1
|
Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV, Huang YL, Rimmer N, Fedier A, Schötzau A, Lopez MN, Packer NH, Lengerke C, Heinzelmann-Schwarz V. Transition of Mesenchymal and Epithelial Cancer Cells Depends on α1-4 Galactosyltransferase-Mediated Glycosphingolipids. Cancer Res 2018; 78:2952-2965. [DOI: 10.1158/0008-5472.can-17-2223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
|
2
|
SRF promotes gastric cancer metastasis through stromal fibroblasts in an SDF1-CXCR4-dependent manner. Oncotarget 2018; 7:46088-46099. [PMID: 27323859 PMCID: PMC5216783 DOI: 10.18632/oncotarget.10024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/28/2016] [Indexed: 01/28/2023] Open
Abstract
It has been suggested that the overexpression of serum response factor (SRF) in cancer cells may promote cancer metastasis. However, the exact pathway by which SRF promotes metastasis has not been clarified. Here we showed that SRF promotes gastric cancer (GC) metastasis through stromal fibroblasts in an SDF1-CXCR4-dependent manner. SRF expression was significantly increased in metastatic GCs compared with the non-metastatic GCs (n=50, p=0.013). Immuno-staining indicated that SRF was primarily expressed in a-smooth muscle actin (αSMA)-expressing periglandular fibroblasts in GCs. The conditioned medium (CM) from CCD18Co fibroblasts stably transfected with the SRF vector (CCD18Co-SRF) significantly enhanced migration of MKN45 gastric cancer cells. In contrast, the CM from CCD18Co fibroblasts, in which SRF was downregulated, inhibited mobility of MKN45 cells. Similar results were observed in cultured BGC823 cells even when they were treated with the NIH3T3-SRF CM. When MKN45 cells and SRF-upregulated or downregulated CCD18Co cells were simultaneously co-injected into the tail veins of NOD-SCID mice, a significant increase or decrease was, respectively, observed in the experimental pulmonary metastasis of cancer cells. Furthermore, SRF overexpression significantly upregulated `SMA and stromal cell derived factor1 (SDF1) expression in these fibroblasts, and an anti-SDF1 antibody or the SDF1 receptor CXCR4-specific inhibitor AMD3100 treatment completely reversed the SRF-enhanced migration of cancer cells. Quantitative RT-PCR demonstrated that the expression level of SRF was positively correlated with that of SDF1 in 92 GC samples (r=0.63, p<0.001). In conclusion, SRF promote GC metastasis by facilitating myofibroblast-cancer cell crosstalk in an SDF1-CXCR4 dependent manner, and maybe a therapeutic target.
Collapse
|
3
|
Gasparics Á, Sebe A. MRTFs- master regulators of EMT. Dev Dyn 2017; 247:396-404. [PMID: 28681541 DOI: 10.1002/dvdy.24544] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Recent evidence implicates the myocardin-related transcription factors (MRTFs) as key mediators of the phenotypic plasticity leading to the conversion of various cell types into myofibroblasts. This review highlights the function of MRTFs during development, fibrosis and cancer, and the role of MRTFs during epithelial-mesenchymal transitions (EMTs) underlying these processes. EMT is a sequentially orchestrated process where cells undergo a rearrangement of their cell contacts and activate a fibrogenic and myogenic expression program. MRTFs interact with and regulate the major signaling pathways and the expression of key markers and transcription factors involved in EMT. These functions indicate a central role for MRTFs in controlling the process of EMT. Developmental Dynamics 247:396-404, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ákos Gasparics
- Semmelweis University, Department of Pathophysiology, Budapest, Hungary.,Semmelweis University, 1st Department of Obstetrics and Gynecology, Budapest, Hungary
| | - Attila Sebe
- Semmelweis University, Department of Pathophysiology, Budapest, Hungary.,Paul Ehrlich Institute, Division of Medical Biotechnology, Langen, Germany
| |
Collapse
|
4
|
Park SY, Shin JH, Kee SH. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells. Cancer Sci 2017; 108:1769-1777. [PMID: 28699254 PMCID: PMC5581528 DOI: 10.1111/cas.13321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 12/18/2022] Open
Abstract
β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation.
