1
|
Scarberry L, Thesing G, Brennan K, Williams M, Summers MK. p31 Comet Splice Variants Induce Distinct Spindle Assembly Checkpoint Dynamics due to Their Unique N-Termini. Int J Mol Sci 2025; 26:3089. [PMID: 40243841 PMCID: PMC11989133 DOI: 10.3390/ijms26073089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
The role of p31Comet in deactivating the spindle assembly checkpoint is well described in the literature; however, the data are all completed using Variant 2 of p31Comet. p31Comet is known to be expressed as two different splice variants: Variant 1 and Variant 2. Variant 1 contains an additional 32 N-terminal residues compared to Variant 2. We report that Variant 1 exhibits a reduced ability to bind to MAD2 and thus a reduced ability to induce mitotic progression. Additionally, we show that Variant 1 exhibits reduced stability compared to Variant 2. We further show that Variant 1 is uniquely expressed in the Testes, indicating a potentially unique role of Variant 1 in that organ. Overall, we demonstrate the N-terminus of p31Comet is capable of modulating p31Comet activity in mitosis.
Collapse
Affiliation(s)
- Luke Scarberry
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (L.S.); (G.T.); (K.B.); (M.W.)
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Garrett Thesing
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (L.S.); (G.T.); (K.B.); (M.W.)
| | - Kevin Brennan
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (L.S.); (G.T.); (K.B.); (M.W.)
| | - Madison Williams
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (L.S.); (G.T.); (K.B.); (M.W.)
| | - Matthew K. Summers
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (L.S.); (G.T.); (K.B.); (M.W.)
| |
Collapse
|
2
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
3
|
Njomen E, Hayward RE, DeMeester KE, Ogasawara D, Dix MM, Nguyen T, Ashby P, Simon GM, Schreiber SL, Melillo B, Cravatt BF. Multi-tiered chemical proteomic maps of tryptoline acrylamide-protein interactions in cancer cells. Nat Chem 2024; 16:1592-1604. [PMID: 39138346 PMCID: PMC11684312 DOI: 10.1038/s41557-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Covalent chemistry is a versatile approach for expanding the ligandability of the human proteome. Activity-based protein profiling (ABPP) can infer the specific residues modified by electrophilic compounds through competition with broadly reactive probes. However, the extent to which such residue-directed platforms fully assess the protein targets of electrophilic compounds in cells remains unclear. Here we evaluate a complementary protein-directed ABPP method that identifies proteins showing stereoselective reactivity with alkynylated, chiral electrophilic compounds-termed stereoprobes. Integration of protein- and cysteine-directed data from cancer cells treated with tryptoline acrylamide stereoprobes revealed generally well-correlated ligandability maps and highlighted features, such as protein size and the proteotypicity of cysteine-containing peptides, that explain gaps in each ABPP platform. In total, we identified stereoprobe binding events for >300 structurally and functionally diverse proteins, including compounds that stereoselectively and site-specifically disrupt MAD2L1BP interactions with the spindle assembly checkpoint complex leading to delayed mitotic exit in cancer cells.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | | | | | | | - Melissa M Dix
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | | | | | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | | |
Collapse
|
4
|
Chuah YH, Tay EXY, Grinchuk OV, Yoon J, Feng J, Kannan S, Robert M, Jakhar R, Liang Y, Lee BWL, Wang LC, Lim YT, Zhao T, Sobota RM, Lu G, Low BC, Crasta KC, Verma CS, Lin Z, Ong DST. CAMK2D serves as a molecular scaffold for RNF8-MAD2 complex to induce mitotic checkpoint in glioma. Cell Death Differ 2023; 30:1973-1987. [PMID: 37468549 PMCID: PMC10406836 DOI: 10.1038/s41418-023-01192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
MAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal. Specifically, RNF8 competes with a small pool of p31comet for binding to the closed conformer of MAD2 via its RING domain, while CAMK2D serves as a molecular scaffold to concentrate the RNF8-MAD2 complex via transient/weak interactions between its p-Thr287 and RNF8's FHA domain. Accordingly, RNF8 overexpression impairs glioma stem cell (GSC) mitotic progression in a FHA- and RING-dependent manner. Importantly, low RNF8 expression correlates with inferior glioma outcome and RNF8 overexpression impedes GSC tumorigenicity. Last, we identify PLK1 inhibitor that mimics RNF8 overexpression using a chemical biology approach, and demonstrate a PLK1/HSP90 inhibitor combination that synergistically reduces GSC proliferation and stemness. Thus, our study has unveiled a previously unrecognized CAMK2D-RNF8-MAD2 complex in regulating mitotic checkpoint with relevance to gliomas, which is therapeutically targetable.
