,b Current address: Laboratory of Genetics, BRC, National Institutes of Health, National Institute on Aging , Baltimore , MD , USA
| | - Yhong-Hee Shim
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea
| | - Ichiro Kawasaki
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea.,c Institute of KU Biotechnology, Konkuk University , Seoul , South Korea
| |
Collapse
|
11
|
Oh S, Kawasaki I, Park JH, Shim YH. cdc-25.4, a Caenorhabditis elegans Ortholog of cdc25, Is Required for Male Mating Behavior. G3 (BETHESDA, MD.) 2016; 6:4127-4138. [PMID: 27770028 PMCID: PMC5144981 DOI: 10.1534/g3.116.036129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2011] [Indexed: 11/18/2022]
Abstract
Cell division cycle 25 (cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression. Among the four cdc25 orthologs in Caenorhabditis elegans, we found that cdc-25.4 mutant males failed to produce outcrossed progeny. This was not caused by defects in sperm development, but by defects in male mating behavior. The cdc-25.4 mutant males showed various defects during male mating, including contact response, backing, turning, and vulva location. Aberrant turning behavior was the most prominent defect in the cdc-25.4 mutant males. We also found that cdc-25.4 is expressed in many neuronal cells throughout development. The turning defect in cdc-25.4 mutant males was recovered by cdc-25.4 transgenic expression in neuronal cells, suggesting that cdc-25.4 functions in neurons for male mating. However, the neuronal morphology of cdc-25.4 mutant males appeared to be normal, as examined with several neuronal markers. Also, RNAi depletion of wee-1.3, a C. elegans ortholog of Wee1/Myt1 kinase, failed to suppress the mating defects of cdc-25.4 mutant males. These findings suggest that, for successful male mating, cdc-25.4 does not target cell cycles that are required for neuronal differentiation and development. Rather, cdc-25.4 likely regulates noncanonical substrates in neuronal cells.
Collapse
Affiliation(s)
- Sangmi Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Hyung Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Chen Y, Shu L, Qiu Z, Lee DY, Settle SJ, Que Hee S, Telesca D, Yang X, Allard P. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function. PLoS Genet 2016; 12:e1006223. [PMID: 27472198 PMCID: PMC4966967 DOI: 10.1371/journal.pgen.1006223] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.
Collapse
Affiliation(s)
- Yichang Chen
- Molecular Toxicology Inter-departmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Zhiqun Qiu
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dong Yeon Lee
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sara J. Settle
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shane Que Hee
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Patrick Allard
- Molecular Toxicology Inter-departmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Matsuura R, Ashikawa T, Nozaki Y, Kitagawa D. LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in Caenorhabditis elegans. Mol Biol Cell 2016; 27:799-811. [PMID: 26764090 PMCID: PMC4803306 DOI: 10.1091/mbc.e15-10-0713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/07/2016] [Indexed: 11/11/2022] Open
Abstract
During oogenesis, two successive meiotic cell divisions occur without functional centrosomes because of the inactivation and subsequent elimination of maternal centrosomes during the diplotene stage of meiosis I. Despite being a conserved phenomenon in most metazoans, the means by which this centrosome behavior is controlled during female meiosis remain elusive. Here, we conducted a targeted RNAi screening in the Caenorhabditis elegans gonad to identify novel regulators of centrosome behavior during oogenesis. We screened 513 genes known to be essential for embryo production and directly visualized GFP-γ-tubulin to monitor centrosome behavior at all stages of oogenesis. In the screening, we found that RNAi-mediated inactivation of 33 genes delayed the elimination of GFP-γ-tubulin at centrosomes during oogenesis, whereas inactivation of nine genes accelerated the process. Depletion of the TRIM-NHL protein LIN-41 led to a significant delay in centrosome elimination and to the separation and reactivation of centrosomes during oogenesis. Upon LIN-41 depletion, meiotic chromosomes were abnormally condensed and pulled toward one of the two spindle poles around late pachytene even though the spindle microtubules emanated from both centrosomes. Overall, our work provides new insights into the regulation of centrosome behavior to ensure critical meiotic events and the generation of intact oocytes.