Collapse
Affiliation(s)
- Song Yi Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| | - Jee-Hye Shin
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sun-Ho Kee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
5
|
Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding. Mol Cell Biol 2016; 36:1526-39. [PMID: 26976641 DOI: 10.1128/mcb.01097-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/03/2016] [Indexed: 01/14/2023] Open
Abstract
The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin-MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin-RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation.
Collapse
|
6
|
Giehl K, Keller C, Muehlich S, Goppelt-Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS One 2015; 10:e0121589. [PMID: 25816094 PMCID: PMC4376694 DOI: 10.1371/journal.pone.0121589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/14/2015] [Indexed: 12/29/2022] Open
Abstract
Morphological alterations of cells can lead to modulation of gene expression. An essential link is the MKL1-dependent activation of serum response factor (SRF), which translates changes in the ratio of G- and F-actin into mRNA transcription. SRF activation is only partially characterized in non-transformed epithelial cells. Therefore, the impact of GTPases of the Rho family and changes in F-actin structures were analyzed in renal proximal tubular epithelial cells. Activation of SRF signaling was compared to the regulation of a known MKL1/SRF target gene, connective tissue growth factor (CTGF). In the human proximal tubular cell line HKC-8 overexpression of two actin mutants either favoring or preventing the formation of F-actin fibers regulated SRF-mediated transcription as well as CTGF expression. Only overexpression of constitutively active RhoA activated SRF-dependent gene expression whereas no effect was detected upon overexpression of Rac1 mutants. To elucidate the functional role of Rho kinases as downstream mediators of RhoA, pharmacological inhibition and genetic inhibition by transient siRNA knock down were compared. Upon stimulation with lysophosphatidic acid (LPA) Rho kinase inhibitors partially suppressed SRF-mediated transcription, whereas interference with Rho kinase expression by siRNA reduced activation of SRF, but barely affected CTGF expression. Together with the partial inhibition of CTGF expression by the pharmacological inhibitors Y27432 and H1154, Rho kinases seem to be less important in mediating RhoA signaling related to CTGF expression in HKC-8 epithelial cells. Short term pharmacological inhibition of Rac1 activity by EHT1864 reduced SRF-dependent CTGF expression in HKC-8 cells, but was overcome by a stimulatory effect after prolonged incubation after 4-6 h. Similarly, human primary cells of proximal but not of distal tubular origin showed inhibitory as well as stimulatory effects of Rac1 inhibition. Thus, RhoA signaling activates MKL1-SRF-mediated CTGF expression in proximal tubular cells, whereas Rac1 signaling is more complex with adaptive cellular responses.
Collapse
Affiliation(s)
- Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christof Keller
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Muehlich
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
7
|
Trembley MA, Velasquez LS, de Mesy Bentley KL, Small EM. Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development 2015; 142:21-30. [PMID: 25516967 DOI: 10.1242/dev.116418] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An important pool of cardiovascular progenitor cells arises from the epicardium, a single layer of mesothelium lining the heart. Epicardium-derived progenitor cell (EPDC) formation requires epithelial-to-mesenchymal transition (EMT) and the subsequent migration of these cells into the sub-epicardial space. Although some of the physiological signals that promote EMT are understood, the functional mediators of EPDC motility and differentiation are not known. Here, we identify a novel regulatory mechanism of EPDC mobilization. Myocardin-related transcription factor (MRTF)-A and MRTF-B (MKL1 and MKL2, respectively) are enriched in the perinuclear space of epicardial cells during development. Transforming growth factor (TGF)-β signaling and disassembly of cell contacts leads to nuclear accumulation of MRTFs and the activation of the motile gene expression program. Conditional ablation of Mrtfa and Mrtfb specifically in the epicardium disrupts cell migration and leads to sub-epicardial hemorrhage, partially stemming from the depletion of coronary pericytes. Using lineage-tracing analyses, we demonstrate that sub-epicardial pericytes arise from EPDCs in a process that requires the MRTF-dependent motile gene expression program. These findings provide novel mechanisms linking EPDC motility and differentiation, shed light on the transcriptional control of coronary microvascular maturation and suggest novel therapeutic strategies to manipulate epicardium-derived progenitor cells for cardiac repair.
