1
|
Rodriguez-Rodriguez C, González-Mancha N, Ochoa-Echeverría A, Mérida I. Sorting nexin 27-dependent regulation of Lck and CD4 tunes the initial stages of T-cell activation. J Leukoc Biol 2024; 116:793-806. [PMID: 38648515 DOI: 10.1093/jleuko/qiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Sorting nexin 27 is a unique member of the sorting nexin family of proteins that mediates the endosome-to-plasma membrane trafficking of cargos bearing a PSD95/Dlg1/ZO-1 (PDZ)-binding motif. In brain, sorting nexin 27 regulates synaptic plasticity, and its dysregulation contributes to cognitive impairment and neuronal degeneration. In T lymphocytes, sorting nexin 27 partners with diacylglycerol kinase ζ to facilitate polarized traffic and signaling at the immune synapse. By silencing sorting nexin 27 expression in a human T-cell line, we demonstrate that sorting nexin 27 is a key regulator of the early T-cell tyrosine-based signaling cascade. Sorting nexin 27 transcriptionally controls CD4 abundance in resting conditions and that of its associated molecule, Lck. This guarantees the adequate recruitment of Lck at the immune synapse, which is indispensable for subsequent activation of tyrosine phosphorylation-regulated events. In contrast, reduced sorting nexin 27 expression enhances NF-κB-dependent induction of CXCR4 and triggers production of lytic enzymes and proinflammatory cytokines. These results provide mechanistic explanation to previously described sorting nexin 27 function in the control of immune synapse organization and indicate that impaired sorting nexin 27 expression contributes to CD4 T-cell dysfunction.
Collapse
Affiliation(s)
- Cristina Rodriguez-Rodriguez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Natalia González-Mancha
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
2
|
Broniarczyk J, Trejo-Cerro O, Massimi P, Kavčič N, Myers MP, Banks L. HPV-18 E6 enhances the interaction between EMILIN2 and SNX27 to promote WNT signaling. J Virol 2024; 98:e0073524. [PMID: 38874360 PMCID: PMC11265340 DOI: 10.1128/jvi.00735-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.
Collapse
Affiliation(s)
- Justyna Broniarczyk
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nežka Kavčič
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
3
|
Lu J, Zhou H, Chen Y, Xia X, Yang J, Ma J, Tian J, Wang S. Tfh cell-derived small extracellular vesicles exacerbate the severity of collagen-induced arthritis by enhancing B-cell responses. J Autoimmun 2024; 146:103235. [PMID: 38696926 DOI: 10.1016/j.jaut.2024.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuxuan Chen
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
4
|
Barrado-Gil L, García-Dorival I, Galindo I, Alonso C, Cuesta-Geijo MÁ. Insights into the function of ESCRT complex and LBPA in ASFV infection. Front Cell Infect Microbiol 2023; 13:1163569. [PMID: 38125905 PMCID: PMC10731053 DOI: 10.3389/fcimb.2023.1163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.
Collapse
Affiliation(s)
| | | | | | | | - Miguel Ángel Cuesta-Geijo
- Departmento Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
5
|
Deb S, Sun J. Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers. Cancers (Basel) 2022; 15:cancers15010070. [PMID: 36612066 PMCID: PMC9818000 DOI: 10.3390/cancers15010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
SNX27 belongs to the sorting nexin (SNX) family of proteins that play a critical role in protein sorting and trafficking in the endocytosis pathway. This protein family is characterized by the presence of a Phox (PX) domain; however, SNX27 is unique in containing an additional PDZ domain. Recently, SNX27 has gained popularity as an important sorting protein that is associated with the retromer complex and mediates the recycling of internalized proteins from endosomes to the plasma membrane in a PDZ domain-dependent manner. Over 100 cell surface proteins have been identified as binding partners of the SNX27-retromer complex. However, the roles and underlying mechanisms governed by SNX27 in tumorigenesis remains to be poorly understood. Many of its known binding partners include several G-protein coupled receptors, such as β2-andrenergic receptor and parathyroid hormone receptor, are associated with multiple pathways implicated in oncogenic signaling and tumorigenesis. Additionally, SNX27 mediates the recycling of GLUT1 and the activation of mTORC1, both of which can regulate intracellular energy balance and promote cell survival and proliferation under conditions of nutrient deprivation. In this review, we summarize the structure and fundamental roles of SNX proteins, with a focus on SNX27, and provide the current evidence indicating towards the role of SNX27 in human cancers. We also discuss the gap in the field and future direction of SNX27 research. Insights into the emerging roles and mechanism of SNX27 in cancers will provide better development strategies to prevent and treat tumorigenesis.
Collapse
Affiliation(s)
- Shreya Deb
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois at Chicago (UIC) Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-312-996-5020
| |
Collapse
|
6
|
González-Mancha N, Rodríguez-Rodríguez C, Alcover A, Merida I. Sorting Nexin 27 Enables MTOC and Secretory Machinery Translocation to the Immune Synapse. Front Immunol 2022; 12:814570. [PMID: 35095913 PMCID: PMC8790036 DOI: 10.3389/fimmu.2021.814570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Sorting nexin 27 (SNX27) association to the retromer complex mediates intracellular trafficking of cargoes containing PSD95/Dlg1/ZO-1 (PDZ)-binding C-terminal sequences from endosomes to the cell surface, preventing their lysosomal degradation. Antigen recognition by T lymphocyte leads to the formation of a highly organized structure named the immune synapse (IS), which ensures cell-cell communication and sustained T cell activation. At the neuronal synapse, SNX27 recycles PDZ-binding receptors and its defective expression is associated with synaptic dysfunction and cognitive impairment. In T lymphocytes, SNX27 was found localized at recycling endosomal compartments that polarized to the IS, suggesting a function in polarized traffic to this structure. Proteomic analysis of PDZ-SNX27 interactors during IS formation identify proteins with known functions in cytoskeletal reorganization and lipid regulation, such as diacylglycerol (DAG) kinase (DGK) ζ, as well as components of the retromer and WASH complex. In this study, we investigated the consequences of SNX27 deficiency in cytoskeletal reorganization during IS formation. Our analyses demonstrate that SNX27 controls the polarization towards the cell-cell interface of the PDZ-interacting cargoes DGKζ and the retromer subunit vacuolar protein sorting protein 26, among others. SNX27 silencing abolishes the formation of a DAG gradient at the IS and prevents re-localization of the dynactin complex component dynactin-1/p150Glued, two events that correlate with impaired microtubule organizing center translocation (MTOC). SNX27 silenced cells show marked alteration in cytoskeleton organization including a failure in the organization of the microtubule network and defects in actin clearance at the IS. Reduced SNX27 expression was also found to hinder the arrangement of signaling microclusters at the IS, as well as the polarization of the secretory machinery towards the antigen presenting cells. Our results broaden the knowledge of SNX27 function in T lymphocytes by showing a function in modulating IS organization through regulated trafficking of cargoes.
