1
|
Mohr I, Eutebach M, Knopf MC, Schommen N, Gratz R, Angrand K, Genders L, Brumbarova T, Bauer P, Ivanov R. The small ARF-like 2 GTPase TITAN5 is linked with the dynamic regulation of IRON-REGULATED TRANSPORTER 1. J Cell Sci 2024; 137:jcs263645. [PMID: 39544154 DOI: 10.1242/jcs.263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Iron acquisition is crucial for plants. The abundance of IRON-REGULATED TRANSPORTER 1 (IRT1) is controlled through endomembrane trafficking, a process that requires small ARF-like GTPases. Only few components that are involved in the vesicular trafficking of specific cargo are known. Here, we report that the ARF-like GTPase TITAN5 (TTN5) interacts with the large cytoplasmic variable region and protein-regulatory platform of IRT1. Heterozygous ttn5-1 plants can display reduced root iron reductase activity. This activity is needed for iron uptake via IRT1. Fluorescent fusion proteins of TTN5 and IRT1 colocalize at locations where IRT1 sorting and cycling between the plasma membrane and the vacuole are coordinated. TTN5 can also interact with peripheral membrane proteins that are components of the IRT1 regulation machinery, like the trafficking factor SNX1, the C2 domain protein EHB1 and the SEC14-GOLD protein PATL2. Hence, the link between iron acquisition and vesicular trafficking involving a small GTPase of the ARF family opens up the possibility to study the involvement of TTN5 in nutritional cell biology and the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marie C Knopf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Naima Schommen
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kalina Angrand
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lara Genders
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Qi W, Zhang Y, Li M, Zhang P, Xing J, Chen Y, Zhang L. Endocytic recycling in plants: pathways and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4712-4728. [PMID: 38655916 DOI: 10.1093/jxb/erae188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Endocytic recycling is an intracellular trafficking pathway that returns endocytosed molecules to the plasma membrane via the recycling endosome. This pathway plays a crucial role in remodelling plasma membrane composition and is thus essential for cellular homeostasis. In plants, endocytic recycling regulates the localization and abundance of receptors, transporters, and channels at the plasma membrane that are involved in many aspects of plant growth and development. Despite its importance, the recycling endosome and the underlying sorting mechanisms for cargo recycling in plants remain understudied in comparison to the endocytic recycling pathways in animals. In this review, we focus on the cumulative evidence suggesting the existence of endosomes decorated by regulators that contribute to recycling in plant cells. We summarize the chemical inhibitors used for analysing cargo recycling and discuss recent advances in our understanding of how endocytic recycling participates in various plant cellular and physiological events.
Collapse
Affiliation(s)
- Wencai Qi
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yu Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengting Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Peipei Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanmei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Bugga P, Stoner MW, Manning JR, Mushala BAS, Bhattarai N, Sharifi-Sanjani M, Webster BR, Thapa D, Scott I. Validation of GCN5L1/BLOC1S1/BLOS1 antibodies using knockout cells and tissue. Biochem J 2024; 481:643-651. [PMID: 38683688 DOI: 10.1042/bcj20230302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in many key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Michael W Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Janet R Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Bellina A S Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Nisha Bhattarai
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Maryam Sharifi-Sanjani
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| | - Bradley R Webster
- Department of Urology, Roswell Park Cancer Center, Buffalo, NY 14263, U.S.A
| | - Dharendra Thapa
- Department of Human Performance - Exercise Physiology, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A
| |
Collapse
|
4
|
Bugga P, Stoner MW, Manning JR, Mushala BA, Thapa D, Scott I. Validation of GCN5L1/BLOC1S1/BLOS1 Antibodies Using Knockout Cells and Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550091. [PMID: 37503156 PMCID: PMC10370191 DOI: 10.1101/2023.07.21.550091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in a number of key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael W. Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Janet R. Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bellina A.S. Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dharendra Thapa
- Department of Human Performance - Exercise Physiology, West Virginia University, Morgantown, WV 26506
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
5
|
Zhang L, Guo Y, Zhang Y, Li Y, Pei Y, Zhang M. Regulation of PIN-FORMED Protein Degradation. Int J Mol Sci 2023; 24:ijms24010843. [PMID: 36614276 PMCID: PMC9821320 DOI: 10.3390/ijms24010843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Auxin action largely depends on the establishment of auxin concentration gradient within plant organs, where PIN-formed (PIN) auxin transporter-mediated directional auxin movement plays an important role. Accumulating studies have revealed the need of polar plasma membrane (PM) localization of PIN proteins as well as regulation of PIN polarity in response to developmental cues and environmental stimuli, amongst which a typical example is regulation of PIN phosphorylation by AGCVIII protein kinases and type A regulatory subunits of PP2A phosphatases. Recent findings, however, highlight the importance of PIN degradation in reestablishing auxin gradient. Although the underlying mechanism is poorly understood, these findings provide a novel aspect to broaden the current knowledge on regulation of polar auxin transport. In this review, we summarize the current understanding on controlling PIN degradation by endosome-mediated vacuolar targeting, autophagy, ubiquitin modification and the related E3 ubiquitin ligases, cytoskeletons, plant hormones, environmental stimuli, and other regulators, and discuss the possible mechanisms according to recent studies.
