1
|
Rodríguez-Rojas K, Cortes-Reynosa P, Torres-Alamilla P, Rodríguez-Ochoa N, Salazar EP. A novel role of IGFBP5 in the migration, invasion and spheroids formation induced by IGF-I and insulin in MCF-7 breast cancer cells. Breast Cancer Res Treat 2024; 208:79-88. [PMID: 38896333 PMCID: PMC11452427 DOI: 10.1007/s10549-024-07397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE The insulin-like growth factor (IGF) system includes IGF-I, IGF-II insulin and their membrane receptors. IGF system also includes a family of proteins namely insulin-like growth factor-binding proteins (IGFBPs) composed for six major members (IGFBP-1 to IGFBP6), which capture, transport and prolonging half-life of IGFs. However, it has been described that IGFBPs can also have other functions. METHODS IGFBP5 expression was inhibited by shRNAs, migration was analyzed by scratch-wound assays, invasion assays were performed by the Boyden chamber method, spheroids formation assays were performed on ultra-low attachment surfaces, expression and phosphorylation of proteins were analyzed by Western blot. RESULTS IGFBP5 is a repressor of IGF-IR expression, but it is not a repressor of IR in MCF-7 breast cancer cells. In addition, IGFBP5 is a suppressor of migration and MMP-9 secretion induced by IGF-I and insulin, but it does not regulate invasion in MCF-7 cells. IGFBP5 also is a repressor of MCF-7 spheroids formation. However treatment with 340 nM rescues the inhibitory effect of IGFBP in the MCF-7 spheroids formation. CONCLUSION IGFBP5 regulates IGF-IR expression, migration and MMP-9 secretion induced by IGF-I and/or insulin, and the spheroids formation in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Karem Rodríguez-Rojas
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pablo Torres-Alamilla
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Nínive Rodríguez-Ochoa
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
2
|
Song F, Hu Y, Hong Y, Sun H, Han Y, Mao Y, Wu W, Li G, Wang Y. Deletion of endothelial IGFBP5 protects against ischaemic hindlimb injury by promoting angiogenesis. Clin Transl Med 2024; 14:e1725. [PMID: 38886900 PMCID: PMC11182737 DOI: 10.1002/ctm2.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Angiogenesis is critical for forming new blood vessels from antedating vascular vessels. The endothelium is essential for angiogenesis, vascular remodelling and minimisation of functional deficits following ischaemia. The insulin-like growth factor (IGF) family is crucial for angiogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5), a binding protein of the IGF family, may have places in angiogenesis, but the mechanisms are not yet completely understood. We sought to probe whether IGFBP5 is involved in pathological angiogenesis and uncover the molecular mechanisms behind it. METHODS AND RESULTS IGFBP5 expression was elevated in the vascular endothelium of gastrocnemius muscle from critical limb ischaemia patients and hindlimb ischaemic (HLI) mice and hypoxic human umbilical vein endothelial cells (HUVECs). In vivo, loss of endothelial IGFBP5 (IGFBP5EKO) facilitated the recovery of blood vessel function and limb necrosis in HLI mice. Moreover, skin damage healing and aortic ring sprouting were faster in IGFBP5EKO mice than in control mice. In vitro, the genetic inhibition of IGFBP5 in HUVECs significantly promoted tube formation, cell proliferation and migration by mediating the phosphorylation of IGF1R, Erk1/2 and Akt. Intriguingly, pharmacological treatment of HUVECs with recombinant human IGFBP5 ensued a contrasting effect on angiogenesis by inhibiting the IGF1 or IGF2 function. Genetic inhibition of IGFBP5 promoted cellular oxygen consumption and extracellular acidification rates via IGF1R-mediated glycolytic adenosine triphosphate (ATP) metabolism. Mechanistically, IGFBP5 exerted its role via E3 ubiquitin ligase Von Hippel-Lindau (VHL)-regulated HIF1α stability. Furthermore, the knockdown of the endothelial IGF1R partially abolished the reformative effect of IGFBP5EKO mice post-HLI. CONCLUSION Our findings demonstrate that IGFBP5 ablation enhances angiogenesis by promoting ATP metabolism and stabilising HIF1α, implying IGFBP5 is a novel therapeutic target for treating abnormal angiogenesis-related conditions.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hu Sun
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Jie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wei‐Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| |
Collapse
|
3
|
Fan TY, Xu LL, Zhang HF, Peng J, Liu D, Zou WD, Feng WJ, Qin M, Zhang J, Li H, Li YK. Comprehensive Analyses and Experiments Confirmed IGFBP5 as a Prognostic Predictor Based on an Aging-genomic Landscape Analysis of Ovarian Cancer. Curr Cancer Drug Targets 2024; 24:760-778. [PMID: 38018207 DOI: 10.2174/0115680096276852231113111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the malignant diseases of the reproductive system in elderly women. Aging-related genes (ARGs) were involved in tumor malignancy and cellular senescence, but the specifics of these mechanisms in OC remain unknown. METHODS ARGs expression and survival data of OC patients were collected from TCGA and CPTAC databases. Subtype classification was used to identify the roles of hub ARGs in OC progression, including function enrichment, immune infiltration, and drug sensitivity. LASSO regression was utilized to confirm the prognosis significance for these hub ARGs. MTT, EdU, Transwell, and wounding healing analysis confirmed the effect of IGFBP5 on the proliferation and migration ability of OC cells. RESULTS ARGs were ectopically expressed in OC tissues compared to normal ovary tissues. Three molecular subtypes were divided by ARGs for OC patients. There were significant differences in ferroptosis, m6A methylation, prognosis, immune infiltration, angiogenesis, differentiation level, and drug sensitivity among the three groups. LASSO regression indicated that 4 signatures, FOXO4, IGFBP5, OGG1 and TYMS, had important prognosis significance. Moreover, IGFBP5 was significantly correlated with immune infiltration. The hub ARG, IGFBP5, expression was significantly decreased in OC patients compared to normal women. IGFBP5 could also reduce the migration and proliferation ability of OC cells compared to vector and NC groups. CONCLUSION IGFBP5 was correlated with OC prognosis and associated with OC migration and proliferation. This gene may serve as potential prognostic biomarkers and therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Ting-Yu Fan
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Li-Li Xu
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hong-Feng Zhang
- Department of Laboratory Medicine, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Peng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Jie Feng
- Burn and Plastic Department, Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Mei Qin
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
4
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
Udani S, Langerman J, Koo D, Baghdasarian S, Cheng B, Kang S, Soemardy C, de Rutte J, Plath K, Carlo DD. Secretion encoded single-cell sequencing (SEC-seq) uncovers gene expression signatures associated with high VEGF-A secretion in mesenchymal stromal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523110. [PMID: 36711480 PMCID: PMC9881958 DOI: 10.1101/2023.01.07.523110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells secrete numerous bioactive molecules essential for the function of healthy organisms. However, there are no scalable methods to link individual cell secretions to their transcriptional state. By developing and using secretion encoded single-cell sequencing (SEC-seq), which exploits hydrogel nanovials to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells (MSCs). We found that VEGF-A secretion is heterogeneous across the cell population and lowly correlated with the VEGFA transcript level. While there is a modest population-wide increase in VEGF-A secretion by hypoxic induction, highest VEGF-A secretion across normoxic and hypoxic culture conditions occurs in a subpopulation of MSCs characterized by a unique gene expression signature. Taken together, SEC-seq enables the identification of specific genes involved in the control of secretory states, which may be exploited for developing means to modulate cellular secretion for disease treatment.
Collapse
Affiliation(s)
- Shreya Udani
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Doyeon Koo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Brian Cheng
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Simran Kang
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Citradewi Soemardy
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | | | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Partillion Bioscience, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
7
|
Schlottmann F, Bucan V, Strauß S, Koop F, Vogt PM, Mett TR. Influence of Tamoxifen on Different Biological Pathways in Tumorigenesis and Transformation in Adipose-Derived Stem Cells, Mammary Cells and Mammary Carcinoma Cell Lines—An In Vitro Study. Cells 2022; 11:cells11172733. [PMID: 36078139 PMCID: PMC9454616 DOI: 10.3390/cells11172733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
Breast carcinoma is one of the most common malignant tumors in women. In cases of hormone-sensitive cells, tamoxifen as an anti-estrogenic substance is a first line medication in the adjuvant setting. The spectrum of autologous breast reconstructions ranges from fat infiltrations to complex microsurgical procedures. The influence of adipose-derived stem cells (ASC) on the tumor bed and a possibly increased recurrence rate as a result are critically discussed. In addition, there is currently no conclusive recommendation regarding tamoxifen-treated patients and autologous fat infiltrations. The aim of the present study was to investigate the effect of tamoxifen on the gene expression of a variety of genes involved in tumorigenesis, cell growth and transformation. Mammary epithelial cell line and mammary carcinoma cell lines were treated with tamoxifen in vitro as well as co-cultured with ASC. Gene expression was quantified by PCR arrays and showed increased expression in the mammary carcinoma cell lines with increasing time of treatment and concentration of tamoxifen. The data presented can be considered as an addition to the controversial discussion on the relationship between ASC and breast carcinoma cells. Further studies are needed to quantify the in vivo interaction of ASC and mammary carcinoma cells and to conclusively assess the impact of tamoxifen in reconstructive cases with fat grafting.