Collapse
Affiliation(s)
- Natalia González-Mancha
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Cristina Rodríguez-Rodríguez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés Alcover
- Institut Pasteur, Université de Paris, Unité Biologie Cellulaire des Lymphocytes, INSERM U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Unveiling the cryo-EM structure of retromer. Biochem Soc Trans 2021; 48:2261-2272. [PMID: 33125482 DOI: 10.1042/bst20200552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.
Collapse
|
8
|
Kervin TA, Wiseman BC, Overduin M. Phosphoinositide Recognition Sites Are Blocked by Metabolite Attachment. Front Cell Dev Biol 2021; 9:690461. [PMID: 34368138 PMCID: PMC8340361 DOI: 10.3389/fcell.2021.690461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane readers take part in trafficking and signaling processes by localizing proteins to organelle surfaces and transducing molecular information. They accomplish this by engaging phosphoinositides (PIs), a class of lipid molecules which are found in different proportions in various cellular membranes. The prototypes are the PX domains, which exhibit a range of specificities for PIs. Our meta-analysis indicates that recognition of membranes by PX domains is specifically controlled by modification of lysine and arginine residues including acetylation, hydroxyisobutyrylation, glycation, malonylation, methylation and succinylation of sidechains that normally bind headgroups of phospholipids including organelle-specific PI signals. Such metabolite-modulated residues in lipid binding elements are named MET-stops here to highlight their roles as erasers of membrane reader functions. These modifications are concentrated in the membrane binding sites of half of all 49 PX domains in the human proteome and correlate with phosphoregulatory sites, as mapped using the Membrane Optimal Docking Area (MODA) algorithm. As these motifs are mutated and modified in various cancers and the responsible enzymes serve as potential drug targets, the discovery of MET-stops as a widespread inhibitory mechanism may aid in the development of diagnostics and therapeutics aimed at the readers, writers and erasers of the PI code.
Collapse
Affiliation(s)
- Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brittany C Wiseman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Molecular and Cellular Biology, MacEwan University, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| |
Collapse
|
9
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
10
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
11
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Chandra M, Kendall AK, Jackson LP. Toward Understanding the Molecular Role of SNX27/Retromer in Human Health and Disease. Front Cell Dev Biol 2021; 9:642378. [PMID: 33937239 PMCID: PMC8083963 DOI: 10.3389/fcell.2021.642378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Aberrations in membrane trafficking pathways have profound effects in cellular dynamics of cellular sorting processes and can drive severe physiological outcomes. Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-FERM domain family and is required for endosomal recycling of many important transmembrane receptors. Multiple studies have shown SNX27-mediated recycling requires association with retromer, one of the best-known regulators of endosomal trafficking. SNX27/retromer downregulation is strongly linked to Down's Syndrome (DS) via glutamate receptor dysfunction and to Alzheimer's Disease (AD) through increased intracellular production of amyloid peptides from amyloid precursor protein (APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel trafficking, and its over-expression is linked to tumorigenesis, cancer progression, and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer is vital for normal cellular function to prevent human diseases. The role of SNX27 in regulating cargo recycling from endosomes to the cell surface is firmly established, but how SNX27 assembles with retromer to generate tubulovesicular carriers remains elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent neurodegenerative disease is now an emerging area of study. This review will provide an update on our molecular understanding of endosomal trafficking events mediated by the SNX27/retromer complex on endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
13
|
Ishizaki A, Murakami C, Yamada H, Sakane F. Diacylglycerol Kinase η Activity in Cells Using Protein Myristoylation and Cellular Phosphatidic Acid Sensor. Lipids 2021; 56:449-458. [PMID: 33624314 DOI: 10.1002/lipd.12301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol to produce phosphatidic acid (PtdOH) and regulates the balance between two lipid second messengers: diacylglycerol and PtdOH. Several lines of evidence suggest that the η isozyme of DGK is involved in the pathogenesis of bipolar disorder. However, the detailed molecular mechanisms regulating the pathophysiological functions remain unclear. One reason is that it is difficult to detect the cellular activity of DGKη. To overcome this difficulty, we utilized protein myristoylation and a cellular PtdOH sensor, the N-terminal region of α-synuclein (α-Syn-N). Although DGKη expressed in COS-7 cells was broadly distributed in the cytoplasm, myristoylated (Myr)-AcGFP-DGKη and Myr-AcGFP-DGKη-KD (inactive (kinase-dead) mutant) were substantially localized in the plasma membrane. Moreover, DsRed monomer-α-Syn-N significantly colocalized with Myr-AcGFP-DGKη but not Myr-AcGFP-DGKη-KD at the plasma membrane. When COS-7 cells were osmotically shocked, all DGKη constructs were exclusively translocated to osmotic shock-responsive granules (OSRG). DsRed monomer-α-Syn-N markedly colocalized with only Myr-AcGFP-DGKη at OSRG and exhibited a higher signal/background ratio (3.4) than Myr-AcGFP-DGKη at the plasma membrane in unstimulated COS-7 cells (2.5), indicating that α-Syn-N more effectively detects Myr-AcGFP-DGKη activity in OSRG. Therefore, these results demonstrated that the combination of myristoylation and the PtdOH sensor effectively detects DGKη activity in cells and that this method is convenient to examine the molecular functions of DGKη. Moreover, this method will be useful for the development of drugs targeting DGKη. Furthermore, the combination of myristoylation (intensive accumulation in membranes) and α-Syn-N can be applicable to assays for various cytosolic PtdOH-generating enzymes.
Collapse
Affiliation(s)
- Ayuka Ishizaki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
14
|
Mao L, Liao C, Qin J, Gong Y, Zhou Y, Li S, Liu Z, Deng H, Deng W, Sun Q, Mo X, Xue Y, Billadeau DD, Dai L, Li G, Jia D. Phosphorylation of SNX27 by MAPK11/14 links cellular stress-signaling pathways with endocytic recycling. J Cell Biol 2021; 220:211812. [PMID: 33605979 PMCID: PMC7901142 DOI: 10.1083/jcb.202010048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Endocytosed proteins can be delivered to lysosomes for degradation or recycled to either the trans-Golgi network or the plasma membrane. It remains poorly understood how the recycling versus degradation of cargoes is determined. Here, we show that multiple extracellular stimuli, including starvation, LPS, IL-6, and EGF treatment, can strongly inhibit endocytic recycling of multiple cargoes through the activation of MAPK11/14. The stress-induced kinases in turn directly phosphorylate SNX27, a key regulator of endocytic recycling, at serine 51 (Ser51). Phosphorylation of SNX27 at Ser51 alters the conformation of its cargo-binding pocket and decreases the interaction between SNX27 and cargo proteins, thereby inhibiting endocytic recycling. Our study indicates that endocytic recycling is highly dynamic and can crosstalk with cellular stress–signaling pathways. Suppression of endocytic recycling and enhancement of receptor lysosomal degradation serve as new mechanisms for cells to cope with stress and save energy.