Collapse
Affiliation(s)
- Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yifan Guo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yujie Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yuxin Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel./Fax: +86-023-68251883
| |
Collapse
|
6
|
Zhang Y, Wang LF, Han SY, Ren F, Liu WC. Sorting Nexin1 negatively modulates phosphate uptake by facilitating Phosphate Transporter1;1 degradation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:72-84. [PMID: 35436372 DOI: 10.1111/tpj.15778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
High-affinity phosphate (Pi) transporters (PHTs) PHT1;1 and PHT1;4 are necessary for plant root Pi uptake especially under Pi-deficient conditions, but how their protein stability is modulated remains elusive. Here, we identified a Ttransfer DNA insertion mutant of Sorting Nexin1 (SNX1), which had more Pi content and less anthocyanin accumulation than the wild type under deficient Pi. By contrast, the snx1-2 mutant displayed higher sensitivity to exogenous arsenate in terms of seed germination and root elongation, revealing higher Pi uptake rates. Further study showed that SNX1 could co-localize and interact with PHT1;1 and PHT1;4 in vesicles and at the plasma membrane. Genetic analysis showed that increased Pi content in the snx1-2 mutant under low Pi conditions could be extensively compromised by mutating PHT1;1 in the double mutant snx1-2 pht1;1, revealing that SNX1 is epistatic to PHT1;1. In addition, SNX1 negatively controls PHT1;1 protein stability; therefore, PHT1;1 protein abundance in the plasma membrane was increased in the snx1-2 mutant compared with the wild type under either sufficient or deficient Pi. Together, our study (i) identifies SNX1 as a key modulator of the plant response to low Pi and (ii) unravels its role in the modulation of PHT1;1 protein stability, PHT1;1 accumulation at the plasma membrane, and root Pi uptake.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shu-Yue Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
7
|
Law KC, Chung KK, Zhuang X. An Update on Coat Protein Complexes for Vesicle Formation in Plant Post-Golgi Trafficking. FRONTIERS IN PLANT SCIENCE 2022; 13:826007. [PMID: 35283904 PMCID: PMC8905187 DOI: 10.3389/fpls.2022.826007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 05/13/2023]
Abstract
Endomembrane trafficking is an evolutionarily conserved process for all eukaryotic organisms. It is a fundamental and essential process for the transportation of proteins, lipids, or cellular metabolites. The aforementioned cellular components are sorted across multiple membrane-bounded organelles. In plant cells, the endomembrane mainly consists of the nuclear envelope, endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network or early endosome (TGN/EE), prevacuolar compartments or multivesicular bodies (PVCs/MVBs), and vacuole. Among them, Golgi apparatus and TGN represent two central sorting intermediates for cargo secretion and recycling from other compartments by anterograde or retrograde trafficking. Several protein sorting machineries have been identified to function in these pathways for cargo recognition and vesicle assembly. Exciting progress has been made in recent years to provide novel insights into the sorting complexes and also the underlying sorting mechanisms in plants. Here, we will highlight the recent findings for the adaptor protein (AP) complexes, retromer, and retriever complexes, and also their functions in the related coated vesicle formation in post-Golgi trafficking.
Collapse
Affiliation(s)
| | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Lin D, Yao H, Jia L, Tan J, Xu Z, Zheng W, Xue H. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. THE NEW PHYTOLOGIST 2020; 226:142-155. [PMID: 31745997 PMCID: PMC7065129 DOI: 10.1111/nph.16330] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/10/2019] [Indexed: 05/03/2023]
Abstract
Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.