Collapse
Affiliation(s)
- Michael A Trembley
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Lissette S Velasquez
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Karen L de Mesy Bentley
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| |
Collapse
|
8
|
Eisenach PA, Schikora F, Posern G. Inhibition of arginyltransferase 1 induces transcriptional activity of myocardin-related transcription factor A (MRTF-A) and promotes directional migration. J Biol Chem 2014; 289:35376-87. [PMID: 25381249 DOI: 10.1074/jbc.m114.578674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A/MAL/MKL1/BSAC) regulates the expression of serum-response factor (SRF)-dependent target genes in response to the Rho-actin signaling pathway. Overexpression or activation of MRTF-A affects shape, migration, and invasion of cells and contributes to human malignancies, including cancer. In this study, we report that inhibition of arginyltransferase 1 (ATE1), an enzyme mediating post-transcriptional protein arginylation, is sufficient to increase MRTF-A activity in MCF-7 human breast carcinoma cells independently of external growth factor stimuli. In addition, silencing or inhibiting ATE1 disrupted E-cadherin-mediated cell-cell contacts, enhanced formation of actin-rich protrusions, and increased the number of focal adhesions, subsequently leading to elevated chemotactic migration. Although arginylated actin did not differentially affect MRTF-A, a rapid loss of E-cadherin and F-actin reorganization preceded MRTF-A activation upon ATE1 inhibition. Conversely, ectopic ATE1 expression was sufficient to render MRTF-A inactive, both in resting cells and in cells with exogenously activated RhoA-actin pathways. In this study, we provide a critical link between protein arginylation and MRTF-A activity and place ATE1 upstream of myocardin-related transcription factor.
Collapse
Affiliation(s)
- Patricia A Eisenach
- From the Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale) and the Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Franziska Schikora
- From the Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale) and
| | - Guido Posern
- From the Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale) and
| |
Collapse
|
9
|
Liu Z, Zhang J, Gao Y, Pei L, Zhou J, Gu L, Zhang L, Zhu B, Hattori N, Ji J, Yuasa Y, Kim W, Ushijima T, Shi H, Deng D. Large-scale characterization of DNA methylation changes in human gastric carcinomas with and without metastasis. Clin Cancer Res 2014; 20:4598-612. [PMID: 25009298 PMCID: PMC4309661 DOI: 10.1158/1078-0432.ccr-13-3380] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Metastasis is the leading cause of death for gastric carcinoma. An epigenetic biomarker panel for predicting gastric carcinoma metastasis could have significant clinical impact on the care of patients with gastric carcinoma. The main purpose of this study is to characterize the methylation differences between gastric carcinomas with and without metastasis. EXPERIMENTAL DESIGN Genome-wide DNA methylation profiles between 4 metastatic and 4 nonmetastatic gastric carcinomas and their surgical margins (SM) were analyzed using methylated-CpG island amplification with microarray. The methylation states of 73 candidate genes were further analyzed in patients with gastric carcinoma in a discovery cohort (n=108) using denatured high performance liquid chromatography, bisulfite-sequencing, and MethyLight. The predictive values of potential metastasis-methylation biomarkers were validated in cohorts of patients with gastric carcinoma in China (n=330), Japan (n=129), and Korea (n=153). RESULTS The gastric carcinoma genome showed significantly higher proportions of hypomethylation in the promoter and exon-1 regions, as well as increased hypermethylation of intragenic fragments when compared with SMs. Significant differential methylation was validated in the CpG islands of 15 genes (P<0.05) and confirmed using bisulfite sequencing. These genes included BMP3, BNIP3, CDKN2A, ECEL1, ELK1, GFRA1, HOXD10, KCNH1, PSMD10, PTPRT, SIGIRR, SRF, TBX5, TFPI2, and ZNF382. Methylation changes of GFRA1, SRF, and ZNF382 resulted in up- or downregulation of their transcription. Most importantly, the prevalence of GFRA1, SRF, and ZNF382 methylation alterations was consistently and coordinately associated with gastric carcinoma metastasis and the patients' overall survival throughout discovery and validation cohorts in China, Japan, and Korea. CONCLUSION Methylation changes of GFRA1, SRF, and ZNF382 may be a potential biomarker set for prediction of gastric carcinoma metastasis.