Collapse
|
8
|
Yao Z, Lin M, Lin T, Gong X, Qin P, Li H, Kang T, Ye J, Zhu Y, Hong Q, Liu Y, Li Y, Wang J, Fang F. The expression of IGFBP-5 in the reproductive axis and effect on the onset of puberty in female rats. Reprod Biol Endocrinol 2022; 20:100. [PMID: 35821045 PMCID: PMC9277959 DOI: 10.1186/s12958-022-00966-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022] Open
Abstract
Insulin-like growth factor-binding protein-5 (IGFBP-5) has recently been shown to alter the reproductive capacity by regulating insulin-like growth factor (IGF) bioavailability or IGF-independent effects. The present study aimed to investigate the effect and mechanism of IGFBP-5 on the onset of puberty in female rats. Immunofluorescence and real-time quantitative PCR were used to determine the expression and location of IGFBP-5 mRNA and protein distribution in the infant's hypothalamus-pituitary-ovary (HPO) axis prepuberty, peripuberty, puberty and adult female rats. Prepubertal rats with IGFBP-5 intracerebroventricular (ICV) were injected to determine the puberty-related genes expression and the concentrations of reproductive hormones. Primary hypothalamic cells were treated with IGFBP-5 to determine the expression of puberty-related genes and the Akt and mTOR proteins. Results showed that Igfbp-5 mRNA and protein were present on the HPO axis. The addition of IGFBP-5 to primary hypothalamic cells inhibited the expression of Gnrh and Igf-1 mRNAs (P < 0.05) and increased the expression of AKT and mTOR protein (P < 0.01). IGFBP-5 ICV-injection delayed the onset of puberty, reduced Gnrh, Igf-1, and Fshβ mRNAs, and decreased the concentrations of E2, P4, FSH,serum LH levels and the ovaries weight (P < 0.05). More corpus luteum and fewer primary follicles were found after IGFBP-5 injection (P < 0.05).
Collapse
Affiliation(s)
- Zhiqiu Yao
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Maosen Lin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tao Lin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xinbao Gong
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Pin Qin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Hailing Li
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tiezhu Kang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jing Ye
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yanyun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Qiwen Hong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yunsheng Li
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Juhua Wang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
9
|
Ye J, Calvo IA, Cenzano I, Vilas A, Martinez-de-Morentin X, Lasaga M, Alignani D, Paiva B, Viñado AC, San Martin-Uriz P, Romero JP, Quilez Agreda D, Miñana Barrios M, Sancho-González I, Todisco G, Malcovati L, Planell N, Saez B, Tegner JN, Prosper F, Gomez-Cabrero D. Deconvolution of the hematopoietic stem cell microenvironment reveals a high degree of specialization and conservation. iScience 2022; 25:104225. [PMID: 35494238 PMCID: PMC9046238 DOI: 10.1016/j.isci.2022.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding the regulation of normal and malignant human hematopoiesis requires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM compartments, respectively. Our data provide the most comprehensive description to date of the murine HSC-regulatory microenvironment and suggest a higher level of specialization of the cellular circuits than previously anticipated. Furthermore, this deep characterization allows inferring conserved features in human, suggesting that the layers of microenvironmental regulation of hematopoiesis may also be shared between species. Our resource and methodology is a stepping-stone toward a comprehensive cell atlas of the BM microenvironment.
Collapse
Affiliation(s)
- Jin Ye
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| | - Isabel A. Calvo
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Itziar Cenzano
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | - Amaia Vilas
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Xabier Martinez-de-Morentin
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Miren Lasaga
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Diego Alignani
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Bruno Paiva
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Ana C. Viñado
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Patxi San Martin-Uriz
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | - Juan P. Romero
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | | | | | | | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia & Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Nuria Planell
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Borja Saez
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Jesper N. Tegner
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Stockholm, Sweden
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| | - Felipe Prosper
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Service of Hematology and Cell Therapy, Clínica Universidad de Navarra; CCUN, Pamplona, Navarra, 31008; Spain
| | - David Gomez-Cabrero
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Stockholm, Sweden
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College, London WC2R 2LS, UK
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
10
|
IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis 2022; 13:340. [PMID: 35418167 PMCID: PMC9007962 DOI: 10.1038/s41419-022-04803-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Renal inflammation is a critical pathophysiological characteristic of diabetic kidney disease (DKD). The mechanism of the inflammatory response is complicated, and there are few effective treatments for renal inflammation that can be used clinically. Insulin-like growth factor-binding protein 5 (IGFBP5) is an important secretory protein that is related to inflammation and fibrosis in several tissues. Studies have shown that the IGFBP5 level is significantly upregulated in DKD. However, the function of IGFBP5 and its mechanism in DKD remain unclear. Here, we showed that IGFBP5 levels were significantly increased in the kidneys of diabetic mice. Ablation of IGFBP5 alleviated kidney inflammation in DKD mice. Mechanistically, IGFBP5 increased glycolysis, which was characterized by increases in lactic acid and the extracellular acidification rate, by activating the transcription factor early growth response 1 (EGR1) and enhancing the expression of PFKFB3 in endothelial cells. Furthermore, a mutation in PFKFB3 attenuated renal inflammation in DKD mice. Taken together, we provided evidence that IGFBP5 enhanced kidney inflammation through metabolic reprogramming of glomerular endothelial cells. Our results provide new mechanistic insights into the effect of IGFBP5 on kidney and highlight potential therapeutic opportunities for IGFBP5 and the metabolic regulators involved in DKD. ![]()
Collapse
|
11
|
Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol (Lausanne) 2022; 13:983793. [PMID: 36093095 PMCID: PMC9453429 DOI: 10.3389/fendo.2022.983793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs). Six IGFBPs are known that share the ability to form complexes with the IGFs, by which they control the bioavailability of these ligands. Besides, each of the IGFBPs have specific features. In this review, the focus lies on the biological effects and regulation of IGFBP5 in breast cancer. In breast cancer, estrogen is a critical regulator of IGFBP5 transcription. It exerts its effect through an intergenic enhancer loop that is part of the chromosomal breast cancer susceptibility region 2q35. The biological effects of IGFBP5 depend upon the cellular context. By inhibiting or promoting IGF1R signaling, IGFBP5 can either act as a tumor suppressor or promoter. Additionally, IGFBP5 possesses IGF-independent activities, which contribute to the complexity by which IGFBP5 interferes with cancer cell behavior.
Collapse
|
12
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
13
|
Güven E. Gene expression analysis of MCF7 cell lines of breast cancer treated with herbal extract of Cissampelos pareira revealed association with viral diseases. GENE REPORTS 2021; 23:101169. [PMID: 33907720 PMCID: PMC8062415 DOI: 10.1016/j.genrep.2021.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 10/30/2022]
Abstract
BACKGROUND It is necessary to assess the cellular, molecular, and pathogenetic characteristics of COVID-19 and attention is required to understand highly effective gene targets and mechanisms. In this study, we suggest understandings into the fundamental pathogenesis of COVID-19 through gene expression analyses using the microarray data set GSE156445 publicly reachable at NIH/NCBI Gene Expression Omnibus database. The data set consists of MCF7 which is a human breast cancer cell line with estrogen, progesterone and glucocorticoid receptors. The cell lines treated with different quantities of Cissampelos pareira (Cipa). Cipa is a traditional medicinal plant which would possess an antiviral potency in preventing viral diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS Utilizing Biobase, GEOquery, gplots packages in R studio, the differentially expressed genes (DEGs) were identified. The gene ontology (GO) of pathway enrichments employed by utilizing DAVID and KEGG enrichment analyses were studied. We further constructed a human protein-protein interaction (PPI) network and performed, based upon that, a subnetwork module analysis for significant signaling pathways. RESULTS The study identified 418 differentially expressed genes (DEGs) using bioinformatics tools. The gene ontology of pathway enrichments employed by GO and KEGG enrichment analyses of down-regulated and up-regulated DEGs were studied. Gene expression analysis utilizing gene ontology and KEGG results uncovered biological and signaling pathways such as "cell adhesion molecules", "plasma membrane adhesion molecules", "synapse assembly", and "Interleukin-3-mediated signaling" which are mostly linked to COVID-19. Our results provide in silico evidence for candidate genes which are vital for the inhibition, adhesion, and encoding cytokine protein including LYN, IGFBP5, IL-1R1, and IL-13RA1 that may have strong biomarker potential for infectious diseases such as COVID-19 related therapy targets.
Collapse
Affiliation(s)
- Emine Güven
- Department of Biomedical Engineering, Düzce University, Düzce, Turkey
| |
Collapse
|
14
|
The Impact of Spaceflight and Microgravity on the Human Islet-1+ Cardiovascular Progenitor Cell Transcriptome. Int J Mol Sci 2021; 22:ijms22073577. [PMID: 33808224 PMCID: PMC8036947 DOI: 10.3390/ijms22073577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the transcriptomic impact of microgravity and the spaceflight environment is relevant for future missions in space and microgravity-based applications designed to benefit life on Earth. Here, we investigated the transcriptome of adult and neonatal cardiovascular progenitors following culture aboard the International Space Station for 30 days and compared it to the transcriptome of clonally identical cells cultured on Earth. Cardiovascular progenitors acquire a gene expression profile representative of an early-stage, dedifferentiated, stem-like state, regardless of age. Signaling pathways that support cell proliferation and survival were induced by spaceflight along with transcripts related to cell cycle re-entry, cardiovascular development, and oxidative stress. These findings contribute new insight into the multifaceted influence of reduced gravitational environments.