Collapse
Affiliation(s)
- You Heng Chuah
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oleg V Grinchuk
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jeehyun Yoon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Feng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matius Robert
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Bernice Woon Li Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tianyun Zhao
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Boon Chuan Low
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- University Scholars Programme, 18 College Avenue East, Singapore, 138593, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhewang Lin
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
5
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
7
|
Bai S, Sun L, Wang X, Wang SM, Luo ZQ, Wang Y, Jin QW. Recovery from spindle checkpoint-mediated arrest requires a novel Dnt1-dependent APC/C activation mechanism. PLoS Genet 2022; 18:e1010397. [PMID: 36108046 PMCID: PMC9514617 DOI: 10.1371/journal.pgen.1010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/27/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase. Early studies have recognized that the SAC should be silenced within minutes to enable rapid APC/C activation and synchronous segregation of chromosomes once all kinetochores are properly attached, but the underlying silencers are still being elucidated. Here, we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows the degradation of cyclin B and securin, and eventually delays anaphase entry in cells released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon SAC activation. We propose that this association may fend off excessive and prolonged MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy of APC/C activation, which is actively required for maintaining cell viability upon recovery from the inhibition of APC/C by spindle checkpoint.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shuang-min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhou-qing Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| | - Quan-wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| |
Collapse
|
8
|
Deng DJ, Wang X, Yue KY, Wang Y, Jin QW. Analysis of the potential role of fission yeast PP2A in spindle assembly checkpoint inactivation. FASEB J 2022; 36:e22524. [PMID: 36006032 DOI: 10.1096/fj.202101884r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
As a surveillance mechanism, the activated spindle assembly checkpoint (SAC) potently inhibits the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) to ensure accurate chromosome segregation. Although the protein phosphatase 2A (PP2A) has been proposed to be both, directly and indirectly, involved in spindle assembly checkpoint inactivation in mammalian cells, whether it is similarly operating in the fission yeast Schizosaccharomycer pombe has never been demonstrated. Here, we investigated whether fission yeast PP2A is involved in SAC silencing by following the rate of cyclin B (Cdc13) destruction at SPBs during the recovery phase in nda3-KM311 cells released from the inhibition of APC/C by the activated spindle checkpoint. The timing of the SAC inactivation is only slightly delayed when two B56 regulatory subunits (Par1 and Par2) of fission yeast PP2A are absent. Overproduction of individual PP2A subunits either globally in the nda3-KM311 arrest-and-release system or locally in the synthetic spindle checkpoint activation system only slightly suppresses the SAC silencing defects in PP1 deletion (dis2Δ) cells. Our study thus demonstrates that the fission yeast PP2A is not a key regulator actively involved in SAC inactivation.
Collapse
Affiliation(s)
- Da-Jie Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Kai-Ye Yue
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene 2022; 41:489-501. [PMID: 34775484 PMCID: PMC8782720 DOI: 10.1038/s41388-021-02106-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
Chromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP's interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.
Collapse
|
11
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Habu T, Kim J. Dynein intermediate chain 2c (DNCI2c) complex is essential for exiting Mad2-dependent spindle assembly checkpoint. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119120. [PMID: 34400173 DOI: 10.1016/j.bbamcr.2021.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The Mad2 protein plays a key role in the spindle assembly checkpoint (SAC) function. The SAC pathway delays mitotic progression into anaphase until all kinetochores attach to the spindle during mitosis. The formation of the Mad2-p31comet complex correlates with the completion of spindle attachment and the entry into anaphase during mitosis. Herein, we showed that dynein intermediate chain 2c (DNCI2c)-a subunit of dynein motor protein-forms an immunocomplex with p31comet during mitosis. DNCI2c-knockdown resulted in prolonged mitotic arrest in a Mad2-dependent manner. Furthermore, DNCI2c-knockdown-induced mitotic arrest was not rescued by p31comet overexpression. However, the combination of p31comet overexpression with the mitotic drug treatment reversed the mitotic arrest in DNCI2c-knockdown. Together, these results indicate that the DNCI2c-p31comet complex plays an important role in exiting Mad2-dependent SAC.
Collapse
Affiliation(s)
- Toshiyuki Habu
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan.
| | - Jiyeong Kim
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan
| |
Collapse
|
13
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Schuyler SC, Chen HY. Using Budding Yeast to Identify Molecules That Block Cancer Cell 'Mitotic Slippage' Only in the Presence of Mitotic Poisons. Int J Mol Sci 2021; 22:ijms22157985. [PMID: 34360748 PMCID: PMC8347345 DOI: 10.3390/ijms22157985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Research on the budding yeast Saccharomyces cerevisiae has yielded fundamental discoveries on highly conserved biological pathways and yeast remains the best-studied eukaryotic cell in the world. Studies on the mitotic cell cycle and the discovery of cell cycle checkpoints in budding yeast has led to a detailed, although incomplete, understanding of eukaryotic cell cycle progression. In multicellular eukaryotic organisms, uncontrolled aberrant cell division is the defining feature of cancer. Some of the most successful classes of anti-cancer chemotherapeutic agents are mitotic poisons. Mitotic poisons are thought to function by inducing a mitotic spindle checkpoint-dependent cell cycle arrest, via the assembly of the highly conserved mitotic checkpoint complex (MCC), leading to apoptosis. Even in the presence of mitotic poisons, some cancer cells continue cell division via 'mitotic slippage', which may correlate with a cancer becoming refractory to mitotic poison chemotherapeutic treatments. In this review, knowledge about budding yeast cell cycle control is explored to suggest novel potential drug targets, namely, specific regions in the highly conserved anaphase-promoting complex/cyclosome (APC/C) subunits Apc1 and/or Apc5, and in a specific N-terminal region in the APC/C co-factor cell division cycle 20 (Cdc20), which may yield molecules which block 'mitotic slippage' only in the presence of mitotic poisons.