Collapse
Affiliation(s)
- Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiao Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shasha Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wankun Deng
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Potential role of diacylglycerol kinases in immune-mediated diseases. Clin Sci (Lond) 2021; 134:1637-1658. [PMID: 32608491 DOI: 10.1042/cs20200389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The mechanism promoting exacerbated immune responses in allergy and autoimmunity as well as those blunting the immune control of cancer cells are of primary interest in medicine. Diacylglycerol kinases (DGKs) are key modulators of signal transduction, which blunt diacylglycerol (DAG) signals and produce phosphatidic acid (PA). By modulating lipid second messengers, DGK modulate the activity of downstream signaling proteins, vesicle trafficking and membrane shape. The biological role of the DGK α and ζ isoforms in immune cells differentiation and effector function was subjected to in deep investigations. DGK α and ζ resulted in negatively regulating synergistic way basal and receptor induced DAG signals in T cells as well as leukocytes. In this way, they contributed to keep under control the immune response but also downmodulate immune response against tumors. Alteration in DGKα activity is also implicated in the pathogenesis of genetic perturbations of the immune function such as the X-linked lymphoproliferative disease 1 and localized juvenile periodontitis. These findings suggested a participation of DGK to the pathogenetic mechanisms underlying several immune-mediated diseases and prompted several researches aiming to target DGK with pharmacologic and molecular strategies. Those findings are discussed inhere together with experimental applications in tumors as well as in other immune-mediated diseases such as asthma.
Collapse
|
16
|
González-Mancha N, Mérida I. Interplay Between SNX27 and DAG Metabolism in the Control of Trafficking and Signaling at the IS. Int J Mol Sci 2020; 21:ijms21124254. [PMID: 32549284 PMCID: PMC7352468 DOI: 10.3390/ijms21124254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recognition of antigens displayed on the surface of an antigen-presenting cell (APC) by T-cell receptors (TCR) of a T lymphocyte leads to the formation of a specialized contact between both cells named the immune synapse (IS). This highly organized structure ensures cell–cell communication and sustained T-cell activation. An essential lipid regulating T-cell activation is diacylglycerol (DAG), which accumulates at the cell–cell interface and mediates recruitment and activation of proteins involved in signaling and polarization. Formation of the IS requires rearrangement of the cytoskeleton, translocation of the microtubule-organizing center (MTOC) and vesicular compartments, and reorganization of signaling and adhesion molecules within the cell–cell junction. Among the multiple players involved in this polarized intracellular trafficking, we find sorting nexin 27 (SNX27). This protein translocates to the T cell–APC interface upon TCR activation, and it is suggested to facilitate the transport of cargoes toward this structure. Furthermore, its interaction with diacylglycerol kinase ζ (DGKζ), a negative regulator of DAG, sustains the precise modulation of this lipid and, thus, facilitates IS organization and signaling. Here, we review the role of SNX27, DAG metabolism, and their interplay in the control of T-cell activation and establishment of the IS.
Collapse
|
17
|
Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of α-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J 2019; 287:2212-2234. [PMID: 31722116 DOI: 10.1111/febs.15137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Tracking the localization and dynamics of the intracellular bioactive lipid phosphatidic acid (PA) is important for understanding diverse biological phenomena. Although several PA sensors have been developed, better ones are still needed for comprehensive PA detection in cells. We recently found that α-synuclein (α-Syn) selectively and strongly bound to PA in vitro. Here, we revealed that the N-terminal region of α-Syn (α-Syn-N) specifically bound to PA, with a dissociation constant of 6.6 μm. α-Syn-N colocalized with PA-producing enzymes, diacylglycerol kinase (DGK) β at the plasma membrane (PM), myristoylated DGKζ at the Golgi apparatus, phorbol ester-stimulated DGKγ at the PM, and phospholipase D2 at the PM and Golgi but not with the phosphatidylinositol-4,5-bisphosphate-producing enzyme in COS-7 cells. However, α-Syn-N failed to colocalize with them in the presence of their inhibitors and/or their inactive mutants. These results indicate that α-Syn-N specifically binds to cellular PA and can be applied as an excellent PA sensor.
Collapse
Affiliation(s)
- Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Shotaro Honda
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
18
|
DGKα in Neutrophil Biology and Its Implications for Respiratory Diseases. Int J Mol Sci 2019; 20:ijms20225673. [PMID: 31766109 PMCID: PMC6887790 DOI: 10.3390/ijms20225673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) play a key role in phosphoinositide signaling by removing diacylglycerol and generating phosphatidic acid. Besides the well-documented role of DGKα and DGKζ as negative regulators of lymphocyte responses, a robust body of literature points to those enzymes, and specifically DGKα, as crucial regulators of leukocyte function. Upon neutrophil stimulation, DGKα activation is necessary for migration and a productive response. The role of DGKα in neutrophils is evidenced by its aberrant behavior in juvenile periodontitis patients, which express an inactive DGKα transcript. Together with in vitro experiments, this suggests that DGKs may represent potential therapeutic targets for disorders where inflammation, and neutrophils in particular, plays a major role. In this paper we focus on obstructive respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), but also rare genetic diseases such as alpha-1-antitrypsin deficiency. Indeed, the biological role of DGKα is understudied outside the T lymphocyte field. The recent wave of research aiming to develop novel and specific inhibitors as well as KO mice will allow a better understanding of DGK's role in neutrophilic inflammation. Better knowledge and pharmacologic tools may also allow DGK to move from the laboratory bench to clinical trials.
Collapse
|
19
|
Abstract
OTULIN (OTU Deubiquitinase With Linear Linkage Specificity) specifically hydrolyzes methionine1 (Met1)-linked ubiquitin chains conjugated by LUBAC (linear ubiquitin chain assembly complex). Here we report on the mass spectrometric identification of the OTULIN interactor SNX27 (sorting nexin 27), an adaptor of the endosomal retromer complex responsible for protein recycling to the cell surface. The C-terminal PDZ-binding motif (PDZbm) in OTULIN associates with the cargo-binding site in the PDZ domain of SNX27. By solving the structure of the OTU domain in complex with the PDZ domain, we demonstrate that a second interface contributes to the selective, high affinity interaction of OTULIN and SNX27. SNX27 does not affect OTULIN catalytic activity, OTULIN-LUBAC binding or Met1-linked ubiquitin chain homeostasis. However, via association, OTULIN antagonizes SNX27-dependent cargo loading, binding of SNX27 to the VPS26A-retromer subunit and endosome-to-plasma membrane trafficking. Thus, we define an additional, non-catalytic function of OTULIN in the regulation of SNX27-retromer assembly and recycling to the cell surface. OTULIN is a linear ubiquitin hydrolase that regulates ubiquitin homeostasis. Here the authors identify the adaptor of the endosomal retromer complex sorting nexin 27 (SNX27) as a binding partner of OTULIN and determine the structure of the OTULIN-SNX27 complex, which reveals a secondary interface through which OTULIN non-catalytically antagonizes SNX27 retromer assembly and cargo loading.