Collapse
|
15
|
The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther 2021; 38:885-903. [PMID: 33331986 DOI: 10.1007/s12325-020-01581-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF) system comprises ligands of IGF-I/II, IGF receptors (IGFR), IGF binding proteins (IGFBPs), and IGFBP hydrolases. The IGF system plays multiple roles during various disease development as IGFs are widely involved in cell proliferation and differentiation through regulating DNA transcription. Meanwhile, IGFBPs, which are mainly synthesized in the liver, can bind to IGFs and perform two different functions: either inhibition of IGFs by forming inactive compounds with IGF or enhancement of the function of IGFs by strengthening the IGF-IGFR interaction. Interestingly, IGFBPs may have wider functions through IGF-independent mechanisms. Studies have shown that IGFBPs play important roles in cardiovascular disease, tumor progression, fetal growth, and neuro-nutrition. In this review, we emphasize that different IGFBP family members have common or unique functions in numerous diseases; moreover, IGFBPs may serve as biomarkers for disease diagnosis and prediction.
Collapse
|
16
|
Grimes MM, Kenney SR, Dominguez DR, Brayer KJ, Guo Y, Wandinger-Ness A, Hudson LG. The R-enantiomer of ketorolac reduces ovarian cancer tumor burden in vivo. BMC Cancer 2021; 21:40. [PMID: 33413202 PMCID: PMC7791840 DOI: 10.1186/s12885-020-07716-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rho-family GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), are important modulators of cancer-relevant cell functions and are viewed as promising therapeutic targets. Based on high-throughput screening and cheminformatics we identified the R-enantiomer of an FDA-approved drug (ketorolac) as an inhibitor of Rac1 and Cdc42. The corresponding S-enantiomer is a non-steroidal anti-inflammatory drug (NSAID) with selective activity against cyclooxygenases. We reported previously that R-ketorolac, but not the S-enantiomer, inhibited Rac1 and Cdc42-dependent downstream signaling, growth factor stimulated actin cytoskeleton rearrangements, cell adhesion, migration and invasion in ovarian cancer cell lines and patient-derived tumor cells. METHODS In this study we treated mice with R-ketorolac and measured engraftment of tumor cells to the omentum, tumor burden, and target GTPase activity. In order to gain insights into the actions of R-ketorolac, we also performed global RNA-sequencing (RNA-seq) analysis on tumor samples. RESULTS Treatment of mice with R-ketorolac decreased omental engraftment of ovarian tumor cells at 18 h post tumor cell injection and tumor burden after 2 weeks of tumor growth. R-ketorolac treatment inhibited tumor Rac1 and Cdc42 activity with little impact on mRNA or protein expression of these GTPase targets. RNA-seq analysis revealed that R-ketorolac decreased expression of genes in the HIF-1 signaling pathway. R-ketorolac treatment also reduced expression of additional genes associated with poor prognosis in ovarian cancer. CONCLUSION These findings suggest that R-ketorolac may represent a novel therapeutic approach for ovarian cancer based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor. R-ketorolac modulates relevant pathways and genes associated with disease progression and worse outcome.
Collapse
Affiliation(s)
- Martha M. Grimes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - S. Ray Kenney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
- Division of Molecular Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Dayna R. Dominguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - Kathryn J. Brayer
- Analytical and Translational Genomics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico USA
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Yuna Guo
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Angela Wandinger-Ness
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| |
Collapse
|
17
|
Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR, Van de Walle GR. Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Res Ther 2020; 11:524. [PMID: 33276815 PMCID: PMC7716481 DOI: 10.1186/s13287-020-02043-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses. The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies. Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different sources. The latter is much more challenging in mice and humans due to body size and ethical constraints, respectively. METHODS In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional experiments to examine motility and immune regulatory function in distinct MSC populations. RESULTS We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs. Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional adhesion molecule 2 (JAM2) between MSC cultures from the three donor-matched tissue sources translated into altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii) differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue source correlated with the chemoattractive capacity of PB-derived MSCs. CONCLUSIONS Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Fan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jee E Park
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Beatty AE, Schwartz TS. Gene expression of the IGF hormones and IGF binding proteins across time and tissues in a model reptile. Physiol Genomics 2020; 52:423-434. [PMID: 32776803 PMCID: PMC7509249 DOI: 10.1152/physiolgenomics.00059.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) network regulates cellular processes including pre- and postnatal growth, cellular development, wound healing, reproduction, and longevity. Despite their importance in the physiology of vertebrates, the study of the specific functions of the top regulators of the IIS network, insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs), has been mostly limited to a few model organisms. To expand our understanding of this network, we performed quantitative gene expression of IGF hormones in liver and qualitative expression of IGFBPs across tissues and developmental stages in a model reptile, the brown anole lizard (Anolis sagrei). We found that lizards express IGF2 across all life stages (preoviposition embryos to adulthood) and at a higher level than IGF1, which is opposite to patterns seen in laboratory rodents but similar to those seen in humans and other vertebrate models. IGFBP expression was ubiquitous across tissues (brain, gonad, heart, liver, skeletal muscle, tail, and regenerating tail) in adults, apart from IGFBP5, which was variable. These findings provide an essential foundation for further developing the anole lizard as a physiological and biomedical reptile model, as well as expanding our understanding of the function of the IIS network across species.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
19
|
Up-regulated cytotrophoblast DOCK4 contributes to over-invasion in placenta accreta spectrum. Proc Natl Acad Sci U S A 2020; 117:15852-15861. [PMID: 32576693 PMCID: PMC7355036 DOI: 10.1073/pnas.1920776117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The syndrome of cytotrophoblast invasion beyond the normal boundary (in the superficial myometrium) is collectively termed placenta accreta spectrum. The incidence of this condition is rising. However, little is known about the underlying molecular changes. Global transcriptomic profiling of cytotrophoblasts isolated from these cases, as compared to gestational age-matched controls, revealed numerous changes in gene expression involving diverse pathways, including cell signaling, migration, and immune functions. DOCK4 was the most highly up-regulated mRNA in the cases. Mutations in this gene are mechanistically linked to cancer progression. Overexpression of DOCK4 in primary cytotrophoblasts increased their invasiveness. This study provides molecular insights into the pathways driving placenta accreta spectrum and suggests numerous future directions. In humans, a subset of placental cytotrophoblasts (CTBs) invades the uterus and its vasculature, anchoring the pregnancy and ensuring adequate blood flow to the fetus. Appropriate depth is critical. Shallow invasion increases the risk of pregnancy complications, e.g., severe preeclampsia. Overly deep invasion, the hallmark of placenta accreta spectrum (PAS), increases the risk of preterm delivery, hemorrhage, and death. Previously a rare condition, the incidence of PAS has increased to 1:731 pregnancies, likely due to the rise in uterine surgeries (e.g., Cesarean sections). CTBs track along scars deep into the myometrium and beyond. Here we compared the global gene expression patterns of CTBs from PAS cases to gestational age-matched control cells that invaded to the normal depth from preterm birth (PTB) deliveries. The messenger RNA (mRNA) encoding the guanine nucleotide exchange factor, DOCK4, mutations of which promote cancer cell invasion and angiogenesis, was the most highly up-regulated molecule in PAS samples. Overexpression of DOCK4 increased CTB invasiveness, consistent with the PAS phenotype. Also, this analysis identified other genes with significantly altered expression in this disorder, potential biomarkers. These data suggest that CTBs from PAS cases up-regulate a cancer-like proinvasion mechanism, suggesting molecular as well as phenotypic similarities in the two pathologies.
Collapse
|
20
|
Bhatia S, Wang P, Toh A, Thompson EW. New Insights Into the Role of Phenotypic Plasticity and EMT in Driving Cancer Progression. Front Mol Biosci 2020; 7:71. [PMID: 32391381 PMCID: PMC7190792 DOI: 10.3389/fmolb.2020.00071] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor cells demonstrate substantial plasticity in their genotypic and phenotypic characteristics. Epithelial-mesenchymal plasticity (EMP) can be characterized into dynamic intermediate states and can be orchestrated by many factors, either intercellularly via epigenetic reprograming, or extracellularly via growth factors, inflammation and/or hypoxia generated by the tumor stromal microenvironment. EMP has the capability to alter phenotype and produce heterogeneity, and thus by changing the whole cancer landscape can attenuate oncogenic signaling networks, invoke anti-apoptotic features, defend against chemotherapeutics and reprogram angiogenic and immune recognition functions. We discuss here the role of phenotypic plasticity in tumor initiation, progression and metastasis and provide an update of the modalities utilized for the molecular characterization of the EMT states and attributes of cellular behavior, including cellular metabolism, in the context of EMP. We also summarize recent findings in dynamic EMP studies that provide new insights into the phenotypic plasticity of EMP flux in cancer and propose therapeutic strategies to impede the metastatic outgrowth of phenotypically heterogeneous tumors.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Peiyu Wang
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Alan Toh
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div 2020; 15:4. [PMID: 32127912 PMCID: PMC7047354 DOI: 10.1186/s13008-020-00061-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background Recurrence of Glioblastoma multiforme (GBM) seems to be the rule despite combination therapies. Cell invasion and cell proliferation are major reasons for recurrence of GBM. And insulin-like growth factor binding protein 5 (IGFBP5) is the most conserved of the IGFBPs and is frequently dysregulated in cancers and metastatic tissues. Results By studying the human glioma tissues, we find that IGFBP5 expression associate to the histopathological classification and highly expressed in GBM. Using IGFBP5 mutants we demonstrate that knockdown of IGFBP5 inhibited cell invasion, whereas promoting cell proliferation in GBM cells. Mechanistically, we observed that promoting GBM cell proliferation by inhibiting IGFBP5 was associated with stimulating Akt (Protein kinase B) phosphorylation. However, IGFBP5 promote GBM cell invasion was related to the epithelial-to-mesenchymal transition (EMT). Furthermore, the Chinese Glioma Genome Altas (CGGA) database show that IGFBP5 is significantly increased in recurrent glioma and it predicted worse survival. Conclusions The obtained results indicate that IGFBP5 has two sides in GBM—inhibiting cell proliferation but promoting cell invasion.