Collapse
Affiliation(s)
- Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan;
- Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-03-211-8800 (ext. 3596)
| | - Hsin-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan;
| |
Collapse
|
15
|
The RAS GTPase RIT1 compromises mitotic fidelity through spindle assembly checkpoint suppression. Curr Biol 2021; 31:3915-3924.e9. [PMID: 34237269 DOI: 10.1016/j.cub.2021.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The spindle assembly checkpoint (SAC) functions as a sensor of unattached kinetochores that delays mitotic progression into anaphase until proper chromosome segregation is guaranteed.1,2 Disruptions to this safety mechanism lead to genomic instability and aneuploidy, which serve as the genetic cause of embryonic demise, congenital birth defects, intellectual disability, and cancer.3,4 However, despite the understanding of the fundamental mechanisms that control the SAC, it remains unknown how signaling pathways directly interact with and regulate the mitotic checkpoint activity. In response to extracellular stimuli, a diverse network of signaling pathways involved in cell growth, survival, and differentiation are activated, and this process is prominently regulated by the Ras family of small guanosine triphosphatases (GTPases).5 Here we show that RIT1, a Ras-related GTPase that regulates cell survival and stress response,6 is essential for timely progression through mitosis and proper chromosome segregation. RIT1 dissociates from the plasma membrane (PM) during mitosis and interacts directly with SAC proteins MAD2 and p31comet in a process that is regulated by cyclin-dependent kinase 1 (CDK1) activity. Furthermore, pathogenic levels of RIT1 silence the SAC and accelerate transit through mitosis by sequestering MAD2 from the mitotic checkpoint complex (MCC). Moreover, SAC suppression by pathogenic RIT1 promotes chromosome segregation errors and aneuploidy. Our results highlight a unique function of RIT1 compared to other Ras GTPases and elucidate a direct link between a signaling pathway and the SAC through a novel regulatory mechanism.
Collapse
|
16
|
Henriques AC, Silva PMA, Sarmento B, Bousbaa H. Antagonizing the spindle assembly checkpoint silencing enhances paclitaxel and Navitoclax-mediated apoptosis with distinct mechanistic. Sci Rep 2021; 11:4139. [PMID: 33603057 PMCID: PMC7893169 DOI: 10.1038/s41598-021-83743-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Antimitotic drugs arrest cells in mitosis through chronic activation of the spindle assembly checkpoint (SAC), leading to cell death. However, drug-treated cancer cells can escape death by undergoing mitotic slippage, due to premature mitotic exit. Therefore, overcoming slippage issue is a promising chemotherapeutic strategy to improve the effectiveness of antimitotics. Here, we antagonized SAC silencing by knocking down the MAD2-binding protein p31comet, to delay mitotic slippage, and tracked cancer cells treated with the antimitotic drug paclitaxel, over 3 days live-cell time-lapse analysis. We found that in the absence of p31comet, the duration of mitotic block was increased in cells challenged with nanomolar concentrations of paclitaxel, leading to an additive effects in terms of cell death which was predominantly anticipated during the first mitosis. As accumulation of an apoptotic signal was suggested to prevent mitotic slippage, when we challenged p31comet-depleted mitotic-arrested cells with the apoptosis potentiator Navitoclax (previously called ABT-263), cell fate was shifted to accelerated post-mitotic death. We conclude that inhibition of SAC silencing is critical for enhancing the lethality of antimitotic drugs as well as that of therapeutic apoptosis-inducing small molecules, with distinct mechanisms. The study highlights the potential of p31comet as a target for antimitotic therapies.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central da Gandra 1317, Gandra, 4585-116, Paredes, Portugal.,INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central da Gandra 1317, Gandra, 4585-116, Paredes, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central da Gandra 1317, Gandra, 4585-116, Paredes, Portugal.,INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central da Gandra 1317, Gandra, 4585-116, Paredes, Portugal. .,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
17
|
Henriques AC, Silva PMA, Sarmento B, Bousbaa H. The Mad2-Binding Protein p31 comet as a Potential Target for Human Cancer Therapy. Curr Cancer Drug Targets 2021; 21:401-415. [PMID: 33511944 DOI: 10.2174/1568009621666210129095726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/22/2022]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents mitotic exit at the metaphase-to-anaphase transition until all chromosomes have established correct bipolar attachment to spindle microtubules. Activation of SAC relies on the assembly of the mitotic checkpoint complex (MCC), which requires conformational change from inactive open Mad2 (OMad2) to the active closed Mad2 (C-Mad2) at unattached kinetochores. The Mad2-binding protein p31comet plays a key role in controlling timely mitotic exit by promoting SAC silencing, through preventing Mad2 activation and promoting MCC disassembly. Besides, increasing evidences highlight the p31comet potential as target for cancer therapy. Here, we provide an updated overview of the functional significance of p31comet in mitotic progression, and discuss the potential of deregulated expression of p31comet in cancer and in therapeutic strategies.
Collapse
Affiliation(s)
- Ana C Henriques
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| | - Patrícia M A Silva
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| | - Bruno Sarmento
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| | - Hassan Bousbaa
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| |
Collapse
|
18
|
BUBR1 Pseudokinase Domain Promotes Kinetochore PP2A-B56 Recruitment, Spindle Checkpoint Silencing, and Chromosome Alignment. Cell Rep 2020; 33:108397. [PMID: 33207204 DOI: 10.1016/j.celrep.2020.108397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of phospho-signaling at the outer kinetochore is critical for forming accurate attachments between kinetochores and the mitotic spindle and timely exit from mitosis. A major player in determining this balance is the PP2A-B56 phosphatase, which is recruited to the kinase attachment regulatory domain (KARD) of budding uninhibited by benzimidazole 1-related 1 (BUBR1) in a phospho-dependent manner. This unleashes a rapid, switch-like phosphatase relay that reverses mitotic phosphorylation at the kinetochore, extinguishing the checkpoint and promoting anaphase. Here, we demonstrate that the C-terminal pseudokinase domain of human BUBR1 is required to promote KARD phosphorylation. Mutation or removal of the pseudokinase domain results in decreased PP2A-B56 recruitment to the outer kinetochore attenuated checkpoint silencing and errors in chromosome alignment as a result of imbalance in Aurora B activity. Our data, therefore, elucidate a function for the BUBR1 pseudokinase domain in ensuring accurate and timely exit from mitosis.
