1
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Sharma P, Chatrathi HE. Insights into the diverse mechanisms and effects of variant CUL3-induced familial hyperkalemic hypertension. Cell Commun Signal 2023; 21:286. [PMID: 37845702 PMCID: PMC10577937 DOI: 10.1186/s12964-023-01269-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/12/2023] [Indexed: 10/18/2023] Open
Abstract
Familial hyperkalemic hypertension (FHHt), also known as Pseudohypoaldosteronism type II (PHAII) or Gordon syndrome is a rare Mendelian disease classically characterized by hyperkalemia, hyperchloremic metabolic acidosis, and high systolic blood pressure. The most severe form of the disease is caused by autosomal dominant variants in CUL3 (Cullin 3), a critical subunit of the multimeric CUL3-RING ubiquitin ligase complex. The recent identification of a novel FHHt disease variant of CUL3 revealed intricacies within the underlying disease mechanism. When combined with studies on canonical CUL3 variant-induced FHHt, these findings further support CUL3's role in regulating renal electrolyte transport and maintaining systemic vascular tone. However, the pathophysiological effects of CUL3 variants are often accompanied by diverse systemic disturbances in addition to classical FHHt symptoms. Recent global proteomic analyses provide a rationale for these systemic disturbances, paving the way for future mechanistic studies to reveal how CUL3 variants dysregulate processes outside of the renovascular axis. Video Abstract.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| | - Harish E Chatrathi
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Uchida S, Mori T, Susa K, Sohara E. NCC regulation by WNK signal cascade. Front Physiol 2023; 13:1081261. [PMID: 36685207 PMCID: PMC9845728 DOI: 10.3389/fphys.2022.1081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
With-no-lysine (K) (WNK) kinases have been identified as the causal genes for pseudohypoaldosteronism type II (PHAII), a rare hereditary hypertension condition characterized by hyperkalemia, hyperchloremic metabolic acidosis, and thiazide-hypersensitivity. We thought that clarifying the link between WNK and NaCl cotransporter (NCC) would bring us new mechanism(s) of NCC regulation. For the first time, we were able to produce a knock-in mouse model of PHAII and anti-phosphorylated NCC antibodies against the putative NCC phosphorylation sites and discover that constitutive activation of NCC and increased phosphorylation of NCC are the primary pathogenesis of the disease in vivo. We have since demonstrated that this regulatory mechanism is mediated by the kinases oxidative stress-response protein 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK) (WNK-OSR1/SPAK-NCC signaling cascade) and that the signaling is not only important in the pathological condition of PHAII but also plays a crucial physiological role in the regulation of NCC.
Collapse
|
5
|
Lin CM, Sung CC, Yang SS, Chen YC, Huang SM, Lin SH. Generation and analysis of pseudohypoaldosteronism type II knock-in mice caused by a nonsense KLHL3 mutation in the Kelch domain. FASEB J 2022; 36:e22363. [PMID: 35621709 DOI: 10.1096/fj.202101827rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Mutations in the Kelch-like 3 (KLHL3) gene are the most common cause of inherited pseudohypoaldosteronism type II (PHAII) featuring thiazide-sensitive hypertension and hyperkalemic metabolic acidosis. Although Klhl3R528H /+ knock-in (KI) mice carrying a missense mutation in the Kelch repeat domain have been reported, nonsense KLHL3 mutations in the same domain that cause PHAII have not been fully investigated in vivo. We generated and analyzed Klhl3 KI mice harboring a nonsense W523X mutation (corresponding to the human KLHL3 W470X mutation). Both heterozygous and homozygous Klhl3W523X /+ KI mice exhibited typical PHAII with low-renin hypertension, hyperkalemia with reduced renal potassium excretion, and hyperchloremic metabolic acidosis. Their kidney tissues showed the presence of Klhl3 mRNA and increased Klhl3 protein levels along with enhanced downstream Wnk1/4-Spak/Osr1-N(k)cc phosphorylation. Increased protein expression of total Spak, phosphor(p-)Spak, total Ncc, and p-Ncc from urinary extracellular vesicles (uEVs) also confirmed the activation of the Wnk-mediated Ncc pathway. In vitro studies showed that the human KLHL3 W470X mutation resulted in increased KLHL3 protein stability and disrupted its binding affinity for WNK1/4, leading to the attenuated degradation and increased abundance of total WNKs. In conclusion, nonsense Klhl3W523X /+ mice recapitulating PHAII phenotypes exhibit Klhl3 protein stability, abrogating its binding to Wnks, with enhanced Ncc expression in the kidney tissue and even in uEVs. Activation of the WNK-mediated Na+ -Cl- co-transporter reiterated the in vivo pathogenic role of nonsense KLHL3 mutations in PHAII.
Collapse
Affiliation(s)
- Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chuan Chen
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. WNK4 kinase: from structure to physiology. Am J Physiol Renal Physiol 2021; 320:F378-F403. [PMID: 33491560 DOI: 10.1152/ajprenal.00634.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | | | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| |
Collapse
|
7
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
8
|
Furusho T, Uchida S, Sohara E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens Res 2020; 43:733-743. [PMID: 32286498 DOI: 10.1038/s41440-020-0437-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline-alanine-rich kinase (SPAK), constituting the WNK-OSR1/SPAK-NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3-KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Taisuke Furusho
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
9
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Lin CM, Cheng CJ, Yang SS, Tseng MH, Yen MT, Sung CC, Lin SH. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain. FASEB J 2018; 33:1051-1061. [PMID: 30148674 DOI: 10.1096/fj.201801023r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Kelch-like 3 ( KLHL3) mutations contributed to the most common causative genes in patients with pseudohypoaldosteronism type II (PHAII); however, the molecular mechanisms of PHAII-causing mutations in BTB domain of KLHL3 in vivo have not been investigated. We generated and analyzed Klhl3 knock-in (KI) mice carrying a missense M131V mutation in the BTB domain (corresponding to human KLHL3 M78V mutation). Klhl3M131V/+ KI mice exhibited typical PHAII phenotype with an exaggerated diuretic response to hydrochlorothiazide. Their kidney tissues showed an unchanged KLHL3, decreased cullin 3 (Cul3), and increased with-no-lysine kinases (WNKs) WNK1 and WNK4 along with an enhanced downstream ste20-related proline/alanine-rich kinase/oxidative stress response kinase 1-N(K)CC phosphorylation. Their Cul3 protein in the cytosol of distal convoluted tubule cells was also significantly attenuated on immunogold-labeling electron microscopy. In microdissected renal tubules, Klhl3M131V/+ KI mice expressed high levels of Wnk4 mRNA in the distal nephron. In vitro coimmunoprecipitation showed the KLHL3 BTB domain mutation retained intact interaction with WNKs but reduced binding to Cul3, thus leading to the increased abundance of total WNKs. In summary, Klhl3M131V/+ KI mice feature typical PHAII with a simultaneous increase of WNK1 and WNK4 through the impaired KLHL3 BTB domain binding to Cul3.-Lin, C.-M., Cheng, C.-J., Yang, S.-S., Tseng, M.-H., Yen, M.-T., Sung, C.-C., Lin, S.-H. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain.
Collapse
Affiliation(s)
- Chien-Ming Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Hua Tseng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Pediatric Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; and
| | - Ming-Tso Yen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Chien Sung
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Ostrosky-Frid M, Castañeda-Bueno M, Gamba G. Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: lessons learned from genetically altered animals. Am J Physiol Renal Physiol 2018; 316:F146-F158. [PMID: 30089030 DOI: 10.1152/ajprenal.00288.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The renal thiazide-sensitive NaCl cotransporter (NCC) is the major salt transport pathway in the distal convoluted tubule of the mammalian nephron. NCC activity is critical for modulation of arterial blood pressure and serum potassium levels. Reduced activity of NCC in genetic diseases results in arterial hypotension and hypokalemia, while increased activity results in genetic diseases featuring hypertension and hyperkalemia. Several hormones and physiological conditions modulate NCC activity through a final intracellular complex pathway involving kinases and ubiquitin ligases. A substantial amount of work has been conducted to understand this pathway in the last 15 yr, but advances over the last 3 yr have helped to begin to understand how these regulatory proteins interact with each other and modulate the activity of this important cotransporter. In this review, we present the current model of NCC regulation by the Cullin 3 protein/Kelch-like 3 protein/with no lysine kinase/STE20-serine-proline alanine-rich kinase (CUL3/KELCH3-WNK-SPAK) pathway. We present a review of all genetically altered mice that have been used to translate most of the proposals made from in vitro experiments into in vivo observations that have helped to elucidate the model at the physiological level. Many questions have been resolved, but some others will require further models to be constructed. In addition, unexpected observations in mice have raised new questions and identified regulatory pathways that were previously unknown.