Collapse
Affiliation(s)
- Rieko Matsuura
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tomoko Ashikawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yuka Nozaki
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
14
|
Poullet N, Vielle A, Gimond C, Ferrari C, Braendle C. Evolutionarily divergent thermal sensitivity of germline development and fertility in hermaphroditicCaenorhabditisnematodes. Evol Dev 2015; 17:380-97. [DOI: 10.1111/ede.12170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nausicaa Poullet
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Anne Vielle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Clotilde Gimond
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
15
|
Rapid and Efficient Identification of Caenorhabditis elegans Legacy Mutations Using Hawaiian SNP-Based Mapping and Whole-Genome Sequencing. G3-GENES GENOMES GENETICS 2015; 5:1007-19. [PMID: 25740937 PMCID: PMC4426357 DOI: 10.1534/g3.115.017038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The production of viable embryos requires the coordination of many cellular processes, including protein synthesis, cytoskeletal reorganization, establishment of polarity, cell migration, cell division, and in Caenorhabditis elegans, eggshell formation. Defects in any of these processes can lead to embryonic lethality. We examined six temperature-sensitive mutants as well as one nonconditional mutant that were previously identified in genetic screens as either embryonic lethal (maternal-effect or zygotic lethal) or eggshell defective. The responsible molecular lesion for each had never been determined. After confirmation of temperature sensitivity and lethality, we performed whole-genome sequencing using a single-nucleotide polymorphism mapping strategy to pinpoint the molecular lesions. Gene candidates were confirmed by RNA interference phenocopy and/or complementation tests and one mutant was further validated by CRISPR (Clustered Regularly Interspaced Short Palidromic Repeats)/Cas9 gene editing. This approach identified new alleles of several genes that had only been previously studied by RNA interference depletion. Our identification of temperature-sensitive alleles for all of these essential genes provides an extremely useful tool for further investigation for the C. elegans community, such as the ability to address mutant phenotypes at various developmental stages and the ability to carry out suppressor/enhancer screens to identify other genes that function in a specific cellular process.
Collapse
|
16
|
Rausch M, Ecsedi M, Bartake H, Müllner A, Grosshans H. A genetic interactome of the let-7 microRNA in C. elegans. Dev Biol 2015; 401:276-86. [PMID: 25732775 DOI: 10.1016/j.ydbio.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 02/08/2023]
Abstract
The heterochronic pathway controls temporal patterning during Caenorhabditis elegans larval development. The highly conserved let-7 microRNA (miRNA) plays a key role in this pathway, directing the larval-to-adult (L/A) transition. Hence, knowledge of the genetic interactome of let-7 has the potential to provide insight into both control of temporal cell fates and mechanisms of regulation and function of miRNAs. Here, we report the results of a genome-wide, RNAi-based screen for suppressors of let-7 mutant vulval bursting. The 201 genetic interaction partners of let-7 thus identified include genes that promote target silencing activity of let-7, seam cell differentiation, or both. We illustrate the suitability of our approach by uncovering the mitotic cyclin-dependent kinase CDK-1 as a downstream effector of let-7 that affects both seam cell proliferation and differentiation, and by identifying a core set of candidate modulators of let-7 activity, which includes all subunits of the condensin II complex. We propose that the genes identified in our screen thus constitute a valuable resource for studies of the heterochronic pathway and miRNAs.