Collapse
|
19
|
p31 comet promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proc Natl Acad Sci U S A 2020; 117:26795-26803. [PMID: 33051298 PMCID: PMC7604461 DOI: 10.1073/pnas.2008830117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The repair of DNA double strand breaks (DSBs) that arise from external mutagenic agents and routine cellular processes is essential for life. DSBs are repaired by two major pathways, homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). DSB repair pathway choice is largely dictated at the step of 5'-3' DNA end resection, which is promoted during S phase, in part by BRCA1. Opposing end resection is the 53BP1 protein, which recruits the ssDNA-binding REV7-Shieldin complex to favor C-NHEJ repair. We recently identified TRIP13 as a proresection factor that remodels REV7, causing its dissociation from the Shieldin subunit SHLD3. Here, we identify p31comet, a negative regulator of MAD2 and the spindle assembly checkpoint, as an important mediator of the TRIP13-REV7 interaction. p31comet binds to the REV7-Shieldin complex in cells, promotes REV7 inactivation, and causes PARP inhibitor resistance. p31comet also participates in the extraction of REV7 from the chromatin. Furthermore, p31comet can counteract REV7 function in translesion synthesis (TLS) by releasing it from REV3 in the Pol ζ complex. Finally, p31comet, like TRIP13, is overexpressed in many cancers and this correlates with poor prognosis. Thus, we reveal a key player in the regulation of HR and TLS with significant clinical implications.
Collapse
|
20
|
Défachelles L, Russo AE, Nelson CR, Bhalla N. The conserved AAA-ATPase PCH-2 TRIP13 regulates spindle checkpoint strength. Mol Biol Cell 2020; 31:2219-2233. [PMID: 32697629 PMCID: PMC7550697 DOI: 10.1091/mbc.e20-05-0310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spindle checkpoint strength is dictated by the number of unattached kinetochores, cell volume, and cell fate. We show that the conserved AAA-ATPase PCH-2/TRIP13, which remodels the checkpoint effector Mad2 from an active conformation to an inactive one, controls checkpoint strength in Caenorhabditis elegans. Having previously established that this function is required for spindle checkpoint activation, we demonstrate that in cells genetically manipulated to decrease in cell volume, PCH-2 is no longer required for the spindle checkpoint or recruitment of Mad2 at unattached kinetochores. This role is not limited to large cells: the stronger checkpoint in germline precursor cells also depends on PCH-2. PCH-2 is enriched in germline precursor cells, and this enrichment relies on conserved factors that induce asymmetry in the early embryo. Finally, the stronger checkpoint in germline precursor cells is regulated by CMT-1, the ortholog of p31comet, which is required for both PCH-2′s localization to unattached kinetochores and its enrichment in germline precursor cells. Thus, PCH-2, likely by regulating the availability of inactive Mad2 at and near unattached kinetochores, governs checkpoint strength. This requirement may be particularly relevant in oocytes and early embryos enlarged for developmental competence, cells that divide in syncytial tissues, and immortal germline cells.
Collapse
Affiliation(s)
- Lénaïg Défachelles
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Anna E Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
21
|
Abstract
The single gene, single protein, single function hypothesis is increasingly becoming obsolete. Numerous studies have demonstrated that individual proteins can moonlight, meaning they can have multiple functions based on their cellular or developmental context. In this review, we discuss moonlighting proteins, highlighting the biological pathways where this phenomenon may be particularly relevant. In addition, we combine genetic, cell biological, and evolutionary perspectives so that we can better understand how, when, and why moonlighting proteins may take on multiple roles.
Collapse
Affiliation(s)
- Nadia Singh
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA;
| | - Needhi Bhalla
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
22
|
Kops GJPL, Gassmann R. Crowning the Kinetochore: The Fibrous Corona in Chromosome Segregation. Trends Cell Biol 2020; 30:653-667. [PMID: 32386879 DOI: 10.1016/j.tcb.2020.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
The kinetochore is at the heart of chromosome segregation in mitosis and meiosis. Rather than a static linker complex for chromatin and spindle microtubules, it is highly dynamic in composition, size, and shape. While known for decades that it can expand and grow a fibrous meshwork known as the corona, it was until recently unclear what constitutes this 'crown' and what its relevance is for kinetochore function. Here, we highlight recent discoveries in fibrous corona biology, and place them in the context of the processes that orchestrate high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, 3584, CT, The Netherlands.
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
23
|
Pachis ST, Hiruma Y, Tromer EC, Perrakis A, Kops GJPL. Interactions between N-terminal Modules in MPS1 Enable Spindle Checkpoint Silencing. Cell Rep 2020; 26:2101-2112.e6. [PMID: 30784592 DOI: 10.1016/j.celrep.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
Abstract
Faithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to kinetochores to initiate SAC signaling and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here, we show that a helical fragment within the kinetochore-targeting N-terminal extension (NTE) module of MPS1 is required for interactions with kinetochores and forms intramolecular interactions with its adjacent tetratricopeptide repeat (TPR) domain. Bypassing this NTE-TPR interaction results in high MPS1 levels at kinetochores due to loss of regulatory input into MPS1 localization, inefficient MPS1 delocalization upon microtubule attachment, and SAC silencing defects. These results show that SAC responsiveness to attachments relies on regulated intramolecular interactions in MPS1 and highlight the sensitivity of mitosis to perturbations in the dynamics of the MPS1-NDC80-C interactions.