Collapse
Affiliation(s)
- Mauricio Ostrosky-Frid
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
12
|
Hashimoto H, Nomura N, Shoda W, Isobe K, Kikuchi H, Yamamoto K, Fujimaru T, Ando F, Mori T, Okado T, Rai T, Uchida S, Sohara E. Metformin increases urinary sodium excretion by reducing phosphorylation of the sodium-chloride cotransporter. Metabolism 2018; 85:23-31. [PMID: 29510178 DOI: 10.1016/j.metabol.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Metformin is an antidiabetic drug that is widely used to treat patients with diabetes mellitus. Recent studies have reported that treatment with metformin not only improved blood glucose levels but also reduced blood pressure. However, it remains unclear how metformin reduces blood pressure. We hypothesized that metformin affects sodium reabsorption in the kidneys. METHODS Urinary sodium excretion and expression of renal sodium transporters were examined in 8-week-old male C57BL/6 mice with acute and chronic treatment of metformin. In addition, we examined metformin effects using ex vivo preparations of mice kidney slices. RESULTS In this study, we demonstrated that metformin increased urinary sodium excretion by reducing phosphorylation of the thiazide-sensitive Na-Cl cotransporter (NCC) in acute and chronic metformin administration. We also confirmed reduction of phosphorylated NCC in an ex vivo study. The activity of other renal sodium transporters, such as NKCC2, ENaC, and NHE3 did not show significant changes. WNK-OSR1/SPAK kinase signals were not involved in this inactivation effect of metformin on NCC. CONCLUSION Metformin increased urinary sodium excretion by reducing phosphorylation of NCC, suggesting its role in improving hypertension.
Collapse
Affiliation(s)
- Hiroko Hashimoto
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Wakana Shoda
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tomokazu Okado
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan.
| |
Collapse
|
13
|
Yoshida S, Araki Y, Mori T, Sasaki E, Kasagi Y, Isobe K, Susa K, Inoue Y, Bomont P, Okado T, Rai T, Uchida S, Sohara E. Decreased KLHL3 expression is involved in the pathogenesis of pseudohypoaldosteronism type II caused by cullin 3 mutation in vivo. Clin Exp Nephrol 2018; 22:1251-1257. [PMID: 29869755 DOI: 10.1007/s10157-018-1593-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/25/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four genes: WNK1, WNK4, Kelch-like3 (KLHL3), and cullin3 (CUL3). Recently, it was revealed that CUL3-KLHL3 E3 ligase complex ubiquitinates WNK1 and WNK4, leading to their degradation, and that a common pathogenesis of PHAII is defective WNK degradation due to CUL3-KLHL3 E3 ligase complex impairment. PHAII-causing CUL3 mutations mediate exon9 skipping, producing a CUL3 protein with a 57-amino acid deletion (Δ403-459). However, the pathogenic effects of KLHL3, an adaptor protein that links WNKs with CUL3, in PHAII caused by CUL3 mutation remain unclear. METHODS To clarify detailed pathophysiological mechanisms underlying PHAII caused by CUL3 mutation in vivo, we generated and analyzed knock-in mice carrying the same CUL3 exon9 deletion (CUL3WT/Δex9) as that reported in PHAII patients. RESULTS CUL3WT/Δex9 mice exhibited a PHAII-like phenotype. Interestingly, we confirmed markedly decreased KLHL3 expression in CUL3WT/Δex9 mice by confirming the true KLHL3 band in vivo. However, the expression of other KLHL family proteins, such as KLHL2, was comparable between WT and mutant mice. CONCLUSION KLHL3 expression was decreased in CUL3WT/Δex9 mice. However, expression levels of other KLHL family proteins were comparable between the wild-type and mutant mice. These findings indicate that the decreased abundance of KLHL3 is a specific phenomenon caused by mutant CUL3 (Δexon9). Our findings would improve our understanding of the pathogenesis of PHAII caused by CUL3 mutation in vivo.
Collapse
Affiliation(s)
- Sayaka Yoshida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Yuri Kasagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Pascale Bomont
- Avenir-Atip Team, INM, INSERM, University of Montpellier, 34091, Montpellier Cedex 5, France
| | - Tomokazu Okado
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan.
| |
Collapse
|
14
|
Rafael C, Soukaseum C, Baudrie V, Frère P, Hadchouel J. Consequences of SPAK inactivation on Hyperkalemic Hypertension caused by WNK1 mutations: evidence for differential roles of WNK1 and WNK4. Sci Rep 2018; 8:3249. [PMID: 29459793 PMCID: PMC5818654 DOI: 10.1038/s41598-018-21405-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations of the gene encoding WNK1 [With No lysine (K) kinase 1] or WNK4 cause Familial Hyperkalemic Hypertension (FHHt). Previous studies have shown that the activation of SPAK (Ste20-related Proline/Alanine-rich Kinase) plays a dominant role in the development of FHHt caused by WNK4 mutations. The implication of SPAK in FHHt caused by WNK1 mutation has never been investigated. To clarify this issue, we crossed WNK1+/FHHt mice with SPAK knock-in mice in which the T-loop Thr243 residue was mutated to alanine to prevent activation by WNK kinases. We show that WNK1+/FHHT:SPAK243A/243A mice display an intermediate phenotype, between that of control and SPAK243A/243A mice, with normal blood pressure but hypochloremic metabolic alkalosis. NCC abundance and phosphorylation levels also decrease below the wild-type level in the double-mutant mice but remain higher than in SPAK243A/243A mice. This is different from what was observed in WNK4-FHHt mice in which SPAK inactivation completely restored the phenotype and NCC expression to wild-type levels. Although these results confirm that FHHt caused by WNK1 mutations is dependent on the activation of SPAK, they suggest that WNK1 and WNK4 play different roles in the distal nephron.
Collapse
Affiliation(s)
- Chloé Rafael
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France.,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Sorbonne Université, Paris, France.,INSERM UMR_S1155, Tenon Hospital, Paris, France
| | - Christelle Soukaseum
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France.,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France.,INSERM UMR_S1176, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Baudrie
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France.,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Perrine Frère
- Sorbonne Université, Paris, France.,INSERM UMR_S1155, Tenon Hospital, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France. .,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France. .,Sorbonne Université, Paris, France. .,INSERM UMR_S1155, Tenon Hospital, Paris, France.