Collapse
Affiliation(s)
- Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China
| | - Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China. Shihezi University School of Medicine, Shihezi, China
| | - Yanhong Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China
| | - Lirong Pei
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China
| | - Lianhai Zhang
- Department of Surgery, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China
| | - Budong Zhu
- Department of Oncology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China
| | - Naoko Hattori
- Division of Epigenetics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Jiafu Ji
- Department of Surgery, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Wooho Kim
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| | - Toshikazu Ushijima
- Division of Epigenetics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Huidong Shi
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia.
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, Beijing, China.
| |
Collapse
|
10
|
Lechuga S, Baranwal S, Li C, Naydenov NG, Kuemmerle JF, Dugina V, Chaponnier C, Ivanov AI. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells. Mol Biol Cell 2014; 25:3133-46. [PMID: 25143399 PMCID: PMC4196865 DOI: 10.1091/mbc.e14-03-0815] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298
| | - Somesh Baranwal
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298
| | - Chao Li
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298
| | - John F Kuemmerle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Vera Dugina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Christine Chaponnier
- Department of Pathology and Immunology, University Medical Center, University of Geneva, Geneva 4, Switzerland
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298 Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298 VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
11
|
Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, Flouriot G. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol 2014; 390:34-44. [PMID: 24721635 DOI: 10.1016/j.mce.2014.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alpha (ERα) is generally considered to be a good prognostic marker because almost 70% of ERα-positive tumors respond to anti-hormone therapies. Unfortunately, during cancer progression, mammary tumors can escape from estrogen control, resulting in resistance to treatment. In this study, we demonstrate that activation of the actin/megakaryoblastic leukemia 1 (MKL1) signaling pathway promotes the hormonal escape of estrogen-sensitive breast cancer cell lines. The actin/MKL1 signaling pathway is silenced in differentiated ERα-positive breast cancer MCF-7 and T47D cell lines and active in ERα-negative HMT-3522 T4-2 and MDA-MB-231 breast cancer cells, which have undergone epithelial-mesenchymal transition. We showed that MKL1 activation in MCF-7 cells, either by modulating actin dynamics or using MKL1 mutants, down-regulates ERα expression and abolishes E2-dependent cell growth. Interestingly, the constitutively active form of MKL1 represses PR and HER2 expression in these cells and increases the expression of HB-EGF, TGFβ, and amphiregulin growth factors in an E2-independent manner. The resulting expression profile (ER-, PR-, HER2-) typically corresponds to the triple-negative breast cancer expression profile.