Collapse
Affiliation(s)
- Spyridon T Pachis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands
| | - Yoshitaka Hiruma
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Anastassis Perrakis
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands.
| |
Collapse
|
24
|
Paradoxical mitotic exit induced by a small molecule inhibitor of APC/C Cdc20. Nat Chem Biol 2020; 16:546-555. [PMID: 32152539 PMCID: PMC7289404 DOI: 10.1038/s41589-020-0495-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a ubiquitin ligase that initiates anaphase and mitotic exit. APC/C is activated by Cdc20 and inhibited by the mitotic checkpoint complex (MCC), which delays mitotic exit when the spindle assembly checkpoint (SAC) is activated. We previously identified apcin as a small molecule ligand of Cdc20 that inhibits APC/CCdc20 and prolongs mitosis. Here we find that apcin paradoxically shortens mitosis when SAC activity is high. These opposing effects of apcin arise from targeting of a common binding site in Cdc20 required for both substrate ubiquitination and MCC-dependent APC/C inhibition. Furthermore, we found that apcin cooperates with p31comet to relieve MCC-dependent inhibition of APC/C. Apcin therefore causes either net APC/C inhibition, prolonging mitosis when SAC activity is low, or net APC/C activation, shortening mitosis when SAC activity is high, demonstrating that a small molecule can produce opposing biological effects depending on regulatory context.
Collapse
|
25
|
West AMV, Komives EA, Corbett KD. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Res 2019; 46:279-292. [PMID: 29186573 PMCID: PMC5758881 DOI: 10.1093/nar/gkx1196] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
Collapse
Affiliation(s)
- Alan M V West
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Abstract
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
27
|
Chen C, Whitney IP, Banerjee A, Sacristan C, Sekhri P, Kern DM, Fontan A, Kops GJPL, Tyson JJ, Cheeseman IM, Joglekar AP. Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design. Curr Biol 2018; 29:104-119.e10. [PMID: 30595520 DOI: 10.1016/j.cub.2018.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 11/27/2022]
Abstract
Switch-like activation of the spindle assembly checkpoint (SAC) is critical for accurate chromosome segregation and for cell division in a timely manner. To determine the mechanisms that achieve this, we engineered an ectopic, kinetochore-independent SAC activator: the "eSAC." The eSAC stimulates SAC signaling by artificially dimerizing Mps1 kinase domain and a cytosolic KNL1 phosphodomain, the kinetochore signaling scaffold. By exploiting variable eSAC expression in a cell population, we defined the dependence of the eSAC-induced mitotic delay on eSAC concentration in a cell to reveal the dose-response behavior of the core signaling cascade of the SAC. These quantitative analyses and subsequent mathematical modeling of the dose-response data uncover two crucial properties of the core SAC signaling cascade: (1) a cellular limit on the maximum anaphase-inhibitory signal that the cascade can generate due to the limited supply of SAC proteins and (2) the ability of the KNL1 phosphodomain to produce the anaphase-inhibitory signal synergistically, when it recruits multiple SAC proteins simultaneously. We propose that these properties together achieve inverse, non-linear scaling between the signal output per kinetochore and the number of signaling kinetochores. When the number of kinetochores is low, synergistic signaling by KNL1 enables each kinetochore to produce a disproportionately strong signal output. However, when many kinetochores signal concurrently, they compete for a limited supply of SAC proteins. This frustrates synergistic signaling and lowers their signal output. Thus, the signaling activity of unattached kinetochores will adapt to the changing number of signaling kinetochores to enable the SAC to approximate switch-like behavior.
Collapse
Affiliation(s)
- Chu Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ian P Whitney
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Anand Banerjee
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Carlos Sacristan
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Palak Sekhri
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David M Kern
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Adrienne Fontan
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Ajit P Joglekar
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Kim DH, Han JS, Ly P, Ye Q, McMahon MA, Myung K, Corbett KD, Cleveland DW. TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC. Nat Commun 2018; 9:4354. [PMID: 30341343 PMCID: PMC6195577 DOI: 10.1038/s41467-018-06774-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Joo Seok Han
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Peter Ly
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Moira A McMahon
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.,Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA, 92010, USA
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry, University of California-San Diego, La Jolla, CA, 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
29
|
Zhang G, Nilsson J. The closed form of Mad2 is bound to Mad1 and Cdc20 at unattached kinetochores. Cell Cycle 2018; 17:1087-1091. [PMID: 29895228 DOI: 10.1080/15384101.2018.1480209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Anaphase is delayed by the generation of the mitotic checkpoint complex (MCC) composed of the checkpoint proteins Mad2 and BubR1/Bub3 bound to the protein Cdc20. Current models assume that MCC production is catalyzed at unattached kinetochores and that the Mad1/Mad2 complex is instrumental in the conversion of Mad2 from an open form (O-Mad2) to a closed form (C-Mad2) that can bind to Cdc20. Importantly the levels of Mad2 at kinetochores correlate with SAC activity but whether C-Mad2 at kinetochores exclusively represents its complex with Mad1 is not fully established. Here we use a recently established C-Mad2 specific monoclonal antibody to show that Cdc20 and C-Mad2 levels correlate at kinetochores and that depletion of Cdc20 reduces Mad2 but not Mad1 kinetochore levels. Importantly reintroducing wild type Cdc20 but not Cdc20 R132A, a mutant form that cannot bind Mad2, restores Mad2 levels. In agreement with this live cell imaging of fluorescent tagged Mad2 reveals that Cdc20 depletion strongly reduces Mad2 localization to kinetochores. These results support the presence of Mad2-Cdc20 complexes at kinetochores in agreement with current models of the SAC but also argue that Mad2 levels at kinetochores cannot be used as a direct readout of Mad1 levels.