| |
Collapse
|
15
|
Koumangoye R, Delpire E. DNPEP is not the only peptidase that produces SPAK fragments in kidney. Physiol Rep 2017; 5:5/21/e13479. [PMID: 29122955 PMCID: PMC5688775 DOI: 10.14814/phy2.13479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
SPAK (STE20/SPS1‐related proline/alanine‐rich kinase) regulates Na+ and Cl− reabsorption in the distal convoluted tubule, and possibly in the thick ascending limb of Henle. This kinase phosphorylates and activates the apical Na‐Cl cotransporter in the DCT. Western blot analysis reveals that SPAK in kidney exists as a full‐length protein as well as shorter fragments that might affect NKCC2 function in the TAL. Recently, we showed that kidney lysates exerts proteolytic activity towards SPAK, resulting in the formation of multiple SPAK fragments with possible inhibitory effects on the kinase. The proteolytic activity is mediated by a Zn2+ metalloprotease inhibited by 1,10‐phenanthroline, DTT, and EDTA. Size exclusion chromatography demonstrated that the protease was a high‐molecular‐weight protein. Protein identification by mass‐spectrometry analysis after ion exchange and size exclusion chromatography identified multiple proteases as possible candidates and aspartyl aminopeptidase, DNPEP, shared all the properties of the kidney lysate activity. Furthermore, recombinant GST‐DNPEP produced similar proteolytic pattern. No mouse knockout model was, however, available to be used as negative control. In this study, we used a DNPEP‐mutant mouse generated by EUCOMM as well as a novel CRISPR/cas9 mouse knockout to assess the activity of their kidney lysates towards SPAK. Two mouse models had to be used because different anti‐DNPEP antibodies provided conflicting data on whether the EUCOMM mouse resulted in a true knockout. We show that in the absence of DNPEP, the kidney lysates retain their ability to cleave SPAK, indicating that DNPEP might have been misidentified as the protease behind the kidney lysate activity, or that the aspartyl aminopeptidase might not be the only protease cleaving SPAK in kidney.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
16
|
WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3. Biochem Biophys Res Commun 2017; 491:727-732. [DOI: 10.1016/j.bbrc.2017.07.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/21/2022]
|
17
|
Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets 2017; 21:795-804. [PMID: 28679296 PMCID: PMC6081737 DOI: 10.1080/14728222.2017.1351949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl- sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl- cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiolgy, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Kasagi Y, Takahashi D, Aida T, Nishida H, Nomura N, Zeniya M, Mori T, Sasaki E, Ando F, Rai T, Uchida S, Sohara E. Impaired degradation of medullary WNK4 in the kidneys of KLHL2 knockout mice. Biochem Biophys Res Commun 2017; 487:368-374. [PMID: 28414128 DOI: 10.1016/j.bbrc.2017.04.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), and Cullin3 (CUL3) genes were identified as being responsible for hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). Normally, the KLHL3/CUL3 ubiquitin ligase complex degrades WNKs. In PHAII, the loss of interaction between KLHL3 and WNK4 increases levels of WNKs because of impaired ubiquitination, leading to abnormal over-activation of the WNK-OSR1/SPAK-NCC cascade in the kidney's distal convoluted tubules (DCT). KLHL2, which is highly homologous to KLHL3, was reported to ubiquitinate and degrade WNKs in vitro. Mutations in KLHL2 have not been reported in patients with PHAII, suggesting that KLHL2 plays a different physiological role than that played by KLHL3 in the kidney. To investigate the physiological roles of KLHL2 in the kidney, we generated KLHL2-/- mice. KLHL2-/- mice did not exhibit increased phosphorylation of the OSR1/SPAK-NCC cascade and PHAII-like phenotype. KLHL2 was predominantly expressed in the medulla compared with the cortex. Accordingly, medullary WNK4 protein levels were significantly increased in the kidneys of KLHL2-/- mice. KLHL2 is indeed a physiological regulator of WNK4 in vivo; however, its function might be different from that of KLHL3 because KLHL2 mainly localized in medulla.
Collapse
Affiliation(s)
- Yuri Kasagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Laboratory of Recombinant Animals, MRI, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062, Japan
| | - Hidenori Nishida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan.
| |
Collapse
|
19
|
Sasaki E, Susa K, Mori T, Isobe K, Araki Y, Inoue Y, Yoshizaki Y, Ando F, Mori Y, Mandai S, Zeniya M, Takahashi D, Nomura N, Rai T, Uchida S, Sohara E. KLHL3 Knockout Mice Reveal the Physiological Role of KLHL3 and the Pathophysiology of Pseudohypoaldosteronism Type II Caused by Mutant KLHL3. Mol Cell Biol 2017; 37:e00508-16. [PMID: 28052936 PMCID: PMC5359427 DOI: 10.1128/mcb.00508-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/17/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3-/- mice that expressed β-galactosidase (β-Gal) under the control of the endogenous KLHL3 promoter. Immunoblots of β-Gal and LacZ staining revealed that KLHL3 was expressed in some organs, such as brain. However, the expression levels of WNK kinases were not increased in any of these organs other than the kidney, where WNK1 and WNK4 increased in KLHL3-/- mice but not in KLHL3+/- mice. KLHL3-/- mice also showed PHAII-like phenotypes, whereas KLHL3+/- mice did not. This clearly demonstrates that the heterozygous deletion of KLHL3 was not sufficient to cause PHAII, indicating that autosomal dominant type PHAII is caused by the dominant negative effect of mutant KLHL3. We further demonstrated that the dimerization of KLHL3 can explain this dominant negative effect. These findings could help us to further understand the physiological roles of KLHL3 and the pathophysiology of PHAII caused by mutant KLHL3.
Collapse
Affiliation(s)
- Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Yoshizaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Takahashi D, Mori T, Sohara E, Tanaka M, Chiga M, Inoue Y, Nomura N, Zeniya M, Ochi H, Takeda S, Suganami T, Rai T, Uchida S. WNK4 is an Adipogenic Factor and Its Deletion Reduces Diet-Induced Obesity in Mice. EBioMedicine 2017; 18:118-127. [PMID: 28314693 PMCID: PMC5405161 DOI: 10.1016/j.ebiom.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 11/25/2022] Open
Abstract
The with-no-lysine kinase (WNK) 4 gene is a causative gene in pseudohypoaldosteronism type II. Although WNKs are widely expressed in the body, neither their metabolic functions nor their extrarenal role is clear. In this study, we found that WNK4 was expressed in mouse adipose tissue and 3T3-L1 adipocytes. In mouse primary preadipocytes and in 3T3-L1 adipocytes, WNK4 was markedly induced in the early phase of adipocyte differentiation. WNK4 expression preceded the expression of key transcriptional factors PPARγ and C/EBPα. WNK4-siRNA-transfected 3T3-L1 cells and human mesenchymal stem cells showed reduced expression of PPARγ and C/EBPα and lipid accumulation. WNK4 protein affected the DNA-binding ability of C/EBPβ and thereby reduced PPARγ expression. In the WNK4−/− mice, PPARγ and C/EBPα expression were decreased in adipose tissues, and the mice exhibited partial resistance to high-fat diet-induced adiposity. These data suggest that WNK4 may be a proadipogenic factor, and offer insights into the relationship between WNKs and energy metabolism. WNK4 regulates adipocyte differentiation in mouse and human preadipocytes. WNK4−/− mice exhibit reduced adiposity and increased insulin sensitivity. WNK4 may be a drug target for diet-induced obesity and salt-sensitive hypertension.
The with-no-lysine kinase (WNK) 4 gene is a causative gene in pseudohypoaldosteronism type II, a hereditary hypertensive disease. Although WNKs are widely expressed in the body and are involved in the pathogenesis of hypertension, neither their metabolic functions nor their extrarenal role is clear. This study demonstrated a contribution of WNK4 to the regulation of core transcriptional factors for adipogenesis and that its depletion indicates some beneficial effects for obesity by a high-fat diet. This study suggests a role of hypertension-causing WNK4 as a proadipogenic factor and offers insights into the relationship between WNKs and energy metabolism.
Collapse
Affiliation(s)
- Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Motoko Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shu Takeda
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan..
| |
Collapse
|
21
|
Hadchouel J, Ellison DH, Gamba G. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. Annu Rev Physiol 2016; 78:367-89. [PMID: 26863326 DOI: 10.1146/annurev-physiol-021115-105431] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.