Collapse
Affiliation(s)
- Chengyuan Dong
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Junwen Zhang
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Sheng Fang
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Fusheng Liu
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| |
Collapse
|
22
|
Alem FZ, Bejaoui M, Villareal MO, Rhourri-Frih B, Isoda H. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway. Exp Dermatol 2020; 29:427-435. [PMID: 32012353 DOI: 10.1111/exd.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
Melanoma is the most dangerous form of skin cancer with a very poor prognosis. Melanoma develops when unrepaired DNA damage causes to skin cells to multiply and form malignant tumors. The current therapy is limited by the highly ability of this disease to metastasize rapidly. Plumbagin is a naphthoquinone (5-hydroxy-2-methyl-1, 4-naphthoquinone), isolated from the roots of medicinal plant Plumbago zeylanica, and it is widely present in Lawsonia inermis L. It has been shown that plumbagin has an anti-proliferative and anti-invasive activities in various cancer cell lines; however, the anti-cancer and anti-metastatic effects of plumbagin are largely unknown against melanoma cells. In this study, we evaluated the effect of plumbagin on B16F10 murine melanoma cells . Plumbagin decreased B16F10 cell viability as well as the cell migration, adhesion, and invasion. The molecular mechanism was studied, and plumbagin downregulated genes relevant in MAPK pathway, matrix metalloproteinases (MMP's), and cell adhesion. Furthermore, plumbagin elevated the expression of apoptosis and tumors suppressor genes, and genes significant in reactive oxygen species (ROS) response. Taken together, our findings suggest that plumbagin has an anti-invasion and anti-metastasis effect on melanoma cancer cells by acting on MAPK pathway and its related genes.
Collapse
Affiliation(s)
- Fatima-Zahra Alem
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan
| | - Myra O Villareal
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Boutayna Rhourri-Frih
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
23
|
Duan C, Allard JB. Insulin-Like Growth Factor Binding Protein-5 in Physiology and Disease. Front Endocrinol (Lausanne) 2020; 11:100. [PMID: 32194505 PMCID: PMC7063065 DOI: 10.3389/fendo.2020.00100] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is regulated by a conserved family of IGF binding proteins (IGFBPs) in vertebrates. Among the six distinct types of IGFBPs, IGFBP-5 is the most highly conserved across species and has the broadest range of biological activities. IGFBP-5 is expressed in diverse cell types, and its expression level is regulated by a variety of signaling pathways in different contexts. IGFBP-5 can exert a range of biological actions including prolonging the half-life of IGFs in the circulation, inhibition of IGF signaling by competing with the IGF-1 receptor for ligand binding, concentrating IGFs in certain cells and tissues, and potentiation of IGF signaling by delivery of IGFs to the IGF-1 receptor. IGFBP-5 also has IGF-independent activities and is even detected in the nucleus. Its broad biological activities make IGFBP-5 an excellent representative for understanding IGFBP functions. Despite its evolutionary conservation and numerous biological activities, knockout of IGFBP-5 in mice produced only a negligible phenotype. Recent research has begun to explain this paradox by demonstrating cell type-specific and physiological/pathological context-dependent roles for IGFBP-5. In this review, we survey and discuss what is currently known about IGFBP-5 in normal physiology and human disease. Based on recent in vivo genetic evidence, we suggest that IGFBP-5 is a multifunctional protein with the ability to act as a molecular switch to conditionally regulate IGF signaling.
Collapse
|
24
|
Flüh C, Mafael V, Adamski V, Synowitz M, Held-Feindt J. Dormancy and NKG2D system in brain metastases: Analysis of immunogenicity. Int J Mol Med 2019; 45:298-314. [PMID: 31894267 PMCID: PMC6984787 DOI: 10.3892/ijmm.2019.4449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Patients with breast cancer (BC) and lung cancer (LC) are prone to developing brain metastases, which are associated with devastating prognoses. Dormant tumor cells, a population of non-apoptotic quiescent cells and immunological escape mechanisms, including the Natural Killer Group 2 member D (NKG2D) receptor-ligand system, represent potential mechanisms of tumor recurrence. To date, the immunological characteristics of dormant tumor cells concerning the NKG2D system in cerebral malignancies are mostly unknown. In the present study, an extensive characterization of dormant and NKG2D ligand (NKG2DL)+ cells in cerebral metastases was performed. The expression profiles and localization patterns of various NKG2DL and several dormancy markers were analyzed in solid human brain metastases from patients with BC and LC using immunostaining and reverse transcription-quantitative polymerase chain reaction analyses. Statistical analysis was performed using Student's t-test and Bravais-Pearson correlation analysis. Not only 'peripheral', but also 'central' dormancy markers, which had been previously described in primary brain tumors, were identified in all cerebral metastases at detectable levels at protein and mRNA levels. Notably, the majority of NKG2DL+ cells were also positive for 'central' dormancy markers, but not 'peripheral' dormancy markers in both patient groups. This cell population may represent a promising future therapeutic target.
Collapse
Affiliation(s)
- Charlotte Flüh
- Department of Neurosurgery, University Medical Center Schleswig‑Holstein, Campus Kiel, D‑24105 Kiel, Germany
| | - Victor Mafael
- Department of Neurosurgery, University Medical Center Schleswig‑Holstein, Campus Kiel, D‑24105 Kiel, Germany
| | - Vivian Adamski
- Department of Neurosurgery, University Medical Center Schleswig‑Holstein, Campus Kiel, D‑24105 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig‑Holstein, Campus Kiel, D‑24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig‑Holstein, Campus Kiel, D‑24105 Kiel, Germany
| |
Collapse
|
25
|
Martinez VG, Pankova V, Krasny L, Singh T, Makris S, White IJ, Benjamin AC, Dertschnig S, Horsnell HL, Kriston-Vizi J, Burden JJ, Huang PH, Tape CJ, Acton SE. Fibroblastic Reticular Cells Control Conduit Matrix Deposition during Lymph Node Expansion. Cell Rep 2019; 29:2810-2822.e5. [PMID: 31775047 PMCID: PMC6899512 DOI: 10.1016/j.celrep.2019.10.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Lymph nodes (LNs) act as filters, constantly sampling peripheral cues. This is facilitated by the conduit network, a tubular structure of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo rapid 3- to 5-fold expansion during adaptive immune responses, but these ECM-rich structures are not permanently damaged. Whether conduit flow or filtering function is affected during LN expansion is unknown. Here, we show that conduits are partially disrupted during acute LN expansion, but FRC-FRC contacts remain connected. We reveal that polarized FRCs deposit ECM basolaterally using LL5-β and that ECM production is regulated at transcriptional and secretory levels by the C-type lectin CLEC-2, expressed by dendritic cells. Inflamed LNs maintain conduit size exclusion, and flow is disrupted but persists, indicating the robustness of this structure despite rapid tissue expansion. We show how dynamic communication between peripheral tissues and LNs provides a mechanism to prevent inflammation-induced fibrosis in lymphoid tissue.
Collapse
Affiliation(s)
- Victor G Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valeriya Pankova
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lukas Krasny
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Tanya Singh
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian J White
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Agnesska C Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Simone Dertschnig
- UCL Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Harry L Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Paul H Huang
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Insulin-Like Growth Factor Binding Protein 5-A Probable Target of Kidney Renal Papillary Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3210324. [PMID: 31886201 PMCID: PMC6925670 DOI: 10.1155/2019/3210324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Kidney renal papillary renal cell carcinoma (KIRP) accounts for 10-15% of renal cell carcinoma (RCC). The need to find more therapeutic targets for KIRP is urgent because most targeted drugs have limited effects on advanced KIRP. Insulin-like growth factor (IGF) binding protein 5 (IGFBP5) is a secreted protein related to cell proliferation, cell adhesion, cell migration, the inflammatory response and fibrosis; these functions are independent of IGF. In our study, we determined the expression and functions of IGFBP5 with data from the database of The Cancer Genome Atlas (TCGA). We found that IGFBP5 is down regulated in KIRP kidney tissues compared to its expression in control tissues and that the expression of IGFBP5 is negatively related to patient survival. Bioinformatic analysis showed the probable processes and pathways involved in altered IGFBP5 expression, including blood vessel development, the cellular response to growth factor stimulus, the response to transforming growth factor β (TGF-β), and extracellular matrix organization. We proposed that VEGFA and TGF-β act as upstream regulatory factors of IGFBP5 and verified this in the Caki-2 cell line. Based on our results, we suggest that IGFBP5 might be a therapeutic target of KIRP.