Collapse
Affiliation(s)
- Gang Zhang
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of health and medical sciences , University of Copenhagen , Copenhagen , Denmark.,b Cancer Institute , The Affiliated Hospital of Qingdao University , Qingdao , China.,c Qingdao Cancer Institute , Qingdao , China
| | - Jakob Nilsson
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of health and medical sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
30
|
Alfieri C, Chang L, Barford D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 2018; 559:274-278. [PMID: 29973720 PMCID: PMC6057611 DOI: 10.1038/s41586-018-0281-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
Abstract
The maintenance of genome stability during mitosis is coordinated by the spindle assembly checkpoint (SAC) through its effector the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex (APC/C, also known as the cyclosome)1,2. Unattached kinetochores control MCC assembly by catalysing a change in the topology of the β-sheet of MAD2 (an MCC subunit), thereby generating the active closed MAD2 (C-MAD2) conformer3-5. Disassembly of free MCC, which is required for SAC inactivation and chromosome segregation, is an ATP-dependent process driven by the AAA+ ATPase TRIP13. In combination with p31comet, an SAC antagonist6, TRIP13 remodels C-MAD2 into inactive open MAD2 (O-MAD2)7-10. Here, we present a mechanism that explains how TRIP13-p31comet disassembles the MCC. Cryo-electron microscopy structures of the TRIP13-p31comet-C-MAD2-CDC20 complex reveal that p31comet recruits C-MAD2 to a defined site on the TRIP13 hexameric ring, positioning the N terminus of C-MAD2 (MAD2NT) to insert into the axial pore of TRIP13 and distorting the TRIP13 ring to initiate remodelling. Molecular modelling suggests that by gripping MAD2NT within its axial pore, TRIP13 couples sequential ATP-driven translocation of its hexameric ring along MAD2NT to push upwards on, and simultaneously rotate, the globular domains of the p31comet-C-MAD2 complex. This unwinds a region of the αA helix of C-MAD2 that is required to stabilize the C-MAD2 β-sheet, thus destabilizing C-MAD2 in favour of O-MAD2 and dissociating MAD2 from p31comet. Our study provides insights into how specific substrates are recruited to AAA+ ATPases through adaptor proteins and suggests a model of how translocation through the axial pore of AAA+ ATPases is coupled to protein remodelling.
Collapse
Affiliation(s)
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
31
|
Schuyler SC, Wu YFO, Chen HY, Ding YS, Lin CJ, Chu YT, Chen TC, Liao L, Tsai WW, Huang A, Wang LI, Liao TW, Jhuo JH, Cheng V. Peptide inhibitors of the anaphase promoting-complex that cause sensitivity to microtubule poison. PLoS One 2018; 13:e0198930. [PMID: 29883473 PMCID: PMC5993284 DOI: 10.1371/journal.pone.0198930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/29/2018] [Indexed: 02/01/2023] Open
Abstract
There is an interest in identifying Anaphase Promoting-Complex/Cyclosome (APC/C) inhibitors that lead to sensitivity to microtubule poisons as a strategy for targeting cancer cells. Using budding yeast Saccharomyces cerevisiae, peptides derived from the Mitotic Arrest Deficient 2 (Mad2)-binding motif of Cell Division Cycle 20 (Cdc20) were observed to inhibit both Cdc20- and CDC20 Homology 1 (Cdh1)-dependent APC/C activity. Over expression of peptides in vivo led to sensitivity to a microtubule poison and, in a recovery from a microtubule poison arrest, delayed degradation of yeast Securin protein Precocious Dissociation of Sisters 1 (Pds1). Peptides with mutations in the Cdc20 activating KILR-motif still bound APC/C, but lost the ability to inhibit APC/C in vitro and lost the ability to induce sensitivity to a microtubule poison in vivo. Thus, an APC/C binding and activation motif that promotes mitotic progression, namely the Cdc20 KILR-motif, can also function as an APC/C inhibitor when present in excess. Another activator for mitotic progression after recovery from microtubule poison is p31comet, where a yeast predicted open-reading frame YBR296C-A encoding a 39 amino acid predicted protein was identified by homology to p31comet, and named Tiny Yeast Comet 1 (TYC1). Tyc1 over expression resulted in sensitivity to microtubule poison. Tyc1 inhibited both APC/CCdc20 and APC/CCdh1 activities in vitro and bound to APC/C. A homologous peptide derived from human p31comet bound to and inhibited yeast APC/C demonstrating evolutionary retention of these biochemical activities. Cdc20 Mad2-binding motif peptides and Tyc1 disrupted the ability of the co-factors Cdc20 and Cdh1 to bind to APC/C, and co-over expression of both together in vivo resulted in an increased sensitivity to microtubule poison. We hypothesize that Cdc20 Mad2-binding motif peptides, Tyc1 and human hp31 peptide can serve as novel molecular tools for investigating APC/C inhibition that leads to sensitivity to microtubule poison in vivo.
Collapse
Affiliation(s)
- Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan
- * E-mail:
| | - Yueh-Fu Olivia Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsin-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yi-Shan Ding
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chia-Jung Lin
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Ting Chu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ting-Chun Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Louis Liao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Wei-Wei Tsai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Anna Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Lin-Ing Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ting-Wei Liao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jia-Hua Jhuo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Vivien Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
32
|
Gerhold AR, Poupart V, Labbé JC, Maddox PS. Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo. Mol Biol Cell 2018; 29:1435-1448. [PMID: 29688794 PMCID: PMC6014101 DOI: 10.1091/mbc.e18-04-0215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P1 blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.
Collapse
Affiliation(s)
- Abigail R Gerhold
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
33
|
Marks DH, Thomas R, Chin Y, Shah R, Khoo C, Benezra R. Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit. Cell Rep 2018; 19:1832-1845. [PMID: 28564602 DOI: 10.1016/j.celrep.2017.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
The mitotic checkpoint ensures proper segregation of chromosomes by delaying anaphase until all kinetochores are bound to microtubules. This inhibitory signal is composed of a complex containing Mad2, which inhibits anaphase progression. The complex can be disassembled by p31comet and TRIP13; however, TRIP13 knockdown has been shown to cause only a mild mitotic delay. Overexpression of checkpoint genes, as well as TRIP13, is correlated with chromosomal instability (CIN) in cancer, but the initial effects of Mad2 overexpression are prolonged mitosis and decreased proliferation. Here, we show that TRIP13 overexpression significantly reduced, and TRIP13 reduction significantly exacerbated, the mitotic delay associated with Mad2 overexpression, but not that induced by microtubule depolymerization. The combination of Mad2 overexpression and TRIP13 loss reduced the ability of checkpoint complexes to disassemble and significantly inhibited the proliferation of cells in culture and tumor xenografts. These results identify an unexpected dependency on TRIP13 in cells overexpressing Mad2.