Collapse
|
20
|
Gutiérrez-González LH, Santos-Mendoza T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism. FASEB J 2019; 33:10607-10617. [PMID: 31336050 DOI: 10.1096/fj.201900518r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.
Collapse
Affiliation(s)
- Luis H Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
21
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
22
|
Rincón E, Cejalvo T, Kanojia D, Alfranca A, Rodríguez-Milla MÁ, Gil Hoyos RA, Han Y, Zhang L, Alemany R, Lesniak MS, García-Castro J. Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget 2018; 8:45415-45431. [PMID: 28525366 PMCID: PMC5542197 DOI: 10.18632/oncotarget.17557] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Oncolytic virotherapy represents a promising alternative for cancer treatment; however, viral delivery to the tumor represents a major challenge. Mesenchymal stem cells (MSCs) chemotax to tumors, and can serve as a viral delivery tool. Previously, we demonstrated antitumor therapeutic efficacy for mesenchymal stem cells (MSCs) infected with the oncolytic human adenovirus ICOVIR5 (Celyvir) for treatment of neuroblastoma patients. Given the lack of suitable immunocompetent preclinical models, the mechanism underlying Celyvir antitumor activity remains unknown. In this study, we used the syngeneic murine CMT64 cell line as a human adenovirus-semi-permissive tumor model and demonstrate the homing capacity of mouse Celyvir (mCelyvir) to CMT64 tumors. We found that the combined treatment of mCelyvir and intratumoral injections (i.t.) of ICOVIR5 was more effective than treatment with i.t. ICOVIR5 alone. Interestingly, the superior therapeutic effect of the combined therapy was associated with a higher tumor infiltration of CD8+ and CD4+ T cells. Our findings suggest that the use of MSCs as carriers of oncolytic adenovirus can improve the clinical efficacy of anti-cancer virotherapy, not only by driving the adenovirus to tumors, but also through their potential to recruit T cells.
Collapse
Affiliation(s)
- Esther Rincón
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain.,The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Teresa Cejalvo
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Arantzazu Alfranca
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Yu Han
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Ramón Alemany
- Institut Català d´Oncologia, IDIBELL, Barcelona, Spain
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
23
|
Yang Z, Follett J, Kerr MC, Clairfeuille T, Chandra M, Collins BM, Teasdale RD. Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2. J Biol Chem 2018; 293:6802-6811. [PMID: 29563155 DOI: 10.1074/jbc.ra117.000735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
Alanine-, serine-, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is responsible for the uptake of glutamine into cells, a major source of cellular energy and a key regulator of mammalian target of rapamycin (mTOR) activation. Furthermore, ASCT2 expression has been reported in several human cancers, making it a potential target for both diagnostic and therapeutic purposes. Here we identify ASCT2 as a membrane-trafficked cargo molecule, sorted through a direct interaction with the PDZ domain of sorting nexin 27 (SNX27). Using both membrane fractionation and subcellular localization approaches, we demonstrate that the majority of ASCT2 resides at the plasma membrane. This is significantly reduced within CrispR-mediated SNX27 knockout (KO) cell lines, as it is missorted into the lysosomal degradation pathway. The reduction of ASCT2 levels in SNX27 KO cells leads to decreased glutamine uptake, which, in turn, inhibits cellular proliferation. SNX27 KO cells also present impaired activation of the mTOR complex 1 (mTORC1) pathway and enhanced autophagy. Taken together, our data reveal a role for SNX27 in glutamine uptake and amino acid-stimulated mTORC1 activation via modulation of ASCT2 intracellular trafficking.
Collapse
Affiliation(s)
- Zhe Yang
- From the School of Biomedical Sciences, Faculty of Medicine, and.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jordan Follett
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus C Kerr
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mintu Chandra
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the School of Biomedical Sciences, Faculty of Medicine, and .,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
24
|
SNX27 links DGKζ to the control of transcriptional and metabolic programs in T lymphocytes. Sci Rep 2017; 7:16361. [PMID: 29180720 PMCID: PMC5703713 DOI: 10.1038/s41598-017-16370-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/10/2017] [Indexed: 01/10/2023] Open
Abstract
Sorting nexin 27 (SNX27) recycles PSD-95, Dlg1, ZO-1 (PDZ) domain-interacting membrane proteins and is essential to sustain adequate brain functions. Here we define a fundamental SNX27 function in T lymphocytes controlling antigen-induced transcriptional activation and metabolic reprogramming. SNX27 limits the activation of diacylglycerol (DAG)-based signals through its high affinity PDZ-interacting cargo DAG kinase ζ (DGKζ). SNX27 silencing in human T cells enhanced T cell receptor (TCR)-stimulated activator protein 1 (AP-1)- and nuclear factor κB (NF-κB)-mediated transcription. Transcription did not increase upon DGKζ silencing, suggesting that DGKζ function is dependent on SNX27. The enhanced transcriptional activation in SNX27-silenced cells contrasted with defective activation of the mammalian target of rapamycin (mTOR) pathway. The analysis of Snx27−/− mice supported a role for SNX27 in the control of T cell growth. This study broadens our understanding of SNX27 as an integrator of lipid-based signals with the control of transcription and metabolic pathways.
Collapse
|
25
|
Tello-Lafoz M, Martínez-Martínez G, Rodríguez-Rodríguez C, Albar JP, Huse M, Gharbi S, Merida I. Sorting nexin 27 interactome in T-lymphocytes identifies zona occludens-2 dynamic redistribution at the immune synapse. Traffic 2017; 18:491-504. [PMID: 28477369 DOI: 10.1111/tra.12492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022]
Abstract
T Lymphocyte recognition of antigens leads to the formation of a highly organized structure termed immune synapse (IS) by analogy with the neuronals synapse. Sorting nexin 27 (SNX27) controls the endosomal traffic of PSD95, Dlg1, ZO-1 (PDZ) domain-interacting proteins, and its alteration is associated with impaired synaptic function and neurological diseases. In T-lymphocytes, SNX27-positive vesicles polarize to the IS, the identity of SNX27 interactors in these conditions nonetheless remains unknown. Here we used proteomics to analyze the SNX27 interactome purified from IS-forming T cells, and confirmed the conserved nature of the SNX27/WASH/retromer association in hematopoietic cells. Furthermore, our comparative interactome analysis of SNX27 wild-type and a mutant-deficient for PDZ cargo recognition identified the epithelial cell-cell junction protein zona occludens-2 (ZO-2) as an IS component. Biochemistry and microscopy approaches in T cells confirmed SNX27/ZO-2 PDZ-dependent interaction, and demonstrated its role controlling the dynamic localization of ZO-2 at the IS. This study broadens our knowledge of SNX27 function in T lymphocytes, and suggests that pathways that delimit polarized structures in nervous and epithelial systems also participate in IS regulation.