Collapse
|
27
|
Steffensen LB, Conover CA, Oxvig C. PAPP-A and the IGF system in atherosclerosis: what's up, what's down? Am J Physiol Heart Circ Physiol 2019; 317:H1039-H1049. [PMID: 31518159 PMCID: PMC6879922 DOI: 10.1152/ajpheart.00395.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase with a well-established role in releasing bioactive insulin-like growth factor-1 (IGF-1) from IGF-binding protein-2, -4, and -5 by proteolytic processing of these. The IGF system has repeatedly been suggested to be involved in the pathology of atherosclerosis, and both PAPP-A and IGF-1 are proposed biomarkers and therapeutic targets for this disease. Several experimental approaches based on atherosclerosis mouse models have been undertaken to obtain causative and mechanistic insight to the role of these molecules in atherogenesis. However, reports seem conflicting. The literature suggests that PAPP-A is detrimental, while IGF-1 is beneficial. This raises important questions that need to be addressed. Here we summarize the various studies and discuss potential underlying explanations for this seemingly inconsistency with the objective of better understanding complexities and limitations when manipulating the IGF system in mouse models of atherosclerosis. A debate clarifying what's up and what's down is highly warranted going forward with the ultimate goal of improving atherosclerosis therapy by targeting the IGF system.
Collapse
Affiliation(s)
- Lasse B Steffensen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Administration of Tonsil-Derived Mesenchymal Stem Cells Improves Glucose Tolerance in High Fat Diet-Induced Diabetic Mice via Insulin-Like Growth Factor-Binding Protein 5-Mediated Endoplasmic Reticulum Stress Modulation. Cells 2019; 8:cells8040368. [PMID: 31018536 PMCID: PMC6523961 DOI: 10.3390/cells8040368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder accompanied by high blood glucose, insulin resistance, and relative insulin deficiency. Endoplasmic reticulum (ER) stress induced by high glucose and free fatty acids has been suggested as one of the main causes of β-cell dysfunction and death in T2DM. Stem cell-derived insulin-secreting cells were recently suggested as a novel therapy for diabetes. In the present study, we demonstrate the therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) to treat high-fat diet (HFD)-induced T2DM. To explore whether TMSC administration can alleviate T2DM, TMSCs were intraperitoneally injected in HFD-induced T2DM mice once every 2 weeks. TMSC injection markedly improved glucose tolerance and glucose-stimulated insulin secretion and prevented HFD-induced pancreatic β-cell hypertrophy and cell death. In addition, TMSC injection relieved the ER-stress response and preserved gene expression related to glucose sensing and insulin secretion. Moreover, administration of TMSC-derived conditioned medium induced similar therapeutic outcomes, suggesting paracrine effects. Finally, proteomic analysis revealed high secretion of insulin-like growth factor-binding protein 5 by TMSCs, and its expression was critical for the protective effects of TMSCs against HFD-induced glucose intolerance and ER-stress response in pancreatic islets. TMSC administration can alleviate HFD-induced-T2DM via preserving pancreatic islets and their function. These results provide novel evidence of TMSCs as an ER-stress modulator that may be a novel, alternative cell therapy for T2DM.
Collapse
|
29
|
Zhang L, Li W, Cao L, Xu J, Qian Y, Chen H, Zhang Y, Kang W, Gou H, Wong CC, Yu J. PKNOX2 suppresses gastric cancer through the transcriptional activation of IGFBP5 and p53. Oncogene 2019; 38:4590-4604. [PMID: 30745575 PMCID: PMC6756047 DOI: 10.1038/s41388-019-0743-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/31/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
Promoter methylation plays a vital role in tumorigenesis through transcriptional silencing of tumor suppressive genes. Using genome-wide methylation array, we first identified PBX/Knotted Homeobox 2 (PKNOX2) as a candidate tumor suppressor in gastric cancer. PKNOX2 mRNA expression is largely silenced in gastric cancer cell lines and primary gastric cancer via promoter methylation. Promoter methylation of PKNOX2 was associated with poor survival in gastric cancer patients. A series of in vitro and in vivo functional studies revealed that PKNOX2 functions as a tumor suppressor. Ectopic PKNOX2 expression inhibited cell proliferation in GC cell lines and suppressed growth of tumor xenografts in mice via induction of apoptosis and cell cycle arrest; and suppressed cell migration and invasion by blocking epithelial-to-mesenchymal transition. On the other hand, knockdown PKNOX2 in normal gastric epithelial cells triggered diverse malignant phenotypes. Mechanistically, PKNOX2 exerts its tumor suppressive effect by promoting the up-regulation of Insulin like Growth Factor Binding Protein 5 (IGFBP5) and TP53. PKNOX2 binds to the promoter regions of IGFBP5 and TP53 and transcriptionally activated their expression by chromatin immunoprecipitation (ChIP)-PCR assay. IGFBP5 knockdown partly abrogated tumor suppressive effect of PKNOX2, indicating that the function(s) of PKNOX2 are dependent on IGFBP5. IGFBP5 promoted PKNOX2-mediated up-regulation of p53. As a consequence, p53 transcription target genes were coordinately up-regulated in PKNOX2-expressing GC cells, leading to tumor suppression. In summary, our results identified PKNOX2 as a tumor suppressor in gastric cancer by activation of IGFBP5 and p53 signaling pathways. PKNOX2 promoter hypermethylation might be a biomarker for the poor survival of gastric cancer patients.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lei Cao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jiaying Xu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yun Qian
- Department of Gastroenterology, Shenzhen University Hospital, Shenzhen, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
30
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
31
|
Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent prognostic factors in breast cancer. Oncotarget 2018; 7:62939-62953. [PMID: 27556857 PMCID: PMC5325338 DOI: 10.18632/oncotarget.11307] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
Tumour cell-extracellular matrix (ECM) interactions are fundamental for discrete steps in breast cancer progression. In particular, cancer cell adhesion to ECM proteins present in the microenvironment is critical for accelerating tumour growth and facilitating metastatic spread. To assess the utility of tumour cell-ECM adhesion as a means for discovering prognostic factors in breast cancer survival, here we perform a systematic phenotypic screen and characterise the adhesion properties of a panel of human HER2 amplified breast cancer cell lines across six ECM proteins commonly deregulated in breast cancer. We determine a gene expression signature that defines a subset of cell lines displaying impaired adhesion to laminin. Cells with impaired laminin adhesion showed an enrichment in genes associated with cell motility and molecular pathways linked to cytokine signalling and inflammation. Evaluation of this gene set in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort of 1,964 patients identifies the F12 and STC2 genes as independent prognostic factors for overall survival in breast cancer. Our study demonstrates the potential of in vitro cell adhesion screens as a novel approach for identifying prognostic factors for disease outcome.
Collapse
|
32
|
Hawsawi Y, Humphries MP, Wright A, Berwick A, Shires M, Al-Kharobi H, El-Gendy R, Jove M, Twelves C, Speirs V, Beattie J. Deregulation of IGF-binding proteins -2 and -5 contributes to the development of endocrine resistant breast cancer in vitro. Oncotarget 2017; 7:32129-43. [PMID: 27050076 PMCID: PMC5078002 DOI: 10.18632/oncotarget.8534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 12/28/2022] Open
Abstract
Tamoxifen (TAM) remains the adjuvant therapy of choice for pre-menopausal women with ERα-positive breast cancer. Resistance and recurrence remain, however, a major challenge with many women relapsing and subsequently dying. The insulin-like growth factor (IGF) axis is involved in breast cancer pathogenesis and progression to endocrine resistant disease, but there is very little data on the expression and potential role of IGF-binding proteins (IGFBP) during acquisition of the resistant phenotype. The aim of this study was to determine the expression and functional role of IGFBP-2 and -5 in the development of TAM resistance (TamR) in vitro and to test retrospectively whether they were predictive of resistance in a tissue microarray of 77 women with primary breast cancers who relapsed on/after endocrine therapy and 193 who did not with long term follow up. Reciprocal expression of IGFBP-2 and IGFBP-5 was observed at both mRNA and protein level in TamR cells. IGFBP-2 expression was increased by 10-fold while IGFBP-5 was decreased by 100-fold, compared to TAM-sensitive control cells. shRNA-mediated silencing of IGFBP-2 in TamR cells restored TAM sensitivity suggesting a causal role for this gene in TamR. While silencing of IGFBP-5 in control cells had no effect on TAM sensitivity, it significantly increased the migratory capacity of these cells. Quantitative image analysis of immunohistochemical data failed, however, to demonstrate an effect of IGFBP2 expression in endocrine-relapsed patients. Likewise, IGFBP-2 and IGFBP-5 expression failed to show any significant associations with survival either in patients relapsing or those not relapsing on/after endocrine therapy. By contrast, in silico mining of a separate published dataset showed that in patients who received endocrine treatment, loss of expression of IGBP-5 was significantly associated with worse survival. Overall these data suggest that co-ordinated and reciprocal alteration in IGFBP-2 and −5 expression may play a role in the acquisition of endocrine resistance.