Collapse
Affiliation(s)
- Daniel Henry Marks
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Rozario Thomas
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Riddhi Shah
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Christine Khoo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert Benezra
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| |
Collapse
|
34
|
Wu D, Wang L, Yang Y, Huang J, Hu Y, Shu Y, Zhang J, Zheng J. MAD2-p31 comet axis deficiency reduces cell proliferation, migration and sensitivity of microtubule-interfering agents in glioma. Biochem Biophys Res Commun 2018; 498:157-163. [PMID: 29408509 DOI: 10.1016/j.bbrc.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022]
Abstract
Mitotic arrest deficient-like-1 (MAD2, also known as MAD2L1) is thought to be an important spindle assembly checkpoint protein, which ensures accurate chromosome segregation and is closely associated with poor prognosis in many cancer. As a MAD2 binding protein, p31comet counteracts the function of MAD2 and leads to mitotic checkpoint silence. In this study, we explore the function of MAD2-p31comet axis in malignant glioma cells. Our results showed that disruption of MAD2-p31comet axis by MAD2 knockdown or p31comet overexpression suppressed cell proliferation, survival and migration of glioma, indicating that MAD2-p31comet axis is required for maintaining glioma cells malignancy. It is noted that MAD2 depletion or p31comet overexpression reduced the sensitivity of glioma cells to microtubule-interfering agents paclitaxel and vinblastine, providing clinical guidance for application of such drugs. Taken together, our findings suggest that MAD2-p31comet axis may serve as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lepeng Wang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yanhong Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhua Hu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yongwei Shu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jingyu Zhang
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
35
|
Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer. Proc Natl Acad Sci U S A 2018; 115:E1570-E1577. [PMID: 29378962 DOI: 10.1073/pnas.1719577115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TTK protein kinase (TTK), also known as Monopolar spindle 1 (MPS1), is a key regulator of the spindle assembly checkpoint (SAC), which functions to maintain genomic integrity. TTK has emerged as a promising therapeutic target in human cancers, including triple-negative breast cancer (TNBC). Several TTK inhibitors (TTKis) are being evaluated in clinical trials, and an understanding of the mechanisms mediating TTKi sensitivity and resistance could inform the successful development of this class of agents. We evaluated the cellular effects of the potent clinical TTKi CFI-402257 in TNBC models. CFI-402257 induced apoptosis and potentiated aneuploidy in TNBC lines by accelerating progression through mitosis and inducing mitotic segregation errors. We used genome-wide CRISPR/Cas9 screens in multiple TNBC cell lines to identify mechanisms of resistance to CFI-402257. Our functional genomic screens identified members of the anaphase-promoting complex/cyclosome (APC/C) complex, which promotes mitotic progression following inactivation of the SAC. Several screen candidates were validated to confer resistance to CFI-402257 and other TTKis using CRISPR/Cas9 and siRNA methods. These findings extend the observation that impairment of the APC/C enables cells to tolerate genomic instability caused by SAC inactivation, and support the notion that a measure of APC/C function could predict the response to TTK inhibition. Indeed, an APC/C gene expression signature is significantly associated with CFI-402257 response in breast and lung adenocarcinoma cell line panels. This expression signature, along with somatic alterations in genes involved in mitotic progression, represent potential biomarkers that could be evaluated in ongoing clinical trials of CFI-402257 or other TTKis.
Collapse
|
36
|
Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat Commun 2017; 8:1956. [PMID: 29208896 PMCID: PMC5717197 DOI: 10.1038/s41467-017-02012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The spindle checkpoint maintains genomic stability and prevents aneuploidy. Unattached kinetochores convert the latent open conformer of the checkpoint protein Mad2 (O-Mad2) to the active closed conformer (C-Mad2), bound to Cdc20. C-Mad2–Cdc20 is incorporated into the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C). The C-Mad2-binding protein p31comet and the ATPase TRIP13 promote MCC disassembly and checkpoint silencing. Here, using nuclear magnetic resonance (NMR) spectroscopy, we show that TRIP13 and p31comet catalyze the conversion of C-Mad2 to O-Mad2, without disrupting its stably folded core. We determine the crystal structure of human TRIP13, and identify functional TRIP13 residues that mediate p31comet–Mad2 binding and couple ATP hydrolysis to local unfolding of Mad2. TRIP13 and p31comet prevent APC/C inhibition by MCC components, but cannot reactivate APC/C already bound to MCC. Therefore, TRIP13–p31comet intercepts and disassembles free MCC not bound to APC/C through mediating the local unfolding of the Mad2 C-terminal region. The spindle checkpoint ensures the fidelity of chromosome segregation during mitosis and meiosis. Here the authors use a combination of biochemical and structural biology approaches to show how the TRIP13 ATPase and its adaptor, p31comet, catalyze the conversion of the checkpoint protein Mad2 between latent and active forms
Collapse
|
37
|
Taming the Beast: Control of APC/C Cdc20-Dependent Destruction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:111-121. [PMID: 29133301 DOI: 10.1101/sqb.2017.82.033712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit ubiquitin ligase that triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates cyclin B and securin for destruction. APC/C activity toward these two key substrates requires the coactivator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with high accuracy, APC/CCdc20 activity must be tightly controlled. Here, we discuss the mechanisms that regulate APC/CCdc20 activity both before and during mitosis. We focus our discussion primarily on the chromosomal pathways that both accelerate and delay APC/C activation by targeting Cdc20 to opposing fates. The findings discussed provide an overview of how cells control the activation of this major cell cycle regulator to ensure both accurate and timely cell division.