Collapse
Affiliation(s)
- De‐Li Lin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Yan Yao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Li‐Hua Jia
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Jin‐Fang Tan
- College of Resource and EnvironmentHenan Agricultural University450002ZhengzhouChina
| | - Zhi‐Hong Xu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Wen‐Ming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
- Joint Center for Single Cell BiologySchool of Agriculture and BiologyShanghai Jiao Tong University200240ShanghaiChina
| |
Collapse
|
9
|
Liu C, Shen W, Yang C, Zeng L, Gao C. Knowns and unknowns of plasma membrane protein degradation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:55-61. [PMID: 29807606 DOI: 10.1016/j.plantsci.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lizhang Zeng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Heucken N, Ivanov R. The retromer, sorting nexins and the plant endomembrane protein trafficking. J Cell Sci 2018; 131:jcs.203695. [PMID: 29061884 DOI: 10.1242/jcs.203695] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein sorting in the endomembrane system is responsible for the coordination of cellular functions. Plant intracellular trafficking has its own unique features, which include specific regulatory aspects of endosomal sorting and recycling of cargo proteins, mediated by the retromer complex. Recent work has led to significant progress in understanding the role of Arabidopsis retromer subunits in recycling vacuolar sorting receptors and plasma membrane proteins. As a consequence, members of the sorting nexin (SNX) protein family and their interaction partners have emerged as critical protein trafficking regulators, in particular with regard to adaptation to environmental change, such as temperature fluctuations and nutrient deficiency. In this Review, we discuss the known and proposed functions of the comparatively small Arabidopsis SNX protein family. We review the available information on the role of the three Bin-Amphiphysin-Rvs (BAR)-domain-containing Arabidopsis thaliana (At)SNX proteins and discuss their function in the context of their potential participation in the plant retromer complex. We also summarize the role of AtSNX1-interacting proteins in different aspects of SNX-dependent protein trafficking and comment on the potential function of three novel, as yet unexplored, Arabidopsis SNX proteins.
Collapse
Affiliation(s)
- Nicole Heucken
- Institute of Botany, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Brumbarova T, Ivanov R. SNX1-mediated protein recycling: Piecing together the tissue-specific regulation of arabidopsis iron acquisition. PLANT SIGNALING & BEHAVIOR 2018; 13:e1411451. [PMID: 29219710 PMCID: PMC5790414 DOI: 10.1080/15592324.2017.1411451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endomembrane protein trafficking has emerged as important means of regulating stress responses in plants. The Arabidopsis SNX1 protein is involved in recycling the iron transporter IRT1, thus promoting its presence at the plasma membrane. SNX1 and its interacting partners undergo stress-related regulation at both transcriptional and posttranslational level, which may include differential regulation at tissue level. Based on this, we explore the tissue-specific regulation of iron import, specifically concentrating on the factors involved in the expression and recycling of IRT1 in root tissues. We propose that different processes affecting IRT1 regulation may lead to similar outcomes, allowing for fine-tuning iron acquisition and distribution.
Collapse
Affiliation(s)
- Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
- CONTACT Rumen Ivanov Institute of Botany Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Oda Y. Emerging roles of cortical microtubule-membrane interactions. JOURNAL OF PLANT RESEARCH 2018; 131:5-14. [PMID: 29170834 DOI: 10.1007/s10265-017-0995-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
13
|
Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017; 5:proteomes5030016. [PMID: 28698516 PMCID: PMC5620533 DOI: 10.3390/proteomes5030016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.