Collapse
Affiliation(s)
- Yousef Hawsawi
- Department of Oral Biology, St James's University Hospital, Leeds, UK.,Leeds Institute of Cancer and Pathology, University of Leeds, UK.,Current address: Department of Breast Medical Oncology, MD Anderson Cancer Centre, University of Texas, Houston, USA
| | | | - Alexander Wright
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Angelene Berwick
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Mike Shires
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Hanaa Al-Kharobi
- Department of Oral Biology, St James's University Hospital, Leeds, UK
| | - Reem El-Gendy
- Department of Oral Biology, St James's University Hospital, Leeds, UK
| | - Maria Jove
- St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | - Chris Twelves
- St James's Institute of Oncology, St James's University Hospital, Leeds, UK.,Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - James Beattie
- Department of Oral Biology, St James's University Hospital, Leeds, UK
| |
Collapse
|
33
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Han AL, Veeneman BA, El-Sawy L, Day KC, Day ML, Tomlins SA, Keller ET. Fibulin-3 promotes muscle-invasive bladder cancer. Oncogene 2017; 36:5243-5251. [DOI: 10.1038/onc.2017.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/27/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022]
|
35
|
Tanner MR, Pennington MW, Laragione T, Gulko PS, Beeton C. KCa1.1 channels regulate β 1-integrin function and cell adhesion in rheumatoid arthritis fibroblast-like synoviocytes. FASEB J 2017; 31:3309-3320. [PMID: 28428266 DOI: 10.1096/fj.201601097r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/05/2017] [Indexed: 01/01/2023]
Abstract
Large-conductance calcium-activated potassium channel (KCa1.1; BK, Slo1, MaxiK, KCNMA1) is the predominant potassium channel expressed at the plasma membrane of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) isolated from the synovium of patients with RA. It is a critical regulator of RA-FLS migration and invasion and therefore represents an attractive target for the therapy of RA. However, the molecular mechanisms by which KCa1.1 regulates RA-FLS invasiveness have remained largely unknown. Here, we demonstrate that KCa1.1 regulates RA-FLS adhesion through controlling the plasma membrane expression and activation of β1 integrins, but not α4, α5, or α6 integrins. Blocking KCa1.1 disturbs calcium homeostasis, leading to the sustained phosphorylation of Akt and the recruitment of talin to β1 integrins. Interestingly, the pore-forming α subunit of KCa1.1 coimmunoprecipitates with β1 integrins, suggesting that this physical association underlies the functional interaction between these molecules. Together, these data outline a new signaling mechanism by which KCa1.1 regulates β1-integrin function and therefore invasiveness of RA-FLSs.-Tanner, M. R., Pennington, M. W., Laragione, T., Gulko, P. S., Beeton, C. KCa1.1 channels regulate β1-integrin function and cell adhesion in rheumatoid arthritis fibroblast-like synoviocytes.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | | | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pércio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA; .,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Caromile LA, Dortche K, Rahman MM, Grant CL, Stoddard C, Ferrer FA, Shapiro LH. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal 2017; 10:10/470/eaag3326. [PMID: 28292957 DOI: 10.1126/scisignal.aag3326] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors.
Collapse
Affiliation(s)
- Leslie Ann Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kristina Dortche
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christina L Grant
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christopher Stoddard
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Fernando A Ferrer
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
37
|
Kotarkonda LK, Kulshrestha R, Ravi K. Role of insulin like growth factor axis in the bleomycin induced lung injury in rats. Exp Mol Pathol 2017; 102:86-96. [DOI: 10.1016/j.yexmp.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
38
|
Jia Y, Li T, Huang X, Xu X, Zhou X, Jia L, Zhu J, Xie D, Wang K, Zhou Q, Jin L, Zhang J, Duan T. Dysregulated DNA Methyltransferase 3A Upregulates IGFBP5 to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia. Hypertension 2017; 69:356-366. [DOI: 10.1161/hypertensionaha.116.08483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/10/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date. Here we revealed that aberrant DNA methyltransferase 3A (DNMT3A) plays a critical role in preeclampsia. Our results show that the expression and localization of DNMT3A are dysregulated in preeclamptic placenta. Moreover, knockdown of DNMT3A obviously inhibits trophoblast cell migration and invasion. Mechanistically, IGFBP5 (insulin-like growth factor–binding protein 5), known as a suppressor, is upregulated by decreased DNMT3A because of promoter hypomethylation. Importantly, IGFBP5 downregulation can rescue the defects caused by DNMT3A knockdown, thereby, consolidating the significance of IGFBP5 in the downstream of DNMT3A in trophoblast. Furthermore, we detected low promoter methylation and high protein expression of IGFBP5 in the clinical samples of preeclamptic placenta. Collectively, our study suggests that dysregulation of DNMT3A and IGFBP5 is relevant to preeclampsia. Thus, we propose that DNMT3A and IGFBP5 can serve as potential markers and targets for the clinical diagnosis and therapy of preeclampsia.
Collapse
Affiliation(s)
- Yuanhui Jia
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Ting Li
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Xiaojie Huang
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Xianghong Xu
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Xinyao Zhou
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Linyan Jia
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Jingping Zhu
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Dandan Xie
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Kai Wang
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Qian Zhou
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Liping Jin
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Jiqin Zhang
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| | - Tao Duan
- From the Clinical and Translational Research Center (Y.J., X.H., X.X., X.Z., L. Jia, J. Zhu, D.X., K.W., Q.Z., L. Jin) and Department of Obstetrics (T.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China; and Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J. Zhang)
| |
Collapse
|
39
|
Leyh B, Dittmer A, Lange T, Martens JWM, Dittmer J. Stromal cells promote anti-estrogen resistance of breast cancer cells through an insulin-like growth factor binding protein 5 (IGFBP5)/B-cell leukemia/lymphoma 3 (Bcl-3) axis. Oncotarget 2016; 6:39307-28. [PMID: 26515727 PMCID: PMC4770774 DOI: 10.18632/oncotarget.5624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
There is strong evidence that stromal cells promote drug resistance of cancer. Here, we show that mesenchymal stem cells (MSCs) and carcinoma-associated fibroblasts (CAFs) desensitize ERα-positive breast cancer cells to the anti-estrogen fulvestrant. In search for the mechanism, we found that MSCs and CAFs similarly increased the activity of the PI3K/AKT and the JAK/STAT3 pathways and upregulated the expression of integrin β1, IGF1R, HIF1α, CAIX and Bcl-3 in MCF-7 cells. Further analyses revealed that MSCs and CAFs coordinately induce these changes by triggering the downregulation of IGFBP5. Loss of IGFBP5 in MCF-7 cells was an early and long-lasting event in response to MSCs and CAFs and was accompanied by growth stimulation both in the absence and presence of fulvestrant. The growth-stimulatory effect in the absence of fulvestrant could be attributed to PI3K/AKT pathway activation and could be mimicked by insulin. The growth-promoting effect in the presence of fulvestrant depended upon the upregulation of Bcl-3. By cRNA microarray analysis we identified additional IGFBP5 targets, of which two (KLHL4 and SEPP1) were inversely regulated by IGFBP5 and Bcl-3. BT474 cells also responded to stromal cells by downregulating IGFBP5 and upregulating the P-AKT, Bcl-3 and IGF1R levels, whereas T47D cells did not show any of these responses. In conclusion, our data suggest that, by targeting IGFBP5 expression in ERα-positive breast cancer cells, such as MCF-7 cells, MSCs and CAFs are able to orchestrate a variety of events, particularly activation of the PI3K/AKT pathway, upregulation of Bcl-3 expression and desensitization to anti-estrogen.
Collapse
Affiliation(s)
- Benjamin Leyh
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| | - Angela Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| | - Theresia Lange
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| | - John W M Martens
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle(Saale), Germany
| |
Collapse
|
40
|
Yu L, Lu Y, Han X, Zhao W, Li J, Mao J, Wang B, Shen J, Fan S, Wang L, Wang M, Li L, Tang J, Song B. microRNA -140-5p inhibits colorectal cancer invasion and metastasis by targeting ADAMTS5 and IGFBP5. Stem Cell Res Ther 2016; 7:180. [PMID: 27906093 PMCID: PMC5134063 DOI: 10.1186/s13287-016-0438-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies in the world. microRNA-140-5p (miR-140) has been shown to be involved in cartilage development and osteoarthritis (OA) pathogenesis. Some contradictions still exist concerning the role of miR-140 in tumor progression and metastasis, and the underlying mechanism is uncertain. Methods Immunohistochemistry was performed to determine the expressions of ADAMTS5 and IGFBP5 in CRC tissues. Human CRC cell lines HCT116 and RKO were transfected with miR-140 mimic, inhibitor, or small interfering RNA (siRNA) against ADAMTS5 or IGFBP5, respectively, using oligofectamine or lipofectamine 2000. Scratch-wound assay and transwell migration and invasion assays were used to evaluate the effects of miR-140 on the capabilities of migration and invasion. The levels of miR-140 and ADAMTS5 and IGFBP5 mRNA were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to examine the expression of ADAMTS5 and IGFBP5 proteins. Results miR-140 was significantly reduced, whereas ADAMTS5 and IGFBP5 were upregulated, in the human CRC tissues compared to the corresponding normal colorectal mucosa. miR-140 downregulation and ADAMTS5 or IGFBP5 overexpression were associated with the advanced TNM stage and distant metastasis of CRC. There was a reverse correlation between miR-140 levels and ADAMTS5 and IGFBP5 expression in CRC tissues. ADAMTS5 and IGFBP5 were downregulated by miR-140 at both the protein and mRNA levels in the CRC cell lines. The gain-of- and loss-of-function studies showed that miR-140 inhibited CRC cell migratory and invasive capacities at least partially via downregulating the expression of ADAMTS5 and IGFBP5. Conclusions These findings suggest that miR-140 suppresses CRC progression and metastasis, possibly through downregulating ADAMTS5 and IGFBP5. miR-140 might be a potential therapeutic candidate for the treatment of CRC.