Collapse
Affiliation(s)
- María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gonzalo Martínez-Martínez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Juan Pablo Albar
- Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Severine Gharbi
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
26
|
Andrada E, Almena M, de Guinoa JS, Merino-Cortes SV, Liebana R, Arcos R, Carrasco S, Carrasco YR, Merida I. Diacylglycerol kinase limits the polarized recruitment of diacylglycerol-enriched organelles to the immune synapse in T cells. Sci Signal 2016; 9:ra127. [DOI: 10.1126/scisignal.aaf7714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol 2016; 23:921-932. [PMID: 27595347 DOI: 10.1038/nsmb.3290] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
Recycling of internalized receptors from endosomal compartments is essential for the receptors' cell-surface homeostasis. Sorting nexin 27 (SNX27) cooperates with the retromer complex in the recycling of proteins containing type I PSD95-Dlg-ZO1 (PDZ)-binding motifs. Here we define specific acidic amino acid sequences upstream of the PDZ-binding motif required for high-affinity engagement of the human SNX27 PDZ domain. However, a subset of SNX27 ligands, such as the β2 adrenergic receptor and N-methyl-D-aspartate (NMDA) receptor, lack these sequence determinants. Instead, we identified conserved sites of phosphorylation that substitute for acidic residues and dramatically enhance SNX27 interactions. This newly identified mechanism suggests a likely regulatory switch for PDZ interaction and protein transport by the SNX27-retromer complex. Defining this SNX27 binding code allowed us to classify more than 400 potential SNX27 ligands with broad functional implications in signal transduction, neuronal plasticity and metabolite transport.
Collapse
|
28
|
Lou J, Rossy J, Deng Q, Pageon SV, Gaus K. New Insights into How Trafficking Regulates T Cell Receptor Signaling. Front Cell Dev Biol 2016; 4:77. [PMID: 27508206 PMCID: PMC4960267 DOI: 10.3389/fcell.2016.00077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023] Open
Abstract
There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.
Collapse
Affiliation(s)
- Jieqiong Lou
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Qiji Deng
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Sophie V Pageon
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
29
|
Ghai R, Tello-Lafoz M, Norwood SJ, Yang Z, Clairfeuille T, Teasdale RD, Mérida I, Collins BM. Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells. J Cell Sci 2016; 128:553-65. [PMID: 25472716 DOI: 10.1242/jcs.158204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sorting nexin 27 (SNX27) controls the endosomal-to-cell-surface recycling of diverse transmembrane protein cargos. Crucial to this function is the recruitment of SNX27 to endosomes which is mediated by the binding of phosphatidylinositol-3-phosphate (PtdIns3P) by its phox homology (PX) domain. In T-cells, SNX27 localizes to the immunological synapse in an activation-dependent manner, but the molecular mechanisms underlying SNX27 translocation remain to be clarified. Here, we examined the phosphoinositide-lipid-binding capabilities of full-length SNX27, and discovered a new PtdInsP-binding site within the C-terminal 4.1, ezrin, radixin, moesin (FERM) domain. This binding site showed a clear preference for bi- and tri-phosphorylated phophoinositides, and the interaction was confirmed through biophysical, mutagenesis and modeling approaches. At the immunological synapse of activated T-cells, cell signaling regulates phosphoinositide dynamics, and we find that perturbing phosphoinositide binding by the SNX27 FERM domain alters the SNX27 distribution in both endosomal recycling compartments and PtdIns(3,4,5)P3-enriched domains of the plasma membrane during synapse formation. Our results suggest that SNX27 undergoes dynamic partitioning between different membrane domains during immunological synapse assembly, and underscore the contribution of unique lipid interactions for SNX27 orchestration of cargo trafficking.
Collapse
|
30
|
Onnis A, Finetti F, Baldari CT. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front Immunol 2016; 7:50. [PMID: 26913036 PMCID: PMC4753310 DOI: 10.3389/fimmu.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena , Siena , Italy
| | | | - Cosima T Baldari
- Department of Life Sciences, University of Siena , Siena , Italy
| |
Collapse
|
31
|
Mei S, Zhu H. Multi-label multi-instance transfer learning for simultaneous reconstruction and cross-talk modeling of multiple human signaling pathways. BMC Bioinformatics 2015; 16:417. [PMID: 26718335 PMCID: PMC4697333 DOI: 10.1186/s12859-015-0841-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Signaling pathways play important roles in the life processes of cell growth, cell apoptosis and organism development. At present the signal transduction networks are far from complete. As an effective complement to experimental methods, computational modeling is suited to rapidly reconstruct the signaling pathways at low cost. To our knowledge, the existing computational methods seldom simultaneously exploit more than three signaling pathways into one predictive model for the discovery of novel signaling components and the cross-talk modeling between signaling pathways. RESULTS In this work, we propose a multi-label multi-instance transfer learning method to simultaneously reconstruct 27 human signaling pathways and model their cross-talks. Computational results show that the proposed method demonstrates satisfactory multi-label learning performance and rational proteome-wide predictions. Some predicted signaling components or pathway targeted proteins have been validated by recent literature. The predicted signaling components are further linked to pathways using the experimentally derived PPIs (protein-protein interactions) to reconstruct the human signaling pathways. Thus the map of the cross-talks via common signaling components and common signaling PPIs is conveniently inferred to provide valuable insights into the regulatory and cooperative relationships between signaling pathways. Lastly, gene ontology enrichment analysis is conducted to gain statistical knowledge about the reconstructed human signaling pathways. CONCLUSIONS Multi-label learning framework has been demonstrated effective in this work to model the phenomena that a signaling protein belongs to more than one signaling pathway. As results, novel signaling components and pathways targeted proteins are predicted to simultaneously reconstruct multiple human signaling pathways and the static map of their cross-talks for further biomedical research.
Collapse
Affiliation(s)
- Suyu Mei
- Software College, Shenyang Normal University, Shenyang, China. .,Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Ish-Shalom E, Meirow Y, Sade-Feldman M, Kanterman J, Wang L, Mizrahi O, Klieger Y, Baniyash M. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications. THE JOURNAL OF IMMUNOLOGY 2015; 196:156-67. [PMID: 26608909 DOI: 10.4049/jimmunol.1402877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.