Collapse
Affiliation(s)
- Juliette Hadchouel
- INSERM UMR970, Paris Cardiovascular Research Center, 75015 Paris, France.,Faculty of Medicine, Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France
| | - David H Ellison
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
22
|
Wang L, Peng JB. Phosphorylation of KLHL3 at serine 433 impairs its interaction with the acidic motif of WNK4: a molecular dynamics study. Protein Sci 2016; 26:163-173. [PMID: 27727489 DOI: 10.1002/pro.3063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/09/2016] [Accepted: 10/09/2016] [Indexed: 12/17/2022]
Abstract
Interaction between the acidic motif (AM) of protein kinase WNK4 and the Kelch domain of KLHL3 are involved in the pathogenesis of pseudohypoaldosteronism type II, a hereditary form of hypertension. This interaction is disrupted by some disease-causing mutations in either WNK4 or KLHL3, or by angiotensin II- and insulin-induced phosphorylation of KLHL3 at serine 433, which is also a site frequently mutated in patients. However, the mechanism by which this phosphorylation disrupts the interaction is unclear. In this study, we approached this problem using molecular dynamics simulation with structural, dynamical and energetic analyses. Results from independent simulations indicate that when S433 was phosphorylated, the electrostatic potential became more negative in the AM binding site of KLHL3 and therefore was unfavorable for binding with the negatively charged AM. In addition, the intermolecular hydrogen bond network that kept the AM stable in the binding site of KLHL3 was disrupted, and the forces for the hydrophobic interactions between the AM of WNK4 and KLHL3 were also reduced. As a result, the weakened interactions were no longer capable of holding the AM of WNK4 at its binding site in KLHL3. In conclusion, phosphorylation of KLHL3 at S433 disrupts the hydrogen bonds, hydrophobic and electrostatic interactions between the Kelch domain of KLHL3 and the AM of WNK4. This study provides a key molecular understanding of the KLHL3-mediated regulation of WNK4, which is an integrative regulator of electrolyte homeostasis and blood pressure regulation in the kidney. Significances Statement: WNK4 is an integrative regulator of electrolyte homeostasis, which is important in the blood pressure regulation by the kidney. Interaction between WNK4 and KLHL3 is a key physiological process that is impaired in a hereditary form of hypertension. This study provides substantial new insights into the role of phosphorylation of KLHL3 in regulating the interaction with WNK4, and therefore advances our understanding of molecular pathogenesis of hypertension and the mechanism of blood pressure regulation.
Collapse
Affiliation(s)
- Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
23
|
Tutakhel OAZ, Jeleń S, Valdez-Flores M, Dimke H, Piersma SR, Jimenez CR, Deinum J, Lenders JW, Hoenderop JGJ, Bindels RJM. Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling. Am J Physiol Renal Physiol 2016; 310:F204-16. [DOI: 10.1152/ajprenal.00429.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/31/2015] [Indexed: 11/22/2022] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) is an important pharmacological target in the treatment of hypertension. The human SLC12A3 gene, encoding NCC, gives rise to three isoforms. Only the third isoform has been extensively investigated. The aim of the present study was, therefore, to establish the abundance and localization of the almost identical isoforms 1 and 2 (NCC1/2) in the human kidney and to determine their functional properties and regulation in physiological conditions. Immunohistochemical analysis of NCC1/2 in the human kidney revealed that NCC1/2 localizes to the apical plasma membrane of the distal convoluted tubule. Importantly, NCC1/2 mRNA constitutes ∼44% of all NCC isoforms in the human kidney. Functional analysis performed in the Xenopus laevis oocyte revealed that thiazide-sensitive 22Na+ transport of NCC1 was significantly increased compared with NCC3. Mimicking a constitutively active phosphorylation site at residue 811 (S811D) in NCC1 further augmented Na+ transport, while a nonphosphorylatable variant (S811A) of NCC1 prevented this enhanced response. Analysis of human urinary exosomes demonstrated that water loading in human subjects significantly reduces the abundance of NCC1/2 in urinary exosomes. The present study highlights that previously underrepresented NCC1/2 is a fully functional thiazide-sensitive NaCl-transporting protein. Being significantly expressed in the kidney, it may constitute a unique route of renal NaCl reabsorption and could, therefore, play an important role in blood pressure regulation.
Collapse
Affiliation(s)
- Omar A. Z. Tutakhel
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabina Jeleń
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Valdez-Flores
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Sander R. Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacques W. Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; and
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway. Sci Rep 2016; 6:18710. [PMID: 26732173 PMCID: PMC4702109 DOI: 10.1038/srep18710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/23/2015] [Indexed: 12/24/2022] Open
Abstract
The With No lysine [K] (WNK)-Ste20-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway has been reported to be a crucial signaling pathway for triggering pseudohypoaldosteronism type II (PHAII), an autosomal dominant hereditary disease that is characterized by hypertension. However, the molecular mechanism(s) by which the WNK-SPAK/OSR1 pathway is regulated remain unclear. In this report, we identified WNK4 as an interacting partner of a recently identified MAP3K, apoptosis signal-regulating kinase 3 (ASK3). We found that WNK4 is phosphorylated in an ASK3 kinase activity-dependent manner. By exploring the ASK3-dependent phosphorylation sites, we identified Ser575 as a novel phosphorylation site in WNK4 by LC-MS/MS analysis. ASK3-dependent WNK4 Ser575 phosphorylation was mediated by the p38MAPK-MAPK-activated protein kinase (MK) pathway. Osmotic stress, as well as hypotonic low-chloride stimulation, increased WNK4 Ser575 phosphorylation via the p38MAPK-MK pathway. ASK3 was required for the p38MAPK activation induced by hypotonic stimulation but was not required for that induced by hypertonic stimulation or hypotonic low-chloride stimulation. Our results suggest that the p38MAPK-MK pathway might regulate WNK4 in an osmotic stress-dependent manner but its upstream regulators might be divergent depending on the types of osmotic stimuli.
Collapse
|
25
|
Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3. Biochem Biophys Res Commun 2015; 467:229-34. [DOI: 10.1016/j.bbrc.2015.09.184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/29/2015] [Indexed: 01/09/2023]
|
26
|
Involvement of selective autophagy mediated by p62/SQSTM1 in KLHL3-dependent WNK4 degradation. Biochem J 2015; 472:33-41. [DOI: 10.1042/bj20150500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
WNK4 is degraded not only by proteasomes but also by p62–KLHL3-mediated selective autophagy, which may be involved in WNK regulation under certain pathophysiological conditions.
Collapse
|
27
|
Araki Y, Rai T, Sohara E, Mori T, Inoue Y, Isobe K, Kikuchi E, Ohta A, Sasaki S, Uchida S. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene. Biol Open 2015; 4:1509-17. [PMID: 26490675 PMCID: PMC4728349 DOI: 10.1242/bio.013276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207−1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3G(−1)A/+ knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. Summary: A knock-in mutation in intron 8 of Cul3 in mice led to decreased Cul3 protein expression. Decreased Cul3 protein expression alone did not cause pseudohypoaldosteronism type II (PHAII).
Collapse
Affiliation(s)
- Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Eriko Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Akihito Ohta
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| |
Collapse
|
28
|
Mandai S, Mori T, Sohara E, Rai T, Uchida S. Generation of Hypertension-Associated STK39 Polymorphism Knockin Cell Lines With the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 System. Hypertension 2015; 66:1199-206. [PMID: 26416847 DOI: 10.1161/hypertensionaha.115.05872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
Previous genome-wide association studies identified serine threonine kinase 39 (STK39), encoding STE20/SPS1-related proline/alanine-rich kinase, as one of a limited number of hypertension susceptibility genes. A recent meta-analysis confirmed the association of STK39 intronic polymorphism rs3754777 with essential hypertension, among previously reported hypertension-associated STK39 polymorphisms. However, the biochemical function of this polymorphism in the mechanism responsible for hypertension is yet to be clarified. We generated rs3754777G>A knockin human cell lines with clustered regularly interspaced short palindromic repeats-mediated genome engineering. Homozygous (A/A) and heterozygous (G/A) knockin human embryonic kidney cell lines were generated using a double nickase, single-guide RNAs targeting STK39 intron 5 around single-nucleotide polymorphism, and a 100-bp donor single-stranded DNA oligonucleotide. Reverse transcription polymerase chain reaction with sequencing analyses revealed the identical STK39 transcripts among the wild-type and both knockin cell lines. Quantitative reverse transcription polymerase chain reaction showed increased STK39 mRNA expression, and immunoblot analysis revealed increases in total and phosphorylated STE20/SPS1-related proline/alanine-rich kinase with increased phosphorylated Na-K-Cl cotransporter isoform 1 in both knockin cell lines. The largest increases in these molecules were observed in the homozygous cell line. These findings indicated that this intronic polymorphism increases STK39 transcription, leading to activation of the STE20/SPS1-related proline/alanine-rich kinase-solute carrier family 12A signaling cascade. Increased interactions between STE20/SPS1-related proline/alanine-rich kinase and the target cation-chloride cotransporters may be responsible for hypertension susceptibility in individuals with this polymorphism.