Collapse
Affiliation(s)
- Lihui Yu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Teaching Laboratory of Morphology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaocui Han
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wenyue Zhao
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jiazhi Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bo Wang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jie Shen
- Teaching Laboratory of Morphology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lu Wang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Mei Wang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Metastasis Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Metastasis Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bo Song
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China. .,Teaching Laboratory of Morphology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
| |
Collapse
|
41
|
Restelli M, Magni M, Ruscica V, Pinciroli P, De Cecco L, Buscemi G, Delia D, Zannini L. A novel crosstalk between CCAR2 and AKT pathway in the regulation of cancer cell proliferation. Cell Death Dis 2016; 7:e2453. [PMID: 27809307 PMCID: PMC5260903 DOI: 10.1038/cddis.2016.359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Human CCAR2 has recently emerged as having a pivotal role in the DNA damage response, promoting apoptosis and repair of heterochromatic DNA breaks. However, less is known about the function of CCAR2 in tumor formation and cancer progression. Here, we demonstrate, for the first time, that CCAR2 loss inhibits the proliferation of cancer cells, but preserves the growth of normal cells. Investigating the mechanisms responsible for this differential effect, we found that CCAR2 depletion specifically impairs the activation of AKT pathway in cancer cells, but not in normal cells, by reducing AKT phosphorylation on Ser473. This effect is achieved through the transcriptional upregulation of TRB3 gene and accumulation of TRB3 protein, which then binds to and inhibits the phosphorylation and activation of AKT. The defective activation of AKT finally results in reduced GSK3β phosphorylation, prevention of G1/S transition and inhibition of cancer cell growth. These results establish an important role for CCAR2 in cancer cells proliferation and could shed new light on novel therapeutic strategies against cancer, devoid of detrimental side effects.
Collapse
Affiliation(s)
- Michela Restelli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Martina Magni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Vincenzo Ruscica
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Patrizia Pinciroli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Loris De Cecco
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, via Celoria 26, Milan 20133, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| |
Collapse
|
42
|
Wang Y, Jia Z, Diao S, Lin X, Lian X, Wang L, Dong R, Liu D, Fan Z. IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton's jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways. Cell Prolif 2016; 49:618-627. [DOI: 19.doi: 10.1111/cpr.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025] Open
Abstract
AbstractObjectivesMesenchymal stem cell (MSC)‐mediated tissue regeneration represents a promising strategy for repair of tissue defects, but its molecular mechanisms remain unclear, restricting the use of MSCs. Our previous study indicated that insulin‐like growth factor‐binding protein 5 (IGFBP5) exerted a valuable effect on osteogenic differentiation of MSCs, but its molecular mechanisms underlying directed differentiation remained unclear. In this study, we have investigated the molecular role of IGFBP5 in regulating this osteogenic differentiation potential.Materials and methodsPeriodontal ligament stem cells (PDLSCs) were isolated from periodontal ligament tissue. Wharton's jelly of umbilical cord stem cells (WJCMSCs) was obtained commercially. Lentiviral IGFBP5 shRNA was used to silence IGFBP5. Retroviruses expressing wild‐type IGFBP5 were used to overexpress IGFBP5 in the WJCMSCs. Recombinant human IGFBP5 protein (rhIGFBP5) was used to treat PDLSCs for 24 h. Western blot analysis was used to detect the MAPK signalling pathway, and alkaline phosphatase (ALP) activity, Alizarin Red staining and quantitative calcium analysis were used to study osteogenic differentiation potentials.ResultsOverexpression of IGFBP5 or rhIGFBP5 increased expression levels of phosphorylated c‐Jun N‐terminal kinase (p‐JNK), phosphorylated mitogen‐activated protein kinase 1 and 2 (p‐MEK1/2) and phosphorylated extracellular regulated protein kinases (p‐Erk1/2) in both WJCMSCs and PDLSCs. Consistently, silenced IGFBP5 was found to effectively inhibit expression of p‐JNK, p‐Erk1/2 and p‐MEK1/2 in PDLSCs and WJCMSCs. Furthermore, inhibition of JNK by its inhibitor, SP600125, or MEK/Erk signalling by its inhibitor, PD98059, dramatically blocked IGFBP5‐enhanced ALP activity and in vitro mineralization in both PDLSCs and WJCMSCs.ConclusionsOur results demonstrated that IGFBP5 promoted osteogenic differentiation potentials of PDLSCs and WJCMSCs via the JNK and MEK/Erk signalling pathways.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Endodontics Tianjin Medical University School of Stomatology Tianjin China
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Zhi Jia
- Department of Endodontics Tianjin Medical University School of Stomatology Tianjin China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Xiaomeng Lian
- Department of Stomatology Beijing Shijitan hospital Capital Medical University Beijing China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Dayong Liu
- Department of Endodontics Tianjin Medical University School of Stomatology Tianjin China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| |
Collapse
|
43
|
Insulin-like growth factor (IGF) axis in cancerogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:78-104. [PMID: 28528692 DOI: 10.1016/j.mrrev.2016.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
Determination of the role of insulin-like growth factor (IGF) family components in carcinogenesis of several human tumors is based on numerous epidemiological and pre-clinical studies, experiments in vivo and in vitro and on attempts at application of drugs affecting the IGF axis. Investigative hypotheses in original studies were based on biological functions manifested by the entire family of IGF (ligands, receptors, linking proteins, adaptor molecules). In the context of carcinogenesis the most important functions of IGF family involve intensification of proliferation and inhibition of cell apoptosis and effect on cell transformation through synthesis of several regulatory proteins. IGF axis controls survival and influences on metastases of cells. Interactions of IGF axis components may be of a direct or indirect nature. The direct effects are linked to activation of PI3K/Akt signaling pathway, in which the initiating role is first of all played by IGF-1 and IGF-1R. Activity of this signaling pathway leads to an increased mitogenesis, cell cycle progression, and protection against different apoptotic stresses. Indirect effects of the axis depend on interactions between IGF and other molecules important for cancer etiology (e.g. sex hormones, products of suppressor genes, viruses, and other GFs) and the style of life (nutrition, physical activity). From the clinical point of view, components of IGF system are first of all considered as diagnostic serous and/or tissue biomarkers of a given cancer, prognostic factors and attractive target of modern anti-tumor therapies. Several mechanisms in which IGF system components act in the process of carcinogenesis need to be clarified, mainly due to multifactorial etiology of the neoplasms. Pin-pointing of the role played in carcinogenesis by any single signaling pathway remains particularly difficult. The aim of this review is to summarize the current data of several epidemiological studies, experiments in vitro and on animal models, to increase our understanding of the complex role of IGF family components in the most common human cancers.
Collapse
|
44
|
Wang Y, Jia Z, Diao S, Lin X, Lian X, Wang L, Dong R, Liu D, Fan Z. IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton's jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways. Cell Prolif 2016; 49:618-27. [PMID: 27484838 DOI: 10.1111/cpr.12284] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cell (MSC)-mediated tissue regeneration represents a promising strategy for repair of tissue defects, but its molecular mechanisms remain unclear, restricting the use of MSCs. Our previous study indicated that insulin-like growth factor-binding protein 5 (IGFBP5) exerted a valuable effect on osteogenic differentiation of MSCs, but its molecular mechanisms underlying directed differentiation remained unclear. In this study, we have investigated the molecular role of IGFBP5 in regulating this osteogenic differentiation potential. MATERIALS AND METHODS Periodontal ligament stem cells (PDLSCs) were isolated from periodontal ligament tissue. Wharton's jelly of umbilical cord stem cells (WJCMSCs) was obtained commercially. Lentiviral IGFBP5 shRNA was used to silence IGFBP5. Retroviruses expressing wild-type IGFBP5 were used to overexpress IGFBP5 in the WJCMSCs. Recombinant human IGFBP5 protein (rhIGFBP5) was used to treat PDLSCs for 24 h. Western blot analysis was used to detect the MAPK signalling pathway, and alkaline phosphatase (ALP) activity, Alizarin Red staining and quantitative calcium analysis were used to study osteogenic differentiation potentials. RESULTS Overexpression of IGFBP5 or rhIGFBP5 increased expression levels of phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated mitogen-activated protein kinase 1 and 2 (p-MEK1/2) and phosphorylated extracellular regulated protein kinases (p-Erk1/2) in both WJCMSCs and PDLSCs. Consistently, silenced IGFBP5 was found to effectively inhibit expression of p-JNK, p-Erk1/2 and p-MEK1/2 in PDLSCs and WJCMSCs. Furthermore, inhibition of JNK by its inhibitor, SP600125, or MEK/Erk signalling by its inhibitor, PD98059, dramatically blocked IGFBP5-enhanced ALP activity and in vitro mineralization in both PDLSCs and WJCMSCs. CONCLUSIONS Our results demonstrated that IGFBP5 promoted osteogenic differentiation potentials of PDLSCs and WJCMSCs via the JNK and MEK/Erk signalling pathways.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Endodontics, Tianjin Medical University School of Stomatology, Tianjin, China.,Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhi Jia
- Department of Endodontics, Tianjin Medical University School of Stomatology, Tianjin, China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiaomeng Lian
- Department of Stomatology, Beijing Shijitan hospital, Capital Medical University, Beijing, China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| | - Dayong Liu
- Department of Endodontics, Tianjin Medical University School of Stomatology, Tianjin, China. .,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
45
|
Insulin-like growth factor binding protein 5 (IGFBP5) functions as a tumor suppressor in human melanoma cells. Oncotarget 2016; 6:20636-49. [PMID: 26010068 PMCID: PMC4653031 DOI: 10.18632/oncotarget.4114] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
The insulin-like growth factor binding protein 5 (IGFBP5), which is often dysregulated in human cancers, plays a crucial role in carcinogenesis and cancer development. However, the function and underlying mechanism of IGFBP5 in tumor growth and metastasis has been elusive, particularly in malignant human melanoma. Here, we reported that IGFBP5 acts as an important tumor suppressor in melanoma tumorigenicity and metastasis by a series of experiments including transwell assay, xenograft model, in vivo tumor metastasis experiment, and RNA-Seq. Overexpression of IGFBP5 in A375, a typical human melanoma cell line, inhibited cell malignant behaviors significantly, including in vitro proliferation, anchorage-independent growth, migration and invasion, as well as in vivo tumor growth and pulmonary metastasis. In addition, overexpression of IGFBP5 suppressed epithelial-mesenchymal transition (EMT), and decreased the expression of E-cadherin and the key stem cell markers NANOG, SOX2, OCT4, KLF4, and CD133. Furthermore, IGFBP5 exerts its inhibitory activities by reducing the phosphorylation of IGF1R, ERK1/2, and p38-MAPK kinases and abating the expression of HIF1α and its target genes, VEGF and MMP9. All these findings were confirmed by IGFBP5 knockdown in human melanoma cell line A2058. Taken together, these results shed light on the mechanism of IGFBP5 as a potential tumor-suppressor in melanoma progression, indicating that IGFBP5 might be a novel therapeutic target for human melanoma.