Collapse
Affiliation(s)
- Eliran Ish-Shalom
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Moshe Sade-Feldman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Julia Kanterman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Lynn Wang
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | | | - Yair Klieger
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Michal Baniyash
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| |
Collapse
|
33
|
Yang Z, Hong LK, Follett J, Wabitsch M, Hamilton NA, Collins BM, Bugarcic A, Teasdale RD. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation. FASEB J 2015; 30:1037-50. [PMID: 26581601 DOI: 10.1096/fj.15-274704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Lee Kian Hong
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Jordan Follett
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Martin Wabitsch
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Nicholas A Hamilton
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Brett M Collins
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Andrea Bugarcic
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Rohan D Teasdale
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
34
|
Yuseff MI, Lennon-Duménil AM. B Cells use Conserved Polarity Cues to Regulate Their Antigen Processing and Presentation Functions. Front Immunol 2015; 6:251. [PMID: 26074919 PMCID: PMC4445385 DOI: 10.3389/fimmu.2015.00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell receptor (BCR). BCR-engaged antigens are transported into specialized lysosomal compartments where proteolysis and production of MHC class II-peptide complexes occur, a process referred to as antigen processing. Expression of MHC class II complexes at the B cell surface allows them to interact with T cells and to receive their help to become fully activated. In this review, we describe how B cells rely on conserved cell polarity mechanisms to coordinate local proteolytic secretion and mechanical forces at the B cell synapse enabling them to efficiently acquire and present extracellular antigens. We foresee that the mechanisms that dictate B cell activation can be used to tune B cell responses in the context of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Maria-Isabel Yuseff
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile , Santiago , Chile
| | | |
Collapse
|
35
|
Tello-Lafoz M, Ghai R, Collins B, Mérida I. A role for novel lipid interactions in the dynamic recruitment of SNX27 to the T-cell immune synapse. BIOARCHITECTURE 2015; 4:215-20. [PMID: 25996807 DOI: 10.1080/19490992.2015.1031950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SNX27 is a member of the sorting nexin family that plays an important role in the recycling of receptors from endosomes to the cell surface. In addition to a PX (Phox homology) domain that regulates its endosomal localization, SNX27 has a unique PDZ (Psd-95/Dlg/ZO1) domain and an atypical FERM (4.1, ezrin, radixin, moesin) domain that both function to bind short peptide sequence motifs in the cytoplasmic domains of the cargo receptors. Using the T cell immune synapse (IS) as a model for polarized protein recycling, we recently identified an additional mechanism that enhances SNX27 localization to the endosomal recycling compartment (ERC). Our study defined a phosphoinositide (PI) lipid-binding site within the SNX27 FERM domain, with a clear preference for bi- and triphosphorylated PIs, which may promote SNX27 localization to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and/or PtdIns(3,4,5)P3-enriched membrane domains. Using fluorescently tagged lipid-binding probes, we studied the kinetics of distinct PIs in living T cells during IS formation. Our results suggest that PtdIns(3,4,5)P3 accumulates at the contact site simultaneously with early SNX27 recruitment to the plasma membrane (PM), and this is partly controlled by by lipid binding through the FERM domain. These studies define 2 independent binding sites for PtdIns-derived lipids in SNX27, that contribute to the dynamic recruitment of SNX27 to distinct membranes during T cell activation.
Collapse
Affiliation(s)
- María Tello-Lafoz
- a Lipid Signaling Laboratory ; Centro Nacional de Biotecnología (CNB)/CSIC ; Madrid , Spain
| | - Rajesh Ghai
- b Institute for Molecular Bioscience ; The University of Queensland ; St. Lucia , Australia.,c Current address: The School of Biotechnology and Biomolecular Sciences , The University of New South Wales , Sydney , NSW , Australia
| | - Brett Collins
- b Institute for Molecular Bioscience ; The University of Queensland ; St. Lucia , Australia
| | - Isabel Mérida
- a Lipid Signaling Laboratory ; Centro Nacional de Biotecnología (CNB)/CSIC ; Madrid , Spain
| |
Collapse
|
36
|
Merida I, Andrada E, Gharbi SI, Avila-Flores A. Redundant and specialized roles for diacylglycerol kinases and in the control of T cell functions. Sci Signal 2015; 8:re6. [DOI: 10.1126/scisignal.aaa0974] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Osborne DG, Piotrowski JT, Dick CJ, Zhang JS, Billadeau DD. SNX17 affects T cell activation by regulating TCR and integrin recycling. THE JOURNAL OF IMMUNOLOGY 2015; 194:4555-66. [PMID: 25825439 DOI: 10.4049/jimmunol.1402734] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
A key component in T cell activation is the endosomal recycling of receptors to the cell surface, thereby allowing continual integration of signaling and Ag recognition. One protein potentially involved in TCR transport is sorting nexin 17 (SNX17). SNX proteins have been found to bind proteins involved in T cell activation, but specifically the role of SNX17 in receptor recycling and T cell activation is unknown. Using immunofluorescence, we find that SNX17 colocalizes with TCR and localizes to the immune synapse in T- conjugates. Significantly, knockdown of the SNX17 resulted in fewer T-APC conjugates, lower CD69, TCR, and LFA-1 surface expression, as well as lower overall TCR recycling compared with control T cells. Lastly, we identified the 4.1/ezrin/radixin/moesin domain of SNX17 as being responsible in the binding and trafficking of TCR and LFA-1 to the cell surface. These data suggest that SNX17 plays a role in the maintenance of normal surface levels of activating receptors and integrins to permit optimum T cell activation at the immune synapse.
Collapse
Affiliation(s)
- Douglas G Osborne
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Joshua T Piotrowski
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Christopher J Dick
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jin-San Zhang
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
38
|
Finetti F, Onnis A, Baldari CT. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. Traffic 2015; 16:241-9. [PMID: 25393976 DOI: 10.1111/tra.12241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023]
Abstract
The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC-associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T-cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane-associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | | | | |
Collapse
|
39
|
Gleeson PA. The role of endosomes in innate and adaptive immunity. Semin Cell Dev Biol 2014; 31:64-72. [PMID: 24631355 DOI: 10.1016/j.semcdb.2014.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 12/16/2022]
Abstract
The regulation of the immune system is critical for the generation of effective immune responses to a range of pathogens, as well as for protection against unwanted responses. The regulation of many immune response pathways are directly dependent on the organisation and activities of intracellular endosomal compartments associated with cargo sorting, membrane trafficking and signalling. Over the last 5-10 years, the appreciation of the important contribution of the endosomal system has expanded dramatically to include antigen presentation of MHC class I, MHC class II and CD1 molecules, as well as the regulation of antigen receptor signalling and pattern recognition receptor signalling of the innate immune system. This review summarises some of the very diverse and key roles played by endosomes in generating effective innate and adaptive immune responses.