Collapse
Affiliation(s)
- Magdalene Rausch
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Matyas Ecsedi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Hrishikesh Bartake
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Almuth Müllner
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Helge Grosshans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
17
|
Pauletto M, Milan M, de Sousa JT, Huvet A, Joaquim S, Matias D, Leitão A, Patarnello T, Bargelloni L. Insights into molecular features of Venerupis decussata oocytes: a microarray-based study. PLoS One 2014; 9:e113925. [PMID: 25470487 PMCID: PMC4254928 DOI: 10.1371/journal.pone.0113925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/31/2014] [Indexed: 11/18/2022] Open
Abstract
The production of Venerupis decussata relies on wild seed collection, which has been recently compromised due to recruitment failure and severe mortalities. To address this issue and provide an alternative source of seed, artificial spawning and larval rearing programs were developed. However, hatchery-based seed production is a relatively new industry and it is still underdeveloped. A major hurdle in the European clam seed production is the control of spawning and reproduction, which is further hindered by the impossibility of obtaining fertile gametes by gonadal "stripping", as meiosis re-initiation is constrained to a maturation process along the genital ducts. In the present study, oocytes were collected from 15 females and microarray analyses was performed to investigate gene expression profiles characterizing released and stripped ovarian oocytes. A total of 198 differentially expressed transcripts between stripped and spawned oocytes were detected. Functional analysis carried out on these transcripts highlighted the importance of a few biological processes, which are most probably implicated in the control of oocyte competence. Significant differences were observed for transcripts encoding proteins involved in meiosis progression (e.g. dual specificity phosphatase CDC25), WNT signalling (e.g. frizzled class receptor 8, wingless-type MMTV integration site family member 4), steroid synthesis (e.g. progestin and adipoQ receptor family member 3, cytochrome P450-C17), mRNA processing (e.g. zinc finger protein XlCOF28), calcium regulation (e.g. regucalcin, calmodulin) and ceramide metabolism (ceramidase B, sphingomyelinase). This study provides new information on transcriptional profiles putatively associated with ovarian egg infertility, and suggests potential mechanisms regulating early oocyte development in clams. Genes which were differentially expressed between stripped and spawned oocytes might have a pivotal role during maturation process in the gonadal duct and could be interesting targets for further functional studies aiming to make ovarian oocytes fertilizable.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
- * E-mail:
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Joana Teixeira de Sousa
- IFREMER, Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire des Sciences de l’Environnement Marin, Plouzané, France
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
| | - Arnaud Huvet
- IFREMER, Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire des Sciences de l’Environnement Marin, Plouzané, France
| | - Sandra Joaquim
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Domitília Matias
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Alexandra Leitão
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
- Environmental Studies Center, Qatar University, Doha, Qatar
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| |
Collapse
|
18
|
Spike CA, Coetzee D, Nishi Y, Guven-Ozkan T, Oldenbroek M, Yamamoto I, Lin R, Greenstein D. Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans. Genetics 2014; 198:1513-33. [PMID: 25261697 PMCID: PMC4256769 DOI: 10.1534/genetics.114.168823] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023] Open
Abstract
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3'-untranslated regions (3'-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
19
|
Spike CA, Coetzee D, Eichten C, Wang X, Hansen D, Greenstein D. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes. Genetics 2014; 198:1535-58. [PMID: 25261698 PMCID: PMC4256770 DOI: 10.1534/genetics.114.168831] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/26/2014] [Indexed: 01/24/2023] Open
Abstract
In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Carly Eichten
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - David Greenstein
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
20
|
Rahman MM, Rosu S, Joseph-Strauss D, Cohen-Fix O. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A 2014; 111:2602-7. [PMID: 24550289 PMCID: PMC3932911 DOI: 10.1073/pnas.1311635111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.
Collapse
Affiliation(s)
- Mohammad M. Rahman
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Simona Rosu
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daphna Joseph-Strauss
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Orna Cohen-Fix
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Yan B, Memar N, Gallinger J, Conradt B. Coordination of cell proliferation and cell fate determination by CES-1 snail. PLoS Genet 2013; 9:e1003884. [PMID: 24204299 PMCID: PMC3814331 DOI: 10.1371/journal.pgen.1003884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
The coordination of cell proliferation and cell fate determination is critical during development but the mechanisms through which this is accomplished are unclear. We present evidence that the Snail-related transcription factor CES-1 of Caenorhabditis elegans coordinates these processes in a specific cell lineage. CES-1 can cause loss of cell polarity in the NSM neuroblast. By repressing the transcription of the BH3-only gene egl-1, CES-1 can also suppress apoptosis in the daughters of the NSM neuroblasts. We now demonstrate that CES-1 also affects cell cycle progression in this lineage. Specifically, we found that CES-1 can repress the transcription of the cdc-25.2 gene, which encodes a Cdc25-like phosphatase, thereby enhancing the block in NSM neuroblast division caused by the partial loss of cya-1, which encodes Cyclin A. Our results indicate that CDC-25.2 and CYA-1 control specific cell divisions and that the over-expression of the ces-1 gene leads to incorrect regulation of this functional ‘module’. Finally, we provide evidence that dnj-11 MIDA1 not only regulate CES-1 activity in the context of cell polarity and apoptosis but also in the context of cell cycle progression. In mammals, the over-expression of Snail-related genes has been implicated in tumorigenesis. Our findings support the notion that the oncogenic potential of Snail-related transcription factors lies in their capability to, simultaneously, affect cell cycle progression, cell polarity and apoptosis and, hence, the coordination of cell proliferation and cell fate determination. Animal development is a complex process and requires the coordination in space and time of various processes. These processes include the controlled production of cells, also referred to as ‘cell proliferation’, and the adoption by cells of specific fates, also referred to as ‘cell fate determination’. The observation that uncontrolled cell proliferation and cell fate determination contribute to conditions such as cancer, demonstrates that a precise coordination of these processes is not only important for development but for the prevention of disease throughout life. Snail-related transcription factors have previously been shown to be involved in the regulation of cell proliferation and cell fate determination. For example, the Caenorhabditis elegans Snail-related protein CES-1 affects cell fate determination in a specific cell lineage, the NSM (neurosecretory motorneuron) lineage. We now present evidence that CES-1 also controls cell proliferation in this lineage. Within a short period of time, CES-1 therefore coordinates cell proliferation and cell fate determination in one and the same lineage. Based on this finding, we propose that CES-1 is an important coordinator that is involved in the precise control - in space (NSM lineage) and time (<150 min) - of processes that are critical for animal development.