Collapse
|
46
|
Cobo T, Viloria CG, Solares L, Fontanil T, González-Chamorro E, De Carlos F, Cobo J, Cal S, Obaya AJ. Role of Periostin in Adhesion and Migration of Bone Remodeling Cells. PLoS One 2016; 11:e0147837. [PMID: 26809067 PMCID: PMC4725750 DOI: 10.1371/journal.pone.0147837] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/08/2016] [Indexed: 12/27/2022] Open
Abstract
Periostin is an extracellular matrix protein highly expressed in collagen-rich tissues subjected to continuous mechanical stress. Functionally, periostin is involved in tissue remodeling and its altered function is associated to numerous pathological processes. In orthodontics, periostin plays key roles in the maintenance of dental tissues and it is mainly expressed in those areas where tension or pressing forces are taking place. In this regard, high expression of periostin is essential to promote migration and proliferation of periodontal ligament fibroblasts. However little is known about the participation of periostin in migration and adhesion processes of bone remodeling cells. In this work we employ the mouse pre-osteoblastic MC3T3-E1 and the macrophage-like RAW 264.7 cell lines to overexpress periostin and perform different cell-based assays to study changes in cell behavior. Our data indicate that periostin overexpression not only increases adhesion capacity of MC3T3-E1 cells to different matrix proteins but also hampers their migratory capacity. Changes on RNA expression profile of MC3T3-E1 cells upon periostin overexpression have been also analyzed, highlighting the alteration of genes implicated in processes such as cell migration, adhesion or bone metabolism but not in bone differentiation. Overall, our work provides new evidence on the impact of periostin in osteoblasts physiology.
Collapse
Affiliation(s)
- Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Cristina G. Viloria
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Laura Solares
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Elena González-Chamorro
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Félix De Carlos
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- Instituto Universitario de Oncología (IUOPA), Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Alvaro J. Obaya
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- Instituto Universitario de Oncología (IUOPA), Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- * E-mail:
| |
Collapse
|
47
|
Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments. Genes (Basel) 2015; 6:1201-14. [PMID: 26569312 PMCID: PMC4690035 DOI: 10.3390/genes6041201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.
Collapse
|
48
|
Abstract
Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, 3004, Australia.
| |
Collapse
|
49
|
Dina C, Bouatia-Naji N, Tucker N, Delling FN, Toomer K, Durst R, Perrocheau M, Fernandez-Friera L, Solis J, Le Tourneau T, Chen MH, Probst V, Bosse Y, Pibarot P, Zelenika D, Lathrop M, Hercberg S, Roussel R, Benjamin EJ, Bonnet F, Lo SH, Dolmatova E, Simonet F, Lecointe S, Kyndt F, Redon R, Le Marec H, Froguel P, Ellinor PT, Vasan RS, Bruneval P, Markwald RR, Norris RA, Milan DJ, Slaugenhaupt SA, Levine RA, Schott JJ, Hagege AA, Jeunemaitre X. Genetic association analyses highlight biological pathways underlying mitral valve prolapse. Nat Genet 2015; 47:1206-11. [PMID: 26301497 PMCID: PMC4773907 DOI: 10.1038/ng.3383] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/28/2015] [Indexed: 11/21/2022]
Abstract
Nonsyndromic mitral valve prolapse (MVP) is a common degenerative cardiac valvulopathy of unknown etiology that predisposes to mitral regurgitation, heart failure and sudden death. Previous family and pathophysiological studies suggest a complex pattern of inheritance. We performed a meta-analysis of 2 genome-wide association studies in 1,412 MVP cases and 2,439 controls. We identified 6 loci, which we replicated in 1,422 cases and 6,779 controls, and provide functional evidence for candidate genes. We highlight LMCD1 (LIM and cysteine-rich domains 1), which encodes a transcription factor and for which morpholino knockdown of the ortholog in zebrafish resulted in atrioventricular valve regurgitation. A similar zebrafish phenotype was obtained with knockdown of the ortholog of TNS1, which encodes tensin 1, a focal adhesion protein involved in cytoskeleton organization. We also showed expression of tensin 1 during valve morphogenesis and describe enlarged posterior mitral leaflets in Tns1(-/-) mice. This study identifies the first risk loci for MVP and suggests new mechanisms involved in mitral valve regurgitation, the most common indication for mitral valve repair.
Collapse
Affiliation(s)
- Christian Dina
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Nabila Bouatia-Naji
- INSERM UMR 970, Paris Cardiovascular Research Center, Paris, France
- Paris Descartes University, Paris Sorbonne Cité, Paris, France
| | - Nathan Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Francesca N Delling
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, US National Institutes of Health, Framingham, Massachusetts, USA
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Katelynn Toomer
- Department of Regenerative Medicine and Cell Biology, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ronen Durst
- Department of Cardiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Maelle Perrocheau
- INSERM UMR 970, Paris Cardiovascular Research Center, Paris, France
- Paris Descartes University, Paris Sorbonne Cité, Paris, France
| | - Leticia Fernandez-Friera
- Hospital Universitario Montepríncipe, Universidad Centro de Estudios Universitarios (CEU) San Pablo, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain
| | - Jorge Solis
- Hospital Universitario Montepríncipe, Universidad Centro de Estudios Universitarios (CEU) San Pablo, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain
| | - Thierry Le Tourneau
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Ming-Huei Chen
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, US National Institutes of Health, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vincent Probst
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Yohan Bosse
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | | | - Mark Lathrop
- Centre National de Génotypage, Evry, France
- Génome Québec, Montreal, Quebec, Canada
| | - Serge Hercberg
- Paris Descartes University, Paris Sorbonne Cité, Paris, France
- Paris 13 University, Sorbonne Paris Cité, Bobigny, France
- INSERM U1153, Institut National de Recherche en Agronomie (INRA) U1125, Nutritional Epidemiology Research Unit, Epidemiology and Biostatistics Center, Bobigny, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Public Health, Avicenne Hospital, Bobigny, France
- Paris Diderot University, Paris, France
| | - Ronan Roussel
- Paris Diderot University, Paris, France
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- AP-HP, Department of Endocrinology, Diabetes and Nutrition, Fibrosis, Inflammation, Remodeling in Cardiovascular, Respiratory and Renal Diseases (FIRE) Department Hospital University, Bichat Hospital, Paris, France
| | - Emelia J Benjamin
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, US National Institutes of Health, Framingham, Massachusetts, USA
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabrice Bonnet
- INSERM, Clinical Investigation Centre (CIC) 0203, University Hospital of Pontchaillou, Rennes, France
- Department of Endocrinology, University Hospital, Rennes, France
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, California, USA
| | - Elena Dolmatova
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Floriane Simonet
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
| | - Simon Lecointe
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Florence Kyndt
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Richard Redon
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Hervé Le Marec
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Philippe Froguel
- CNRS UMR 8199, Lille Pasteur Institute, Lille 2 University, European Genomic Institute for Diabetes (EGID), Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, US National Institutes of Health, Framingham, Massachusetts, USA
| | - Patrick Bruneval
- INSERM UMR 970, Paris Cardiovascular Research Center, Paris, France
- Paris Descartes University, Paris Sorbonne Cité, Paris, France
- AP-HP, Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David J Milan
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Susan A Slaugenhaupt
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Jacques Schott
- INSERM Unité Mixte de Recherche (UMR) 1087, Centre National de la Recherche Scientifique (CNRS) UMR 6291, Institut du Thorax, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, Nantes, France
| | - Albert A Hagege
- INSERM UMR 970, Paris Cardiovascular Research Center, Paris, France
- AP-HP, Department of Cardiology, Hôpital Européen Georges Pompidou, Paris, France
| | - Xavier Jeunemaitre
- INSERM UMR 970, Paris Cardiovascular Research Center, Paris, France
- Paris Descartes University, Paris Sorbonne Cité, Paris, France
- AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
50
|
Su Y, Nishimoto T, Feghali-Bostwick C. IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS One 2015; 10:e0130546. [PMID: 26103640 PMCID: PMC4478026 DOI: 10.1371/journal.pone.0130546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization. METHODS We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts. RESULTS Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype. CONCLUSIONS IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.
Collapse
Affiliation(s)
- Yunyun Su
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tetsuya Nishimoto
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|