Collapse
|
14
|
Paez Valencia J, Goodman K, Otegui MS. Endocytosis and Endosomal Trafficking in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:309-35. [PMID: 27128466 DOI: 10.1146/annurev-arplant-043015-112242] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Collapse
Affiliation(s)
- Julio Paez Valencia
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Kaija Goodman
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Marisa S Otegui
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706; , ,
| |
Collapse
|
15
|
Vergés M. Retromer in Polarized Protein Transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:129-79. [PMID: 26944621 DOI: 10.1016/bs.ircmb.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of receptors for lysosomal hydrolases. It is constituted by a heterotrimer encoded by the vacuolar protein sorting (VPS) gene products Vps26, Vps35, and Vps29, which selects cargo, and a dimer of phosphoinositide-binding sorting nexins, which deforms the membrane. Recent progress in the mechanism of retromer assembly and functioning has strengthened the link between sorting at the endosome and cytoskeleton dynamics. Retromer is implicated in endosomal sorting of many cargos and plays an essential role in plant and animal development. Although it is best known for endosome sorting to the trans-Golgi network, it also intervenes in recycling to the plasma membrane. In polarized cells, such as epithelial cells and neurons, retromer may also be utilized for transcytosis and long-range transport. Considerable evidence implicates retromer in establishment and maintenance of cell polarity. That includes sorting of the apical polarity module Crumbs; regulation of retromer function by the basolateral polarity module Scribble; and retromer-dependent recycling of various cargoes to a certain surface domain, thus controlling polarized location and cell homeostasis. Importantly, altered retromer function has been linked to neurodegeneration, such as in Alzheimer's or Parkinson's disease. This review will underline how alterations in retromer localization and function may affect polarized protein transport and polarity establishment, thereby causing developmental defects and disease.
Collapse
Affiliation(s)
- Marcel Vergés
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain.
| |
Collapse
|
16
|
Brumbarova T, Ivanov R. Differential Gene Expression and Protein Phosphorylation as Factors Regulating the State of the Arabidopsis SNX1 Protein Complexes in Response to Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2016; 7:1456. [PMID: 27725825 PMCID: PMC5035748 DOI: 10.3389/fpls.2016.01456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/12/2016] [Indexed: 05/19/2023]
Abstract
Endosomal recycling of plasma membrane proteins contributes significantly to the regulation of cellular transport and signaling processes. Members of the Arabidopsis (Arabidopsis thaliana) SORTING NEXIN (SNX) protein family were shown to mediate the endosomal retrieval of transporter proteins in response to external challenges. Our aim is to understand the possible ways through which external stimuli influence the activity of SNX1 in the root. Several proteins are known to contribute to the function of SNX1 through direct protein-protein interaction. We, therefore, compiled a list of all Arabidopsis proteins known to physically interact with SNX1 and employed available gene expression and proteomic data for a comprehensive analysis of the transcriptional and post-transcriptional regulation of this interactome. The genes encoding SNX1-interaction partners showed distinct expression patterns with some, like FAB1A, being uniformly expressed, while others, like MC9 and BLOS1, were expressed in specific root zones and cell types. Under stress conditions known to induce SNX1-dependent responses, two genes encoding SNX1-interacting proteins, MC9 and NHX6, showed major gene-expression variations. We could also observe zone-specific transcriptional changes of SNX1 under iron deficiency, which are consistent with the described role of the SNX1 protein. This suggests that the composition of potential SNX1-containing protein complexes in roots is cell-specific and may be readjusted in response to external stimuli. On the level of post-transcriptional modifications, we observed stress-dependent changes in the phosphorylation status of SNX1, FAB1A, and CLASP. Interestingly, the phosphorylation events affecting SNX1 interactors occur in a pattern which is largely complementary to transcriptional regulation. Our analysis shows that transcriptional and post-transcriptional regulation play distinct roles in SNX1-mediated endosomal recycling under external stress.