Collapse
Affiliation(s)
- Shintaro Mandai
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Takayasu Mori
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Eisei Sohara
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Tatemitsu Rai
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Shinichi Uchida
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.
| |
Collapse
|
29
|
Zhang J, Siew K, Macartney T, O'Shaughnessy KM, Alessi DR. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure. Hum Mol Genet 2015; 24:4545-4558. [PMID: 25994507 PMCID: PMC4512625 DOI: 10.1093/hmg/ddv185] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 02/05/2023] Open
Abstract
The STE20/SPS1-related proline/alanine-rich kinase (SPAK) controls blood pressure (BP) by phosphorylating and stimulating the Na-Cl (NCC) and Na-K-2Cl (NKCC2) co-transporters, which regulate salt reabsorption in the kidney. SPAK possesses a conserved carboxy-terminal (CCT) domain, which recognises RFXV/I motifs present in its upstream activator [isoforms of the With-No-lysine (K) kinases (WNKs)] as well as its substrates (NCC and NKCC2). To define the physiological importance of the CCT domain, we generated knock-in mice in which the critical CCT domain Leu502 residue required for high affinity recognition of the RFXI/V motif was mutated to Alanine. The SPAK CCT domain defective knock-in animals are viable, and the Leu502Ala mutation abolished co-immunoprecipitation of SPAK with WNK1, NCC and NKCC2. The CCT domain defective animals displayed markedly reduced SPAK activity and phosphorylation of NCC and NKCC2 co-transporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in mRNA levels. The SPAK CCT domain knock-in mice showed typical features of Gitelman Syndrome with mild hypokalaemia, hypomagnesaemia, hypocalciuria and displayed salt wasting on switching to a low-Na diet. These observations establish that the CCT domain plays a crucial role in controlling SPAK activity and BP. Our results indicate that CCT domain inhibitors would be effective at reducing BP by lowering phosphorylation as well as expression of NCC and NKCC2.
Collapse
Affiliation(s)
- Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland and
| | - Keith Siew
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland and
| | - Kevin M O'Shaughnessy
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland and
| |
Collapse
|
30
|
Sohara E, Uchida S. Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder. Nephrol Dial Transplant 2015; 31:1417-24. [DOI: 10.1093/ndt/gfv259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 12/20/2022] Open
|
31
|
Verouti SN, Boscardin E, Hummler E, Frateschi S. Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice. Curr Opin Pharmacol 2015; 21:60-72. [PMID: 25613995 DOI: 10.1016/j.coph.2014.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
Abstract
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Collapse
Affiliation(s)
- Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
32
|
Kikuchi E, Mori T, Zeniya M, Isobe K, Ishigami-Yuasa M, Fujii S, Kagechika H, Ishihara T, Mizushima T, Sasaki S, Sohara E, Rai T, Uchida S. Discovery of Novel SPAK Inhibitors That Block WNK Kinase Signaling to Cation Chloride Transporters. J Am Soc Nephrol 2014; 26:1525-36. [PMID: 25377078 DOI: 10.1681/asn.2014060560] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/20/2014] [Indexed: 12/21/2022] Open
Abstract
Upon activation by with-no-lysine kinases, STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) phosphorylates and activates SLC12A transporters such as the Na(+)-Cl(-) cotransporter (NCC) and Na(+)-K(+)-2Cl(-) cotransporter type 1 (NKCC1) and type 2 (NKCC2); these transporters have important roles in regulating BP through NaCl reabsorption and vasoconstriction. SPAK knockout mice are viable and display hypotension with decreased activity (phosphorylation) of NCC and NKCC1 in the kidneys and aorta, respectively. Therefore, agents that inhibit SPAK activity could be a new class of antihypertensive drugs with dual actions (i.e., NaCl diuresis and vasodilation). In this study, we developed a new ELISA-based screening system to find novel SPAK inhibitors and screened >20,000 small-molecule compounds. Furthermore, we used a drug repositioning strategy to identify existing drugs that inhibit SPAK activity. As a result, we discovered one small-molecule compound (Stock 1S-14279) and an antiparasitic agent (Closantel) that inhibited SPAK-regulated phosphorylation and activation of NCC and NKCC1 in vitro and in mice. Notably, these compounds had structural similarity and inhibited SPAK in an ATP-insensitive manner. We propose that the two compounds found in this study may have great potential as novel antihypertensive drugs.
Collapse
Affiliation(s)
- Eriko Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences
| | | | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan; and
| | - Hiroyuki Kagechika
- Chemical Biology Screening Center, and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan; and
| | - Tomoaki Ishihara
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Tohru Mizushima
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences,
| |
Collapse
|
33
|
Eladari D, Chambrey R, Picard N, Hadchouel J. Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci 2014; 71:2879-95. [PMID: 24556999 PMCID: PMC11113337 DOI: 10.1007/s00018-014-1585-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 01/10/2023]
Abstract
Sodium absorption by the distal part of the nephron, i.e., the distal convoluted tubule, the connecting tubule, and the collecting duct, plays a major role in the control of homeostasis by the kidney. In this part of the nephron, sodium transport can either be electroneutral or electrogenic. The study of electrogenic Na(+) absorption, which is mediated by the epithelial sodium channel (ENaC), has been the focus of considerable interest because of its implication in sodium, potassium, and acid-base homeostasis. However, recent studies have highlighted the crucial role played by electroneutral NaCl absorption in the regulation of the body content of sodium chloride, which in turn controls extracellular fluid volume and blood pressure. Here, we review the identification and characterization of the NaCl cotransporter (NCC), the molecule accounting for the main part of electroneutral NaCl absorption in the distal nephron, and its regulators. We also discuss recent work describing the identification of a novel "NCC-like" transport system mediated by pendrin and the sodium-driven chloride/bicarbonate exchanger (NDCBE) in the β-intercalated cells of the collecting system.
Collapse
Affiliation(s)
- Dominique Eladari
- Department of Physiology, Hopital Européen Georges Pompidou, AP-HP, 56 rue Leblanc, 75015, Paris, France,
| | | | | | | |
Collapse
|
34
|
Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci Signal 2014; 7:re3. [PMID: 25028718 DOI: 10.1126/scisignal.2005365] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The WNK-SPAK/OSR1 kinase complex is composed of the kinases WNK (with no lysine) and SPAK (SPS1-related proline/alanine-rich kinase) or the SPAK homolog OSR1 (oxidative stress-responsive kinase 1). The WNK family senses changes in intracellular Cl(-) concentration, extracellular osmolarity, and cell volume and transduces this information to sodium (Na(+)), potassium (K(+)), and chloride (Cl(-)) cotransporters [collectively referred to as CCCs (cation-chloride cotransporters)] and ion channels to maintain cellular and organismal homeostasis and affect cellular morphology and behavior. Several genes encoding proteins in this pathway are mutated in human disease, and the cotransporters are targets of commonly used drugs. WNKs stimulate the kinases SPAK and OSR1, which directly phosphorylate and stimulate Cl(-)-importing, Na(+)-driven CCCs or inhibit the Cl(-)-extruding, K(+)-driven CCCs. These coordinated and reciprocal actions on the CCCs are triggered by an interaction between RFXV/I motifs within the WNKs and CCCs and a conserved carboxyl-terminal docking domain in SPAK and OSR1. This interaction site represents a potentially druggable node that could be more effective than targeting the cotransporters directly. In the kidney, WNK-SPAK/OSR1 inhibition decreases epithelial NaCl reabsorption and K(+) secretion to lower blood pressure while maintaining serum K(+). In neurons, WNK-SPAK/OSR1 inhibition could facilitate Cl(-) extrusion and promote γ-aminobutyric acidergic (GABAergic) inhibition. Such drugs could have efficacy as K(+)-sparing blood pressure-lowering agents in essential hypertension, nonaddictive analgesics in neuropathic pain, and promoters of GABAergic inhibition in diseases associated with neuronal hyperactivity, such as epilepsy, spasticity, neuropathic pain, schizophrenia, and autism.