Collapse
Affiliation(s)
- Bo Yan
- Center for Integrated Protein Science, Department of Biology II, Ludwig-Maximilians-University, Munich, Planegg-Martinsried, Germany
- Department of Genetics, MCB Graduate Program, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nadin Memar
- Center for Integrated Protein Science, Department of Biology II, Ludwig-Maximilians-University, Munich, Planegg-Martinsried, Germany
| | - Julia Gallinger
- Department of Genetics, MCB Graduate Program, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Barbara Conradt
- Center for Integrated Protein Science, Department of Biology II, Ludwig-Maximilians-University, Munich, Planegg-Martinsried, Germany
- * E-mail:
| |
Collapse
|
22
|
Nair G, Walton T, Murray JI, Raj A. Gene transcription is coordinated with, but not dependent on, cell divisions during C. elegans embryonic fate specification. Development 2013; 140:3385-94. [PMID: 23863485 DOI: 10.1242/dev.098012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell differentiation and proliferation are coordinated during animal development, but the link between them remains uncharacterized. To examine this relationship, we combined single-molecule RNA imaging with time-lapse microscopy to generate high-resolution measurements of transcriptional dynamics in Caenorhabditis elegans embryogenesis. We found that globally slowing the overall development rate of the embryo by altering temperature or by mutation resulted in cell proliferation and transcription slowing, but maintaining, their relative timings, suggesting that cell division may directly control transcription. However, using mutants with specific defects in cell cycle pathways that lead to abnormal lineages, we found that the order between cell divisions and expression onset can switch, showing that expression of developmental regulators is not strictly dependent on cell division. Delaying cell divisions resulted in only slight changes in absolute expression time, suggesting that expression and proliferation are independently entrained to a separate clock-like process. These changes in relative timing can change the number of cells expressing a gene at a given time, suggesting that timing may help determine which cells adopt particular transcriptional patterns. Our results place limits on the types of mechanisms that are used during normal development to ensure that division timing and fate specification occur at appropriate times.
Collapse
Affiliation(s)
- Gautham Nair
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | | | | | | |
Collapse
|
23
|
Shaw L, Sneddon SF, Zeef L, Kimber SJ, Brison DR. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development. PLoS One 2013; 8:e64192. [PMID: 23717564 PMCID: PMC3661520 DOI: 10.1371/journal.pone.0064192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.