Collapse
MESH Headings
- Actins/metabolism
- Antineoplastic Agents, Hormonal/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Estradiol/physiology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Humans
- MCF-7 Cells
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/metabolism
- Oncogene Proteins, Fusion/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Signal Transduction
- Tamoxifen/pharmacology
- Trans-Activators
- Transcription, Genetic
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Antoine Boudot
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Denis Habauzit
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Frederic Percevault
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Florence Demay
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Farzad Pakdel
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Gilles Flouriot
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France.
| |
Collapse
|
12
|
Zhao M, Xu H, He X, Hua H, Luo Y, Zuo L. Expression of serum response factor in gastric carcinoma and its molecular mechanisms involved in the regulation of the invasion and migration of SGC-7901 cells. Cancer Biother Radiopharm 2012; 28:146-52. [PMID: 23134219 DOI: 10.1089/cbr.2012.1265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Serum response factor (SRF) is a transcription factor of the MADS box family. To date, DNA binding sites for SRF [serum response elements (SREs)] have been found in the promoters of approximately 50 different genes known to be involved in the regulation cell proliferation, differentiation, and apoptosis. Recent studies have indicated that SRF plays a role in the development of some tumors, including hepatocellular, thyroid, esophageal, and lung carcinomas. However, expression of SRF and its roles in gastric carcinoma are unclear. We found SRF to be highly expressed in human gastric carcinoma as well as ectopic or reduced expression for E-cadherin and β-catenin. Blockage of SRF expression was found to inhibit proliferation, invasion, and migration. We also found that an inhibitor (Y-27632) of Rho-associated coiled kinase (ROCK1), a regulator of actin cytoskeleton that regulates cell adhesion, migration, and motility, suppressed SRF expression as well. These results demonstrate that SRF is involved in the aggressive behavior of gastric carcinoma cells. We also found that the inhibition of ROCK1 by Y-27632 can inhibit the invasion and migration of gastric cells done at least, in part, by attenuating SRF expression.
Collapse
Affiliation(s)
- Min Zhao
- Oncology Department, Hebei Medical University, Shi Jiazhuang, China
| | | | | | | | | | | |
Collapse
|
13
|
He M, Jenkins P, Bennett V. Cysteine 70 of ankyrin-G is S-palmitoylated and is required for function of ankyrin-G in membrane domain assembly. J Biol Chem 2012; 287:43995-4005. [PMID: 23129772 PMCID: PMC3527982 DOI: 10.1074/jbc.m112.417501] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ankyrin-G (AnkG) coordinates protein composition of diverse membrane domains, including epithelial lateral membranes and neuronal axon initial segments. However, how AnkG itself localizes to these membrane domains is not understood. We report that AnkG remains on the plasma membrane in Madin-Darby canine kidney (MDCK) cells grown in low calcium, although these cells lack apical-basal polarity and exhibit loss of plasma membrane association of AnkG partners, E-cadherin and β2-spectrin. We subsequently demonstrate using mutagenesis and mass spectrometry that AnkG is S-palmitoylated exclusively at Cys-70, which is located in a loop of the first ankyrin repeat and is conserved in the vertebrate ankyrin family. Moreover, C70A mutation abolishes membrane association of 190-kDa AnkG in MDCK cells grown in low calcium. C70A 190-kDa AnkG fails to restore biogenesis of epithelial lateral membranes in MDCK cells depleted of endogenous AnkG. In addition, C70A 270-kDa AnkG fails to cluster at the axon initial segment of AnkG-depleted cultured hippocampal neurons and fails to recruit neurofascin as well as voltage-gated sodium channels. These effects of C70A mutation combined with evidence for its S-palmitoylation are consistent with a requirement of palmitoylation for targeting and function of AnkG in membrane domain biogenesis at epithelial lateral membranes and neuronal axon initial segments.