Collapse
Affiliation(s)
- Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Arjun Khanna
- Department of Neurosurgery, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Hochdörfer
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Yuze Shang
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Insights in cullin 3/WNK4 and its relationship to blood pressure regulation and electrolyte homeostasis. Cell Signal 2014; 26:1166-72. [DOI: 10.1016/j.cellsig.2014.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/31/2014] [Indexed: 11/18/2022]
|
36
|
Susa K, Sohara E, Rai T, Zeniya M, Mori Y, Mori T, Chiga M, Nomura N, Nishida H, Takahashi D, Isobe K, Inoue Y, Takeishi K, Takeda N, Sasaki S, Uchida S. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum Mol Genet 2014; 23:5052-60. [PMID: 24821705 DOI: 10.1093/hmg/ddu217] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudohypoaldosteronism type II (PHAII) is a hereditary disease characterized by salt-sensitive hypertension, hyperkalemia and metabolic acidosis, and genes encoding with-no-lysine kinase 1 (WNK1) and WNK4 kinases are known to be responsible. Recently, Kelch-like 3 (KLHL3) and Cullin3, components of KLHL3-Cullin3 E3 ligase, were newly identified as responsible for PHAII. We have reported that WNK4 is the substrate of KLHL3-Cullin3 E3 ligase-mediated ubiquitination. However, WNK1 and Na-Cl cotransporter (NCC) were also reported to be a substrate of KLHL3-Cullin3 E3 ligase by other groups. Therefore, it remains unclear which molecule is the target(s) of KLHL3. To investigate the pathogenesis of PHAII caused by KLHL3 mutation, we generated and analyzed KLHL3(R528H/+) knock-in mice. KLHL3(R528H/+) knock-in mice exhibited salt-sensitive hypertension, hyperkalemia and metabolic acidosis. Moreover, the phosphorylation of NCC was increased in the KLHL3(R528H/+) mouse kidney, indicating that the KLHL3(R528H/+) knock-in mouse is an ideal mouse model of PHAII. Interestingly, the protein expression of both WNK1 and WNK4 was significantly increased in the KLHL3(R528H/+) mouse kidney, confirming that increases in these WNK kinases activated the WNK-OSR1/SPAK-NCC phosphorylation cascade in KLHL3(R528H/+) knock-in mice. To examine whether mutant KLHL3 R528H can interact with WNK kinases, we measured the binding of TAMRA-labeled WNK1 and WNK4 peptides to full-length KLHL3 using fluorescence correlation spectroscopy, and found that neither WNK1 nor WNK4 bound to mutant KLHL3 R528H. Thus, we found that increased protein expression levels of WNK1 and WNK4 kinases cause PHAII by KLHL3 R528H mutation due to impaired KLHL3-Cullin3-mediated ubiquitination.
Collapse
Affiliation(s)
- Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Motoko Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Hidenori Nishida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Kenta Takeishi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Naoki Takeda
- Division of Transgenic Technology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo Chuo Kumamoto, Kumamoto 860-0811, Japan
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| |
Collapse
|
37
|
Abstract
By analysing the pathogenesis of a hereditary hypertensive disease, PHAII (pseudohypoaldosteronism type II), we previously discovered that WNK (with-no-lysine kinase)–OSR1/SPAK (oxidative stress-responsive 1/Ste20-like proline/alanine-rich kinase) cascade regulates NCC (Na–Cl co-transporter) in the DCT (distal convoluted tubules) of the kidney. However, the role of WNK4 in the regulation of NCC remains controversial. To address this, we generated and analysed WNK4−/− mice. Although a moderate decrease in SPAK phosphorylation and a marked increase in WNK1 expression were evident in the kidneys of WNK4−/− mice, the amount of phosphorylated and total NCC decreased to almost undetectable levels, indicating that WNK4 is the major WNK positively regulating NCC, and that WNK1 cannot compensate for WNK4 deficiency in the DCT. Insulin- and low-potassium diet-induced NCC phosphorylation were abolished in WNK4−/− mice, establishing that both signals to NCC were mediated by WNK4. As shown previously, a high-salt diet decreases phosphorylated and total NCC in WNK4+/+ mice via AngII (angiotensin II) and aldosterone suppression. This was not ameliorated by WNK4 knock out, excluding the negative regulation of WNK4 on NCC postulated to be active in the absence of AngII stimulation. Thus, WNK4 is the major positive regulator of NCC in the kidneys. The analyses of WNK4 (with-no-lysine kinase 4) knockout mice help to end a long-standing controversy about the role of WNK4 on NCC (Na–Cl co-transporter) regulations in the kidney. WNK4 is a strong positive regulator of NCC.
Collapse
|
38
|
Terker AS, Yang CL, McCormick JA, Meermeier NP, Rogers SL, Grossmann S, Trompf K, Delpire E, Loffing J, Ellison DH. Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension. Hypertension 2014; 64:178-84. [PMID: 24799612 DOI: 10.1161/hypertensionaha.114.03335] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Excessive renal efferent sympathetic nerve activity contributes to hypertension in many circumstances. Although both hemodynamic and tubular effects likely participate, most evidence supports a major role for α-adrenergic receptors in mediating the direct epithelial stimulation of sodium retention. Recently, it was reported, however, that norepinephrine activates the thiazide-sensitive NaCl cotransporter (NCC) by stimulating β-adrenergic receptors. Here, we confirmed this effect and developed an acute adrenergic stimulation model to study the signaling cascade. The results show that norepinephrine increases the abundance of phosphorylated NCC rapidly (161% increase), an effect largely dependent on β-adrenergic receptors. This effect is not mediated by the activation of angiotensin II receptors. We used immunodissected mouse distal convoluted tubule to show that distal convoluted tubule cells are especially enriched for β₁-adrenergic receptors, and that the effects of adrenergic stimulation can occur ex vivo (79% increase), suggesting they are direct. Because the 2 protein kinases, STE20p-related proline- and alanine-rich kinase (encoded by STK39) and oxidative stress-response kinase 1, phosphorylate and activate NCC, we examined their roles in norepinephrine effects. Surprisingly, norepinephrine did not affect STE20p-related proline- and alanine-rich kinase abundance or its localization in the distal convoluted tubule; instead, we observed a striking activation of oxidative stress-response kinase 1. We confirmed that STE20p-related proline- and alanine-rich kinase is not required for NCC activation, using STK39 knockout mice. Together, the data provide strong support for a signaling system involving β₁-receptors in the distal convoluted tubule that activates NCC, at least in part via oxidative stress-response kinase 1. The results have implications about device- and drug-based treatment of hypertension.
Collapse
Affiliation(s)
- Andrew S Terker
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - Chao-Ling Yang
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - James A McCormick
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - Nicholas P Meermeier
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - Shaunessy L Rogers
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - Solveig Grossmann
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - Katja Trompf
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - Eric Delpire
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - Johannes Loffing
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.)
| | - David H Ellison
- From the Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland (A.S.T., C.-L.Y., J.A.M., N.P.M., S.L.R., D.H.E.); Renal Section, VA Medical Center, Portland, OR (C.-L.Y., N.P.M., D.H.E.); Institute of Anatomy, University of Zurich, Zurich, Switzerland (S.G., K.T., J.L.); and Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN (E.D.).
| |
Collapse
|
39
|
Castañeda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vázquez N, Moreno E, Gamba G. Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved. Am J Physiol Renal Physiol 2014; 306:F1507-19. [PMID: 24761002 PMCID: PMC4059971 DOI: 10.1152/ajprenal.00255.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modulation of Na+-Cl− cotransporter (NCC) activity is essential to adjust K+ excretion in the face of changes in dietary K+ intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K+ diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K+-citrate diets for 4 days. The low-K+ diet decreased and high-K+ diet increased plasma aldosterone levels, but both diets were associated with increased phosphorylation of NCC (phospho-NCC, Thr44/Thr48/Thr53) and phosphorylation of SPAK/oxidative stress responsive kinase 1 (phospho-SPAK/OSR1, Ser383/Ser325). The effect of the low-K+ diet on SPAK phosphorylation persisted in WNK4 knockout and SPAK knockin mice, whereas the effects of ANG II on NCC and SPAK were lost in both mouse colonies. This suggests that for NCC activation by ANG II, integrity of the WNK4/SPAK pathway is required, whereas for the low-K+ diet, SPAK phosphorylation occurred despite the absence of WNK4, suggesting the involvement of another WNK (WNK1 or WNK3). Additionally, because NCC activation also occurred in SPAK knockin mice, it is possible that loss of SPAK was compensated by OSR1. The positive effect of the high-K+ diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K+-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K+ increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K+ diet.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; and
| | | | - Lorena Rojas-Vega
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; and
| | - Isidora Arroyo-Garza
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; and
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; and
| | - Erika Moreno
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; and
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; and
| |
Collapse
|
40
|
Affiliation(s)
- John K. Healy
- From the Princess Alexandra Hospital Brisbane, Brisbane, Queensland, Australia; and Renal Unit, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
delos Heros P, Alessi D, Gourlay R, Campbell D, Deak M, Macartney T, Kahle K, Zhang J. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters. Biochem J 2014; 458:559-573. [PMID: 24393035 PMCID: PMC3940040 DOI: 10.1042/bj20131478] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023]
Abstract
Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl- influx, we propose that the targeting of WNK-SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl- extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.