Collapse
Affiliation(s)
- Lisa Shaw
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sharon F. Sneddon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan J. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel R. Brison
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Yoon S, Kawasaki I, Shim YH. CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in Caenorhabditis elegans. Cell Cycle 2012; 11:1354-63. [PMID: 22421141 DOI: 10.4161/cc.19755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Caenorhabditis elegans, cdc-25.1 loss-of-function mutants display a lack of germline proliferation. We found that the proliferation defect of cdc-25.1 mutants was suppressed by wee-1.3 RNAi. Further, among the seven cdk and seven cyclin homologs examined, cdk-1 and cyb-3 RNAi treatment caused the most severe germline proliferation defects in an rrf-1 mutant background, which were similar to those of the cdc-25.1 mutants. In addition, while RNAi of cyd-1 and cye-1 caused significant germline proliferation defects, RNAi of cdk-2 and cdk-4 did not. Compared with the number of germ nuclei in wee-1.3(RNAi) worms, the number in wee-1.3(RNAi);cdk-1(RNAi) and wee-1.3(RNAi);cyb-3(RNAi) worms further decreased to the level of cdk-1(RNAi) and cyb-3(RNAi) worms, respectively, indicating that cdk-1 and cyb-3 are epistatic and function downstream of cdc-25.1 and wee-1.3 in the control of the cell cycle. BrdU labeling of adult worms showed that, while 100% of the wild-type germ nuclei in the mitotic region incorporated BrdU when labeled for more than 12 h at 20°C, a small fraction of the cdc-25.1 mutant germ nuclei failed to incorporate BrdU even when labeled for 68 h. These results indicate that CDC-25.1 is required for maintaining proper rate of germline mitotic cell cycle. We propose that CDC-25.1 regulates the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively controlling CDK-1, which forms a complex primarily with CYB-3, but also possibly with CYD-1 and CYE-1.
Collapse
Affiliation(s)
- Sunghee Yoon
- Department of Bioscience and Biotechnology, Institute of Functional Genomics, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
25
|
Johnston WL, Dennis JW. The eggshell in the C. elegans oocyte-to-embryo transition. Genesis 2011; 50:333-49. [PMID: 22083685 DOI: 10.1002/dvg.20823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
In egg-laying animals, embryonic development takes place within the highly specialized environment provided by the eggshell and its underlying extracellular matrix. Far from being simply a passive physical support, the eggshell is a key player in many early developmental events. Herein, we review current understanding of eggshell structure, biosynthesis, and function in zygotic development of the nematode, C. elegans. Beginning at sperm contact or entry, eggshell layers are produced sequentially. The earlier outer layers are required for secretion or organization of inner layers, and layers differ in composition and function. Developmental events that depend on the eggshell include polyspermy barrier generation, high fidelity meiotic chromosome segregation, osmotic barrier synthesis, polar body extrusion, anterior-posterior polarization, and organization of membrane and cortical proteins. The C. elegans eggshell is proving to be an excellent, tractable system to study the molecular cues of the extracellular matrix that instruct cell polarity and early development.
Collapse
Affiliation(s)
- Wendy L Johnston
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
| | | |
Collapse
|
26
|
Kang J, Bai Z, Zegarek MH, Grant BD, Lee J. Essential roles of snap-29 in C. elegans. Dev Biol 2011; 355:77-88. [PMID: 21545795 DOI: 10.1016/j.ydbio.2011.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/29/2011] [Accepted: 04/14/2011] [Indexed: 12/29/2022]
Abstract
SNARE domain proteins are key molecules mediating intracellular fusion events. SNAP25 family proteins are unique target-SNAREs possessing two SNARE domains. Here we report the genetic, molecular, and cell biological characterization of C. elegans SNAP-29. We found that snap-29 is an essential gene required throughout the life-cycle. Depletion of snap-29 by RNAi in adults results in sterility associated with endomitotic oocytes and pre-meiotic maturation of the oocytes. Many of the embryos that are produced are multinucleated, indicating a defect in embryonic cytokinesis. A profound defect in secretion by oocytes and early embryos in animals lacking SNAP-29 appears to be the underlying defect connecting these phenotypes. Further analysis revealed defects in basolateral and apical secretion by intestinal epithelial cells in animals lacking SNAP-29, indicating a broad requirement for this protein in the secretory pathway. A SNAP-29-GFP fusion protein was enriched on recycling endosomes, and loss of SNAP-29 disrupted recycling endosome morphology. Taken together these results suggest a requirement for SNAP-29 in the fusion of post-Golgi vesicles with the recycling endosome for cargo to reach the cell surface.
Collapse
Affiliation(s)
- Junsu Kang
- Research Center for Functional Cellulomics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Banerjee D, Chen X, Lin SY, Slack FJ. kin-19/casein kinase Iα has dual functions in regulating asymmetric division and terminal differentiation in C. elegans epidermal stem cells. Cell Cycle 2010; 9:4748-65. [PMID: 21127398 DOI: 10.4161/cc.9.23.14092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/β-catenin signaling pathway, involving the β-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIα functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIα in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIα may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.
Collapse
Affiliation(s)
- Diya Banerjee
- Department of Biological Sciences, Virginia Tech University, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|