Collapse
Affiliation(s)
- Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
40
|
Abstract
Diacylglycerol (DAG), a second messenger generated by phospholipase Cγ1 activity upon engagement of a T-cell receptor, triggers several signaling cascades that play important roles in T cell development and function. A family of enzymes called DAG kinases (DGKs) catalyzes the phosphorylation of DAG to phosphatidic acid, acting as a braking mechanism that terminates DAG-mediated signals. Two DGK isoforms, α and ζ, are expressed predominantly in T cells and synergistically regulate the development of both conventional αβ T cells and invariant natural killer T cells in the thymus. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T-cell hyperactivation upon T cell receptor stimulation and by promoting T-cell anergy. In CD8 cells, reduced DGK activity is associated with enhanced primary responses against viruses and tumors. Recent work also has established an important role for DGK activity at the immune synapse and identified partners that modulate DGK function. In addition, emerging evidence points to previously unappreciated roles for DGK function in directional secretion and T-cell adhesion. This review describes the multitude of roles played by DGKs in T cell development and function and emphasizes recent advances in the field.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
41
|
Wang H, Han M, Whetsell W, Wang J, Rich J, Hallahan D, Han Z. Tax-interacting protein 1 coordinates the spatiotemporal activation of Rho GTPases and regulates the infiltrative growth of human glioblastoma. Oncogene 2013; 33:1558-69. [PMID: 23563176 PMCID: PMC3965267 DOI: 10.1038/onc.2013.97] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 12/28/2022]
Abstract
PDZ domains represent one group of the major structural units that mediate protein interactions in intercellular contact, signal transduction and assembly of biological machineries. TIP-1 protein is composed of a single PDZ domain that distinguishes TIP-1 from other PDZ domain proteins that more often contain multiple protein domains and function as scaffolds for protein complex assembly. However, the biological functions of TIP-1, especially in cell transformation and tumor progression, are still controversial as observed in a variety of cell types. In this study, we have identified ARHGEF7, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as one novel TIP-1 interacting protein in human glioblastoma cells. We found that the presence of TIP-1 protein is essential to the intracellular redistribution of ARHGEF7 and rhotekin, one Rho effector, and the spatiotemporally coordinated activation of Rho GTPases (RhoA, Cdc42 and Rac1) in migrating glioblastoma cells. TIP-1 knockdown resulted in both aberrant localization of ARHGEF7 and rhotekin, as well as abnormal activation of Rho GTPases that was accompanied with impaired motility of glioblastoma cells. Furthermore, TIP-1 knockdown suppressed tumor cell dispersal in orthotopic glioblastoma murine models. We also observed high levels of TIP-1 expression in human glioblastoma specimens, and the elevated TIP-1 levels are associated with advanced staging and poor prognosis in glioma patients. Although more studies are needed to further dissect the mechanism(s) by which TIP-1 modulates the intracellular redistribution and activation of Rho GTPases, this study suggests that TIP-1 holds potential as both a prognostic biomarker and a therapeutic target of malignant gliomas.
Collapse
Affiliation(s)
- H Wang
- 1] Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Han
- 1] Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, China [3] Graduate School, Chinese Academy of Sciences, Beijing, China
| | - W Whetsell
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Wang
- 1] Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Z Han
- 1] Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA [3] Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
42
|
Gharbi SI, Avila-Flores A, Soutar D, Orive A, Koretzky GA, Albar JP, Mérida I. Transient PKCα shuttling to the immunological synapse is governed by (DGK)ζ and regulates L-selectin shedding. J Cell Sci 2013; 126:2176-86. [DOI: 10.1242/jcs.118513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Considerable evidence indicates that diacylglycerol (DAG) generation at the immunological synapse (IS) determines T cell functions by regulating the duration and amplitude of Ras/ERK signals. The exact mechanism by which DAG regulates Ras/ERK activation downstream of the T cell receptor (TCR) nonetheless remains poorly understood. Here we characterize PKCα as a previously unrecognized component of the machinery that translates cell receptor occupancy into Ras/ERK-propagated signals. We show transient translocation of PKCα to the IS, mediated by DAG generation at the contact area. Diacylglycerol kinase (DGK)ζ negatively regulated PKCα translocation kinetics, whereas PKCα activity limited its own persistence at the IS. Coordinated activation of DGKζ and PKCα in response to antigen recognition regulated the amplitude and duration of Ras/ERK activation; this in turn mediated early processes of T cell surface proteolysis such as L-selectin shedding. Analysis of DGKζ-deficient mice further showed that increased DAG signaling is translated to downstream elements of this pathway, as reflected by enhanced PKCα-dependent L-selectin shedding. We propose that early activation of a DAG/PKCα axis contributes to the mechanisms by which antigen affinity translates into TCR biological responses.
Collapse
|
43
|
Hayashi H, Naoi S, Nakagawa T, Nishikawa T, Fukuda H, Imajoh-Ohmi S, Kondo A, Kubo K, Yabuki T, Hattori A, Hirouchi M, Sugiyama Y. Sorting nexin 27 interacts with multidrug resistance-associated protein 4 (MRP4) and mediates internalization of MRP4. J Biol Chem 2012; 287:15054-15065. [PMID: 22411990 PMCID: PMC3340259 DOI: 10.1074/jbc.m111.337931] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/09/2012] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance-associated protein 4 (MRP4/ABCC4) makes a vital contribution to the bodily distribution of drugs and endogenous compounds because of its cellular efflux abilities. However, little is known about the mechanism regulating its cell surface expression. MRP4 has a PDZ-binding motif, which is a potential sequence that modulates the membrane expression of MRP4 via interaction with PDZ adaptor proteins. To investigate this possible relationship, we performed GST pull-down assays and subsequent analysis with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. This method identified sorting nexin 27 (SNX27) as the interacting PDZ adaptor protein with a PDZ-binding motif of MRP4. Its interaction was confirmed by a coimmunoprecipitation study using HEK293 cells. Knockdown of SNX27 by siRNA in HEK293 cells raised MRP4 expression on the plasma membrane, increased the extrusion of 6-[(14)C]mercaptopurine, an MRP4 substrate, and conferred resistance against 6-[(14)C]mercaptopurine. Cell surface biotinylation studies indicated that the inhibition of MRP4 internalization was responsible for these results. Immunocytochemistry and cell surface biotinylation studies using COS-1 cells showed that SNX27 localized to both the early endosome and the plasma membrane. These data suggest that SNX27 interacts with MRP4 near the plasma membrane and promotes endocytosis of MRP4 and thereby negatively regulates its cell surface expression and transport function.