Collapse
Affiliation(s)
- Meng He
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
14
|
Pedersen E, Wang Z, Stanley A, Peyrollier K, Rösner LM, Werfel T, Quondamatteo F, Brakebusch C. RAC1 in keratinocytes regulates crosstalk to immune cells by Arp2/3-dependent control of STAT1. J Cell Sci 2012; 125:5379-90. [PMID: 22956547 DOI: 10.1242/jcs.107011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Crosstalk between keratinocytes and immune cells is crucial for the immunological barrier function of the skin, and aberrant crosstalk contributes to inflammatory skin diseases. Using mice with a keratinocyte-restricted deletion of the RAC1 gene we found that RAC1 in keratinocytes plays an important role in modulating the interferon (IFN) response in skin. These RAC1 mutant mice showed increased sensitivity in an irritant contact dermatitis model, abnormal keratinocyte differentiation, and increased expression of immune response genes including the IFN signal transducer STAT1. Loss of RAC1 in keratinocytes decreased actin polymerization in vivo and in vitro and caused Arp2/3-dependent expression of STAT1, increased interferon sensitivity and upregulation of aberrant keratinocyte differentiation markers. This can be inhibited by the AP-1 inhibitor tanshinone IIA. Loss of RAC1 makes keratinocytes hypersensitive to inflammatory stimuli both in vitro and in vivo, suggesting a major role for RAC1 in regulating the crosstalk between the epidermis and the immune system.
Collapse
Affiliation(s)
- Esben Pedersen
- Biomedical Institute, BRIC, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Small EM. The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 2012; 5:794-804. [PMID: 22898751 DOI: 10.1007/s12265-012-9397-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/01/2012] [Indexed: 12/14/2022]
Abstract
Cardiac fibroblasts are responsible for necrotic tissue replacement and scar formation after myocardial infarction (MI) and contribute to remodeling in response to pathological stimuli. This response to insult or injury is largely due to the phenotypic plasticity of fibroblasts. When fibroblasts encounter environmental disturbances, whether biomechanical or humoral, they often transform into smooth muscle-like, contractile cells called "myofibroblasts." The signals that control myofibroblast differentiation include the transforming growth factor (TGF)-β1-Smad pathway and Rho GTPase-dependent actin polymerization. Recent evidence implicates serum response factor (SRF) and the myocardin-related transcription factors (MRTFs) as key mediators of the contractile gene program in response to TGF-β1 or RhoA signaling. This review highlights the function of myofibroblasts in cardiac remodeling and the role of the actin-MRTF-SRF signaling axis in regulating this process.
Collapse
Affiliation(s)
- Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, USA.
| |
Collapse
|
16
|
Leitner L, Shaposhnikov D, Mengel A, Descot A, Julien S, Hoffmann R, Posern G. MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins. J Cell Sci 2012; 124:4318-31. [PMID: 22223881 DOI: 10.1242/jcs.092791] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Monomeric actin regulates gene expression through serum response factor (SRF) by inhibiting its transcriptional coactivator myocardin-related transcription factor (MAL/MRTF). Many affected genes encode cytoskeletal components. We have analysed the migratory effects of actin-MAL signalling and of new target genes in non-invasive highly adherent cells. Expression of active MAL impaired migration of both fibroblasts and epithelial cells, whereas dominant-negative constructs and partial knockdown of MAL/MRTF enhanced motility. Knockdown of three newly characterised G-actin-regulated MAL targets, integrin α5, plakophilin 2 (Pkp2) and FHL1, enhanced cell migration. All three were upregulated by external stimulation through actin-MAL-SRF signalling, and MAL and SRF were inducibly recruited to cis-regulatory elements of the integrin α5 and Pkp2 genes. Finally, the reduced migration of epithelial cells stably expressing MAL was partially reversed by knockdown of Pkp2 and FHL1. We conclude that the actin-MAL pathway promotes adhesive gene expression, including integrin α5, Pkp2 and FHL1, and that this is anti-motile for non-invasive cells harbouring high basal activity.