Collapse
|
17
|
Zhang M, Wang C, Lin Q, Liu A, Wang T, Feng X, Liu J, Han H, Ma Y, Bonea D, Zhao R, Hua X. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:582-99. [PMID: 26072661 DOI: 10.1111/tpj.12911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 05/24/2023]
Abstract
Auxin polar transport mediated by a group of Pin-formed (PIN) transporters plays important roles in plant root development. However, the mechanism underlying the PIN expression and targeting in response to different developmental and environmental stimuli is still not fully understood. Here, we report a previously uncharacterized gene SSR1, which encodes a mitochondrial protein with tetratricopeptide repeat (TPR) domains, and show its function in root development in Arabidopsis thaliana. In ssr1-2, a SSR1 knock-out mutant, the primary root growth was dramatically inhibited due to severely impaired cell proliferation and cell elongation. Significantly lowered level of auxin was found in ssr1-2 roots by auxin measurement and was further supported by reduced expression of DR5-driven reporter gene. As a result, the maintenance of the root stem cell niche is compromised in ssr1-2. It is further revealed that the expression level of several PIN proteins, namely, PIN1, PIN2, PIN3, PIN4 and PIN7, were markedly reduced in ssr1-2 roots. In particular, we showed that the reduced protein level of PIN2 on cell membrane in ssr1-2 is due to impaired retrograde trafficking, possibly resulting from a defect in retromer sorting system, which destines PIN2 for degradation in vacuoles. In conclusion, our results indicated that SSR1 is functioning in root development in Arabidopsis, possibly by affecting PIN protein expression and subcellular targeting.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cuiping Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingfang Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Aihua Liu
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ting Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xuanjun Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huiling Han
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Diana Bonea
- Department of Biological Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Xuejun Hua
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
18
|
Ruan Y, Wasteneys GO. CLASP: a microtubule-based integrator of the hormone-mediated transitions from cell division to elongation. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:149-158. [PMID: 25460080 DOI: 10.1016/j.pbi.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/18/2014] [Accepted: 11/01/2014] [Indexed: 05/17/2023]
Abstract
Plants use robust mechanisms to optimize organ size to prevailing conditions. Modulating the transition from cell division to elongation dramatically affects morphology and size. Although it is well established that auxin, cytokinin and brassinosteroid mediate these transitions, recent works show that the cytoskeleton, which is normally thought to act downstream of these hormones, plays a key role in this regulatory process. In particular, the microtubule-associated protein CLASP has a dual role in meristem maintenance. CLASP modulates levels of the auxin efflux carrier PIN2 by tethering SNX1 endosomes to cortical microtubules, which in turn fine tunes auxin maxima in the root apical meristem. CLASP is also required for transfacial microtubule bundle formation at the sharp cell edges, a feature strongly associated with maintaining the capacity for further cell division.
Collapse
Affiliation(s)
- Yuan Ruan
- The University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Geoffrey O Wasteneys
- The University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
19
|
Zhang A, He X, Zhang L, Yang L, Woodman P, Li W. Biogenesis of lysosome-related organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments. J Biol Chem 2014; 289:29180-94. [PMID: 25183008 DOI: 10.1074/jbc.m114.576561] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.
Collapse
Affiliation(s)
- Aili Zhang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100039, China, and
| | - Xin He
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Zhang
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Lin Yang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Philip Woodman
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Wei Li
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
20
|
Habets MEJ, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. THE NEW PHYTOLOGIST 2014; 203:362-377. [PMID: 24863651 DOI: 10.1111/nph.12831] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/01/2014] [Indexed: 05/21/2023]
Abstract
Plants master the art of coping with environmental challenges in two ways: on the one hand, through their extensive defense systems, and on the other, by their developmental plasticity. The plant hormone auxin plays an important role in a plant's adaptations to its surroundings, as it specifies organ orientation and positioning by regulating cell growth and division in response to internal and external signals. Important in auxin action is the family of PIN-FORMED (PIN) auxin transport proteins that generate auxin maxima and minima by driving polar cell-to-cell transport of auxin through their asymmetric subcellular distribution. Here, we review how regulatory proteins, the cytoskeleton, and membrane trafficking affect PIN expression and localization. Transcriptional regulation of PIN genes alters protein abundance, provides tissue-specific expression, and enables feedback based on auxin concentrations and crosstalk with other hormones. Post-transcriptional modification, for example by PIN phosphorylation or ubiquitination, provides regulation through protein trafficking and degradation, changing the direction and quantity of the auxin flow. Several plant hormones affect PIN abundance, resulting in another means of crosstalk between auxin and these hormones. In conclusion, PIN proteins are instrumental in directing plant developmental responses to environmental and endogenous signals.
Collapse
Affiliation(s)
- Myckel E J Habets
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Remko Offringa
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
21
|
Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. FRONTIERS IN PLANT SCIENCE 2013; 4:354. [PMID: 24106493 PMCID: PMC3788588 DOI: 10.3389/fpls.2013.00354] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/22/2013] [Indexed: 05/17/2023]
Abstract
Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of BonnBonn, Germany
| | - Stefano Mancuso
- LINV – DiSPAA, Department of Agri-Food and Environmental Science, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
22
|
Offringa R, Huang F. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:789-808. [PMID: 23945267 DOI: 10.1111/jipb.12096] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/02/2013] [Indexed: 05/27/2023]
Abstract
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.