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sotaro Naoi
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Nakagawa
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Nishikawa
- the Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan, and
| | - Hiroyuki Fukuda
- Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinobu Imajoh-Ohmi
- Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayano Kondo
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyotaka Kubo
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Yabuki
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asami Hattori
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masakazu Hirouchi
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Sugiyama
- From the Laboratory of Molecular Pharmacokinetics, Department of Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Rincón E, Gharbi SI, Santos-Mendoza T, Mérida I. Diacylglycerol kinase ζ: At the crossroads of lipid signaling and protein complex organization. Prog Lipid Res 2012; 51:1-10. [DOI: 10.1016/j.plipres.2011.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
46
|
Gharbi SI, Rincón E, Avila-Flores A, Torres-Ayuso P, Almena M, Cobos MA, Albar JP, Mérida I. Diacylglycerol kinase ζ controls diacylglycerol metabolism at the immunological synapse. Mol Biol Cell 2011; 22:4406-14. [PMID: 21937721 PMCID: PMC3216665 DOI: 10.1091/mbc.e11-03-0247] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DGKα and DGKζ negatively regulate the DAG/RasGRP1/Ras pathway in T cells. Study of the specific contribution of each isoform to DAG metabolism during immune synapse formation by use of a combination of RNAi and videomicroscopy techniques identifies DGKζ as mainly responsible for DAG consumption at the immunological synapse. Diacylglycerol (DAG) generation at the T cell immunological synapse (IS) determines the correct activation of antigen-specific immune responses. DAG kinases (DGKs) α and ζ act as negative regulators of DAG-mediated signals by catalyzing DAG conversion to phosphatidic acid (PA). Nonetheless, the specific input of each enzyme and their spatial regulation during IS formation remain uncharacterized. Here we report recruitment of endogenous DGKα and DGKζ to the T cell receptor (TCR) complex following TCR/CD28 engagement. Specific DGK gene silencing shows that PA production at the activated complex depends mainly on DGKζ, indicating functional differences between these proteins. DGKζ kinase activity at the TCR is enhanced by phorbol-12-myristate-13-acetate cotreatment, suggesting DAG-mediated regulation of DGKζ responsiveness. We used GFP-DGKζ and -DGKα chimeras to assess translocation dynamics during IS formation. Only GFP-DGKζ translocated rapidly to the plasma membrane at early stages of IS formation, independent of enzyme activity. Finally, use of a fluorescent DAG sensor confirmed rapid, sustained DAG accumulation at the IS and allowed us to directly correlate membrane translocation of active DGKζ with DAG consumption at the IS. This study highlights a DGKζ-specific function for local DAG metabolism at the IS and offers new clues to its mode of regulation.
Collapse
Affiliation(s)
- Severine I Gharbi
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Dustin ML, Depoil D. New insights into the T cell synapse from single molecule techniques. Nat Rev Immunol 2011; 11:672-84. [PMID: 21904389 DOI: 10.1038/nri3066] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell activation depends on extracellular ligation of the T cell receptor (TCR) by peptide-MHC complexes in a synapse between the T cell and an antigen-presenting cell. The process then requires the assembly of signalling complexes between the TCR and the adaptor protein linker for activation of T cells (LAT), and subsequent filamentous actin (F-actin)-dependent TCR cluster formation. Recent progress in each of these areas, made possible by the emergence of new techniques, has forced us to rethink our assumptions and consider some radical new models. These describe the receptor interaction parameters that control T cell responses and the mechanism by which LAT is recruited to the TCR signalling machinery. This is an exciting time in T cell biology, and further innovation in imaging and genomics is likely to lead to a greater understanding of how T cells are activated.
Collapse
Affiliation(s)
- Michael L Dustin
- Helene and Martin Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, New York 10012, USA.
| | | |
Collapse
|
48
|
Ghai R, Collins BM. PX-FERM proteins: A link between endosomal trafficking and signaling? Small GTPases 2011; 2:259-263. [PMID: 22292128 DOI: 10.4161/sgtp.2.5.17276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 01/08/2023] Open
Abstract
Endosomes are the primary organelle where decisions are made as to whether endocytosed proteins will be sorted into degradative trafficking pathways or recycled back to the plasma membrane. This balance between cellular uptake and recycling regulates the plasma membrane composition and is therefore critical for many cellular processes such as nutrient uptake, neuronal transmission and cell migration.1 In addition to its well-known role in membrane trafficking, the endosome is increasingly being recognized as a critical cellular domain for regulated cell signaling. We recently showed that several proteins that regulate endosomal recycling, SNX17, SNX27 and SNX31 are structurally and functionally related.2 These proteins use an unusual FERM domain to bind specific endosomal cargo molecules, and most interestingly, we also found that these proteins use the same FERM domain to associate with the activated Ras small GTPase. Here we speculate on the potential dual role of the PX-FERM proteins in endosomal transport and as scaffolds that may be involved in endosomal Ras signaling processes.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience; University of Queensland; St. Lucia, Queensland Australia
| | | |
Collapse
|
49
|
New insights in endosomal dynamics and AMPA receptor trafficking. Semin Cell Dev Biol 2011; 22:499-505. [PMID: 21843653 DOI: 10.1016/j.semcdb.2011.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
Abstract
The trafficking mechanisms that control the density of synaptic AMPA-type glutamate receptors have received significant attention because of their importance for regulating excitatory synaptic transmission and synaptic plasticity in the hippocampus. AMPA receptors are synthesized in the neuronal cell body and reach their postsynaptic targets after a complex journey involving multiple transport steps along different cytoskeleton structures and through various stages of the endocytic pathway. Dendritic spines are important sites for AMPA receptor trafficking and contain the basic components of endosomal recycling. On induction of synaptic plasticity, internalized AMPA receptors undergo endosomal sorting and cycle through early endosomes and recycling endosomes back to the plasma membrane (model for long-term potentiation) or target for degradation to the lysosomes (model for long-term depression). Exciting new studies now provide insight in actin-mediated processes that controls endosomal tubule formation and receptor sorting. This review describes the path of AMPA receptor internalization up to sites of recycling and summarizes recent studies on actin-mediated endosomal receptor sorting.
Collapse
|
50
|
Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. Trends Biochem Sci 2011; 36:593-603. [PMID: 21798744 DOI: 10.1016/j.tibs.2011.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022]
Abstract
Diacylglycerol signals by binding and activating C1 domain-containing proteins expressed principally in neuronal and immune tissues. This restricted expression profile suggests that diacylglycerol-regulated signals are particularly relevant in cell-cell communication processes in which active endocytosis and exocytosis take place. Not surprisingly, various experimental approaches have demonstrated a crucial role for diacylglycerol effectors and metabolizing enzymes in the control of immune responses, neuron communication and phagocytosis. Current research delineates a scenario in which coordinated decoding of diacylglycerol signals is translated into complex biological responses such as neuronal plasticity, T cell development or cytolytic killing. Diacylglycerol functions reach maximal diversity in these highly specialized systems in which signal intensity directly regulates distinct biological outcomes. This review brings together the most recent studies, emphasizing the contribution of compartmentalized DAG metabolism to orientated signaling events.
Collapse
|