Collapse
Affiliation(s)
- Laura Leitner
- AG Regulation of Gene Expression, Department of Molecular Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Charbonney E, Speight P, Masszi A, Nakano H, Kapus A. β-catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial-myofibroblast transition. Mol Biol Cell 2011; 22:4472-85. [PMID: 21965288 PMCID: PMC3226468 DOI: 10.1091/mbc.e11-04-0335] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two novel mechanisms are shown by which injury of intercellular junctions via β-catenin promotes epithelial–myofibroblast transition. β-Catenin interacts with Smad3, thereby preventing the inhibitory effect of the latter on myocardin-related transcription factor (MRTF), and maintains MRTF stability by inhibiting Smad3-mediated, GSK-3β–dependent degradation of MRTF. Injury to the adherens junctions (AJs) synergizes with transforming growth factor-β1 (TGFβ) to activate a myogenic program (α-smooth muscle actin [SMA] expression) in the epithelium during epithelial–myofibroblast transition (EMyT). Although this synergy plays a key role in organ fibrosis, the underlying mechanisms have not been fully defined. Because we recently showed that Smad3 inhibits myocardin-related transcription factor (MRTF), the driver of the SMA promoter and many other CC(A/T)-rich GG element (CArG) box–dependent cytoskeletal genes, we asked whether AJ components might affect SMA expression through interfering with Smad3. We demonstrate that E-cadherin down-regulation potentiates, whereas β-catenin knockdown inhibits, SMA expression. Contact injury and TGFβ enhance the binding of β-catenin to Smad3, and this interaction facilitates MRTF signaling by two novel mechanisms. First, it inhibits the Smad3/MRTF association and thereby allows the binding of MRTF to its myogenic partner, serum response factor (SRF). Accordingly, β-catenin down-regulation disrupts the SRF/MRTF complex. Second, β-catenin maintains the stability of MRTF by suppressing the Smad3-mediated recruitment of glycogen synthase kinase-3β to MRTF, an event that otherwise leads to MRTF ubiquitination and degradation and the consequent loss of SRF/MRTF–dependent proteins. Thus β-catenin controls MRTF-dependent transcription and emerges as a critical regulator of an array of cytoskeletal genes, the “CArGome.”
Collapse
Affiliation(s)
- Emmanuel Charbonney
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, ON M5B 1W8, Canada
| | | | | | | | | |
Collapse
|
18
|
Citi S, Spadaro D, Schneider Y, Stutz J, Pulimeno P. Regulation of small GTPases at epithelial cell-cell junctions. Mol Membr Biol 2011; 28:427-44. [DOI: 10.3109/09687688.2011.603101] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Morin P, Wickman G, Munro J, Inman GJ, Olson MF. Differing contributions of LIMK and ROCK to TGFβ-induced transcription, motility and invasion. Eur J Cell Biol 2010; 90:13-25. [PMID: 21074289 DOI: 10.1016/j.ejcb.2010.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/18/2010] [Accepted: 09/22/2010] [Indexed: 01/07/2023] Open
Abstract
The ability of transforming growth factor β (TGFβ) to induce epithelial-mesenchymal transition (EMT) is mediated by SMAD-dependent and SMAD-independent pathways such as the activation of Rho GTPase signalling. Upon activation, GTP-bound Rho stimulates the ROCK kinases, which in turn phosphorylate numerous substrates including the LIM kinases (LIMK). The net result of ROCK activation is increased actin-myosin contractile force generation, with a contribution from LIMK-induced actin filament stabilisation. In this study, we made use of siRNA-mediated knockdown and selective inhibitors to determine the contributions of ROCK and LIMK to TGFβ-induced responses. We find that both ROCK and LIMK are required for TGFβ stimulation of serum-response factor (SRF) transcriptional activity and actin stress fibre formation during EMT. In contrast, although LIMK inhibition had little effect on cell motility in scratch wound and Transwell migration assays, ROCK inhibition actually promoted TGFβ-induced cell motility by helping individual cells to break free from the epithelial sheet. Furthermore, we demonstrate that selective inhibition of LIMK, but not ROCK, effectively blocked TGFβ driven invasion through a layer of matrigel extracellular matrix protein. These results indicate that the roles of LIMK and ROCK in the Rho signalling pathway downstream of TGFβ are not identical and suggest that LIMK represents an attractive therapeutic target in TGFβ driven organ fibrosis and metastatic cancer spread.
Collapse
Affiliation(s)
- Pierre Morin
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | |
Collapse
|