Collapse
Key Words
- γ-aminobutyric acid (gaba)
- blood pressure/hypertension
- ion homoeostasis
- k+–cl− co-transporter 2 (kcc2)
- k+–cl− co-transporter 3 (kcc3)
- na+–cl− co-transporter (ncc)
- na+–k+–2cl− co-transporter 1 (nkcc1)
- protein kinase
- signal transduction
- ccc, cation–cl− co-transporter
- cct, conserved c-terminal
- ctd, c-terminal cytoplasmic domain
- erk1, extracellular-signal-regulated kinase 1
- es, embryonic stem
- hek, human embryonic kidney
- hrp, horseradish peroxidase
- kcc, k+–cl− co-transporter
- lds, lithium dodecyl sulfate
- ncc, na+–cl− co-transporter
- n[k]cc, na+–k+ ion co-transporter
- nkcc, na+–k+–2cl− co-transporter
- ntd, n-terminal cytoplasmic domain
- osr1, oxidative stress-responsive kinase 1
- slc12, solute carrier family 12
- spak, sps1-related proline/alanine-rich kinase
- ttbs, tris-buffered saline containing tween 20
- wnk, wnk lysine-deficient protein kinase
- xic, extracted ion chromatogram
Collapse
Affiliation(s)
- Paola delos Heros
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Dario R. Alessi
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Robert Gourlay
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - David G. Campbell
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Maria Deak
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Thomas J. Macartney
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Kristopher T. Kahle
- †Department of Neurosurgery, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, U.S.A
- ‡Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, MA 02115, U.S.A
| | - Jinwei Zhang
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
42
|
Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. Biochem J 2014; 455:339-45. [PMID: 23981180 DOI: 10.1042/bj20130597] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
WNKs (with-no-lysine kinases) are the causative genes of a hereditary hypertensive disease, PHAII (pseudohypoaldosteronism type II), and form a signal cascade with OSR1 (oxidative stress-responsive 1)/SPAK (STE20/SPS1-related proline/alanine-rich protein kinase) and Slc12a (solute carrier family 12) transporters. We have shown that this signal cascade regulates blood pressure by controlling vascular tone as well as renal NaCl excretion. Therefore agents that inhibit this signal cascade could be a new class of antihypertensive drugs. Since the binding of WNK to OSR1/SPAK kinases was postulated to be important for signal transduction, we sought to discover inhibitors of WNK/SPAK binding by screening chemical compounds that disrupt the binding. For this purpose, we developed a high-throughput screening method using fluorescent correlation spectroscopy. As a result of screening 17000 compounds, we discovered two novel compounds that reproducibly disrupted the binding of WNK to SPAK. Both compounds mediated dose-dependent inhibition of hypotonicity-induced activation of WNK, namely the phosphorylation of SPAK and its downstream transporters NKCC1 (Na/K/Cl cotransporter 1) and NCC (NaCl cotransporter) in cultured cell lines. The two compounds could be the promising seeds of new types of antihypertensive drugs, and the method that we developed could be applied as a general screening method to identify compounds that disrupt the binding of two molecules.
Collapse
|
43
|
Uchida S, Sohara E, Rai T, Sasaki S. Regulation of with-no-lysine kinase signaling by Kelch-like proteins. Biol Cell 2014; 106:45-56. [PMID: 24313290 PMCID: PMC4162998 DOI: 10.1111/boc.201300069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
In 2001, with-no-lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress-responsive gene 1 (OSR1), Ste20-related proline-alanine-rich kinase (SPAK), and thiazide-sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK-OSR1/SPAK-NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII-causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch-like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.
Collapse
Affiliation(s)
- Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | |
Collapse
|
44
|
Zeniya M, Sohara E, Kita S, Iwamoto T, Susa K, Mori T, Oi K, Chiga M, Takahashi D, Yang SS, Lin SH, Rai T, Sasaki S, Uchida S. Dietary Salt Intake Regulates WNK3–SPAK–NKCC1 Phosphorylation Cascade in Mouse Aorta Through Angiotensin II. Hypertension 2013; 62:872-8. [DOI: 10.1161/hypertensionaha.113.01543] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Na–K–Cl cotransporter isoform 1 (NKCC1) is involved in the regulation of vascular smooth muscle cell contraction. Recently, the with-no-lysine kinase (WNK)–STE20/SPS1-related proline/alanine-rich kinase (SPAK)–NKCC1 phosphorylation cascade in vascular smooth muscle cells was found to be important in the regulation of vascular tone. In this study, we investigated whether the WNK–SPAK–NKCC1 cascade in mouse aortic tissue is regulated by dietary salt intake and the mechanisms responsible. Phosphorylation of SPAK and NKCC1 was significantly reduced in the aorta in high-salt–fed mice and was increased in the aorta in low-salt–fed mice, indicating that the WNK–SPAK–NKCC1 phosphorylation cascade in the aorta was indeed regulated by dietary salt intake. Acute and chronic angiotensin II infusion increased phosphorylation of SPAK and NKCC1 in the mouse aorta. In addition, valsartan, an antagonist of angiotensin II type 1 receptor, inhibited low-salt diet–induced phosphorylation of SPAK and NKCC1, demonstrating that angiotensin II activates the WNK–SPAK–NKCC1 phosphorylation cascade through the angiotensin II type 1 receptor. However, a low-salt diet and angiotensin II together did not increase phosphorylation of SPAK and NKCC1 in the aorta in WNK3 knockout mice, indicating that activation of the WNK–SPAK–NKCC1 phosphorylation cascade induced by a low-salt diet and angiotensin II is dependent on WNK3. Indeed, angiotensin II–induced increases in blood pressure were diminished in WNK3 knockout mice. In addition, decreased response to angiotensin II in the mesenteric arteries was observed in WNK3 knockout mice. Our data also clarified a novel mechanism for regulation of vascular tonus by angiotensin II. Inhibition of this cascade could, therefore, be a novel therapeutic target in hypertension.
Collapse
Affiliation(s)
- Moko Zeniya
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Eisei Sohara
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Satomi Kita
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Takahiro Iwamoto
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Koichiro Susa
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Takayasu Mori
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Katsuyuki Oi
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Motoko Chiga
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Daiei Takahashi
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Sung-Sen Yang
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Shih-Hua Lin
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Tatemitsu Rai
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Sei Sasaki
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Shinichi Uchida
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| |
Collapse
|
45
|
Pathare G, Hoenderop JGJ, Bindels RJM, San-Cristobal P. A molecular update on pseudohypoaldosteronism type II. Am J Physiol Renal Physiol 2013; 305:F1513-20. [PMID: 24107425 DOI: 10.1152/ajprenal.00440.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The DCT (distal convoluted tubule) is the site of microregulation of water reabsorption and ion handling in the kidneys, which is mainly under the control of aldosterone. Aldosterone binds to and activates mineralocorticoid receptors, which ultimately lead to increased sodium reabsorption in the distal part of the nephron. Impairment of mineralocorticoid signal transduction results in resistance to aldosterone and mineralocorticoids, and, therefore, causes disturbances in electrolyte balance. Pseudohypoaldosteronism type II (PHAII) or familial hyperkalemic hypertension (FHHt) is a rare, autosomal dominant syndrome characterized by hypertension, hyperkalemia, metabolic acidosis, elevated or low aldosterone levels, and decreased plasma renin activity. PHAII is caused by mutations in the WNK isoforms (with no lysine kinase), which regulate the Na-Cl and Na-K-Cl cotransporters (NCC and NKCC2, respectively) and the renal outer medullary potassium (ROMK) channel in the DCT. This review focuses on new candidate genes such as KLHL3 and Cullin3, which are instrumental to unraveling novel signal transductions pathways involving NCC, to better understand the cause of PHAII along with the molecular mechanisms governing the pathophysiology of PHAII and its clinical manifestations.