Collapse
Affiliation(s)
- Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
23
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
24
|
Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO. CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 2013; 24:649-59. [PMID: 23477787 DOI: 10.1016/j.devcel.2013.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/23/2012] [Accepted: 02/06/2013] [Indexed: 11/29/2022]
Abstract
Polarized movement of auxin generates concentration gradients within plant tissues to control cell division patterns and growth direction by modulating microtubule organization. In this study, we identify a reverse mechanism, wherein microtubules influence polar auxin transport. We show that the microtubule-associated protein CLASP interacts with the retromer component sorting nexin 1 (SNX1) to mediate an association between endosomes and microtubules. clasp-1 null mutants display aberrant SNX1 endosomes, as do wild-type plants treated with microtubule-depolymerizing drugs. Consistent with SNX1's role in trafficking of the auxin efflux carrier PIN-FORMED2 (PIN2), clasp-1 mutant plants have enhanced PIN2 degradation, and PIN2 movement to lytic vacuoles is rapidly induced by depolymerization of microtubules. clasp-1 mutants display aberrant auxin distribution and exhibit numerous auxin-related phenotypes. In addition to mechanistically linking auxin transport and microtubules, our data identify a ubiquitous endosome-microtubule association in plants.
Collapse
Affiliation(s)
- Chris Ambrose
- Department of Botany, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
26
|
Yang Q, He X, Yang L, Zhou Z, Cullinane AR, Wei A, Zhang Z, Hao Z, Zhang A, He M, Feng Y, Gao X, Gahl WA, Huizing M, Li W. The BLOS1-interacting protein KXD1 is involved in the biogenesis of lysosome-related organelles. Traffic 2012; 13:1160-9. [PMID: 22554196 DOI: 10.1111/j.1600-0854.2012.01375.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 12/24/2022]
Abstract
Biogenesis of lysosome-related organelles (LROs) complex-1 (BLOC-1) is an eight-subunit complex involved in lysosomal trafficking. Interacting proteins of these subunits expand the understanding of its biological functions. With the implementation of the naïve Bayesian analysis, we found that a human uncharacterized 20 kDa coiled-coil KxDL protein, KXD1, is a BLOS1-interacting protein. In vitro binding assays confirmed the interaction between BLOS1 and KXD1. The mouse KXD1 homolog was widely expressed and absent in Kxd1 knockout (KO) mice. BLOS1 was apparently reduced in Kxd1-KO mice. Mild defects in the melanosomes of the retinal pigment epithelia and in the platelet dense granules of the Kxd1-KO mouse were observed, mimicking a mouse model of mild Hermansky-Pudlak syndrome that affects the biogenesis of LROs.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hayes MJ, Bryon K, Satkurunathan J, Levine TP. Yeast homologues of three BLOC-1 subunits highlight KxDL proteins as conserved interactors of BLOC-1. Traffic 2011; 12:260-8. [PMID: 21159114 PMCID: PMC3146049 DOI: 10.1111/j.1600-0854.2010.01151.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Biogenesis of lysosome-related organelle complex-1 (BLOC-1) is one of the four multi-subunit complexes implicated in sorting cargo to lysosome-related organelles, as loss of function of any of these complexes causes Hermansky-Pudlak syndrome. Eight subunits of BLOC-1 interact with each other and with many other proteins. Identifying new interactors of BLOC-1 will increase understanding of its mechanism of action, and studies in model organisms are useful for finding such interactors. PSI-BLAST searches identify homologues in diverse model organisms, but there are significant gaps for BLOC-1, with none of its eight subunits found in Saccharomyces cerevisiae. Here we use more sensitive searches to identify distant homologues for three BLOC-1 subunits in S. cerevisiae: Blos1, snapin and cappuccino (cno). Published data on protein interactions show that in yeast these are likely to form a complex with three other proteins. One of these is the yeast homologue of the previously uncharacterized KxDL protein, which also interacts with Blos1 and cno in higher eukaryotes, suggesting that KxDL proteins are key interactors with BLOC-1.
Collapse
Affiliation(s)
- Matthew J Hayes
- Department of Cell Biology, UCL Institute of Ophthalmology, Bath St, London EC1V 9EL, UK
| | - Kimberley Bryon
- Department of Cell Biology, UCL Institute of Ophthalmology, Bath St, London EC1V 9EL, UK
| | - Janani Satkurunathan
- Department of Cell Biology, UCL Institute of Ophthalmology, Bath St, London EC1V 9EL, UK
| | - Timothy P Levine
- Department of Cell Biology, UCL Institute of Ophthalmology, Bath St, London EC1V 9EL, UK
| |
Collapse
|