Collapse
Affiliation(s)
- Ganesh Pathare
- 286, Dept. of Physiology, Radboud Univ. Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Isobe K, Mori T, Asano T, Kawaguchi H, Nonoyama S, Kumagai N, Kamada F, Morimoto T, Hayashi M, Sohara E, Rai T, Sasaki S, Uchida S. Development of enzyme-linked immunosorbent assays for urinary thiazide-sensitive Na-Cl cotransporter measurement. Am J Physiol Renal Physiol 2013; 305:F1374-81. [PMID: 24026181 DOI: 10.1152/ajprenal.00208.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Na-Cl cotransporter (NCC) in the distal convoluted tubules in kidney is known to be excreted in urine. However, its clinical significance has not been established because of the lack of quantitative data on urinary NCC. We developed highly sensitive enzyme-linked immunosorbent assays (ELISAs) for urinary total NCC (tNCC) and its active form, phosphorylated NCC (pNCC). We first measured the excretion of tNCC and pT55-NCC in urinary exosomes in pseudohypoaldosteronism type II (PHAII) patients since PHAII is caused by NCC activation. Highly increased excretion of tNCC and pNCC was observed in PHAII patients. In contrast, the levels of tNCC and pNCC in the urine of patients with Gitelman's syndrome were not detectable or very low, indicating that both assays could specifically detect the changes in urinary NCC excretion caused by the changes of NCC activity in the kidney. Then, to test whether these assays could be feasible for a more general patient population, we measured tNCC and pNCC in the urine of outpatients with different clinical backgrounds. Although urinary protein levels >30 mg/dl interfered with our ELISA, we could measure urinary pNCC in all patients without proteinuria. Thus we established highly sensitive and quantitative assays for urinary NCC, which could be valuable tools for estimating NCC activity in vivo.
Collapse
Affiliation(s)
- Kiyoshi Isobe
- Dept. of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental Univ., 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chu PY, Cheng CJ, Wu YC, Fang YW, Chau T, Uchida S, Sasaki S, Yang SS, Lin SH. SPAK deficiency corrects pseudohypoaldosteronism II caused by WNK4 mutation. PLoS One 2013; 8:e72969. [PMID: 24039833 PMCID: PMC3770638 DOI: 10.1371/journal.pone.0072969] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/14/2013] [Indexed: 01/11/2023] Open
Abstract
Stimulation of the OSR1 (Oxidative stress-responsive kinase-1)/SPAK [STE20 (sterile 20)/SPS1-related proline/alanine-rich kinase]-NCC (Na(+)-Cl(-) cotransporter) signaling cascade plays an important role in the WNK [With-No-Lysine (K)] kinase 4 D561A knock-in mouse model of pseudohypoaldosteronism type II (PHA II) characterized by salt-sensitive hypertension and hyperkalemia. The aim of this study was to investigate the respective roles of Osr1 and Spak in the pathogenesis of PHA II in vivo. Wnk4 (D561A/+) mice were crossed with kidney tubule-specific (KSP) Osr1 knockout (KSP-Osr1 (-/-)) and Spak knockout (Spak (-/-)) mice. Blood pressure, plasma and urine biochemistries, and the relevant protein expression in the kidneys were examined. Wnk4 (D561A/+), KSP-Osr1 (-/-), and Spak (-/-) mice recapitulated the phenotypes of PHA II, Bartter-like syndrome, and Gitelman syndrome, respectively. Wnk4 (D561A/+).KSP-Osr1 (-/-) remained phenotypically PHA II while Wnk4 (D561A/+).Spak (-/-) mice became normotensive and lacked the PHA II phenotype. Phosphorylated Spak and Ncc were similarly increased in both Wnk4 (D561A/+) and Wnk4 (D561A/+).KSP-Osr1 (-/-) mice while phosphorylated Ncc normalized in Wnk4 (D561A/+).Spak (-/-) mice. Furthermore, Wnk4 (D561A/+).KSP-Osr1 (-/-) mice exhibited exaggerated salt excretion in response to thiazide diuretics while Wnk4 (D561A/+).Spak (-/-) mice exhibited normal responses. Wnk4(D561A/+).Spak (-/-).KSP-Osr1 (-/-) triple mutant mice had low blood pressure and diminished phosphorylated Ncc. Both SPAK and OSR1 are important in the maintenance of blood pressure but activation of SPAK-NCC plays the dominant role in PHA II. SPAK may be a therapeutic target for disorders with salt-sensitive hypertension related to WNK4 activation.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Chang Wu
- Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yu-Wei Fang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Nephrology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Tom Chau
- Department of Medicine, Providence St. Vincent Medical Center, Portland, Oregon, United States of America
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sung-Sen Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
- * E-mail: (SSY); (SHL)
| | - Shih-Hua Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
- * E-mail: (SSY); (SHL)
| |
Collapse
|
48
|
Osawa M, Ogura Y, Isobe K, Uchida S, Nonoyama S, Kawaguchi H. CUL3 gene analysis enables early intervention for pediatric pseudohypoaldosteronism type II in infancy. Pediatr Nephrol 2013; 28:1881-4. [PMID: 23689903 DOI: 10.1007/s00467-013-2496-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Four genes responsible for pseudohypoaldosteronism type II (PHA-II) have been identified, thereby facilitating molecular diagnostic testing. CASE-DIAGNOSIS/TREATMENT A 1-year-old boy with prolonged hyperkalemia, metabolic acidosis, hyperchloremia, growth delay, and mild hypertension was diagnosed with PHA-II based on the detection of exon 9 skipping in CUL3 mRNA. The impaired splicing was the result of a de novo, previously unreported single nucleotide substitution in the splice acceptor site of CUL3 intron 8. Among the four genes reported to be involved in PHA-II, CUL3 was the primary suspect in our patient because in patients with the CUL3 mutation, the onset of disease is often early in infancy and the phenotypes of PHA-II are more severe. Our patient was treated with trichlormethiazide, which inhibits the function of the sodium-chloride co-transporter (NCC), and the outcome was favorable, with correction of body fluids and blood electrolyte homeostasis. CONCLUSION Since chronic acidosis and hypertension associated with PHA-II can result in delayed growth and development in pediatric patients, genetic analysis to detect the CUL3 mutation and to enable intervention early in the disease course would be beneficial for infants with suspected PHA-II.
Collapse
Affiliation(s)
- Madori Osawa
- Department of Pediatrics, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Decrease of WNK4 ubiquitination by disease-causing mutations of KLHL3 through different molecular mechanisms. Biochem Biophys Res Commun 2013; 439:30-4. [DOI: 10.1016/j.bbrc.2013.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/10/2013] [Indexed: 12/29/2022]
|
50
|
The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 2013; 451:111-22. [PMID: 23387299 PMCID: PMC3632089 DOI: 10.1042/bj20121903] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The WNK (with no lysine kinase)–SPAK (SPS1-related proline/alanine-rich kinase)/OSR1
(oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling
mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent
studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3
(Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form
Cullin–RING E3 ubiquitin ligase complexes. To explore how a CUL3–KLHL3 complex might
operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and
CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC
(Na+/Cl− co-transporter)/NKCC1
(Na+/K+/2Cl− co-transporter 1)]. Strikingly, 13 out of the
15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant
wild-type CUL3–KLHL3 E3 ligase complex, but not a disease-causing CUL3–KLHL3[R528H]
mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small
interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in
HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues
479–667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated
in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K]
and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479–667] fragment,
abolished the ability to interact with KLHL3. These results suggest that the CUL3–KLHL3 E3
ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK
isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that
cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure
by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney
by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how
mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical
cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.
Collapse
|