Collapse
|
38
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
39
|
Park I, Kwon MS, Paik S, Kim H, Lee HO, Choi E, Lee H. HDAC2/3 binding and deacetylation of BubR1 initiates spindle assembly checkpoint silencing. FEBS J 2017; 284:4035-4050. [DOI: 10.1111/febs.14286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Inai Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Sangjin Paik
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyeonjong Kim
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hae-Ock Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Eunhee Choi
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyunsook Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| |
Collapse
|
40
|
Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017; 216:2259-2271. [PMID: 28684425 PMCID: PMC5551716 DOI: 10.1083/jcb.201703170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Gilberto and Peter discuss the role of ubiquitylation in the regulation of DNA replication and mitosis. The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation.
Collapse
Affiliation(s)
- Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.,Molecular Life Science PhD Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
41
|
Ye Q, Kim DH, Dereli I, Rosenberg SC, Hagemann G, Herzog F, Tóth A, Cleveland DW, Corbett KD. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding. EMBO J 2017; 36:2419-2434. [PMID: 28659378 DOI: 10.15252/embj.201797291] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed "closure motifs". The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain-closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 "pore loops", which then unfold MAD2 in the presence of ATP N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain-closure motif complexes by TRIP13.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Dong Hyun Kim
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Dresden, Germany
| | - Scott C Rosenberg
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.,Department of Chemistry, University of California, San Diego, La Jolla, CA, USA
| | - Goetz Hagemann
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz Herzog
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Dresden, Germany
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA .,Department of Chemistry, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Abstract
The spindle assembly checkpoint (SAC) is an evolutionarily conserved mechanism, exclusively sensitive to the states of kinetochores attached to microtubules. During metaphase, the anaphase-promoting complex/cyclosome (APC/C) is inhibited by the SAC but it rapidly switches to its active form following proper attachment of the final spindle. It had been thought that APC/C activity is an all-or-nothing response, but recent findings have demonstrated that it switches steadily. In this study, we develop a detailed mathematical model that considers all 92 human kinetochores and all major proteins involved in SAC activation and silencing. We perform deterministic and spatially-stochastic simulations and find that certain spatial properties do not play significant roles. Furthermore, we show that our model is consistent with in-vitro mutation experiments of crucial proteins as well as the recently-suggested rheostat switch behavior, measured by Securin or CyclinB concentration. Considering an autocatalytic feedback loop leads to an all-or-nothing toggle switch in the underlying core components, while the output signal of the SAC still behaves like a rheostat switch. The results of this study support the hypothesis that the SAC signal varies with increasing number of attached kinetochores, even though it might still contain toggle switches in some of its components.
Collapse
Affiliation(s)
- Richard Henze
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Peter Dittrich
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Bashar Ibrahim
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743, Jena, Germany. .,Institute for Numerical Simulation, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
43
|
May KM, Paldi F, Hardwick KG. Fission Yeast Apc15 Stabilizes MCC-Cdc20-APC/C Complexes, Ensuring Efficient Cdc20 Ubiquitination and Checkpoint Arrest. Curr Biol 2017; 27:1221-1228. [PMID: 28366744 PMCID: PMC5405113 DOI: 10.1016/j.cub.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
Abstract
During mitosis, cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C subunits (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with the APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between the MCC and APC/C, are defective in poly-ubiquitination of Cdc20, and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells, and the implications of this observation are discussed.
Collapse
Affiliation(s)
- Karen M May
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Flora Paldi
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
44
|
Silva PMA, Ribeiro N, Lima RT, Andrade C, Diogo V, Teixeira J, Florindo C, Tavares Á, Vasconcelos MH, Bousbaa H. Suppression of spindly delays mitotic exit and exacerbates cell death response of cancer cells treated with low doses of paclitaxel. Cancer Lett 2017; 394:33-42. [PMID: 28249757 DOI: 10.1016/j.canlet.2017.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
Abstract
Microtubule-targeting agents (MTAs) are used extensively for the treatment of diverse types of cancer. They block cancer cells in mitosis through the activation of the spindle assembly checkpoint (SAC), the surveillance mechanism that ensures accurate chromosome segregation at the onset of anaphase. However, the cytotoxic activity of MTAs is limited by premature mitotic exit (mitotic slippage) due to SAC silencing. Here we have explored the dual role of the protein Spindly in chromosome attachments and SAC silencing to analyze the consequences of its depletion on the viability of tumor cells treated with clinically relevant doses of paclitaxel. As expected, siRNA-mediated Spindly suppression induced chromosome misalignment and accumulation of cells in mitosis. Remarkably, these cells were more sensitive to low-doses of paclitaxel. Sensitization was due to an increase in the length of mitotic arrest and high frequency of multinucleated cells, both correlated with an exacerbated post-mitotic cell death response as determined by cell fate profiling. Thus, by affecting both SAC silencing and chromosome attachment, Spindly targeting offers a double-edged sword that potentiates tumor cell killing by clinically relevant doses of paclitaxel, providing a rationale for combination chemotherapy against cancer.
Collapse
Affiliation(s)
- Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal; Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal; Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro 8005-139, Portugal
| | - Nilza Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; Department of Pathology, FMUP-Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Cláudia Andrade
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vânia Diogo
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Joana Teixeira
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Cláudia Florindo
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal; Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro 8005-139, Portugal
| | - Álvaro Tavares
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal; Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro 8005-139, Portugal
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|
45
|
Meadows JC, Lancaster TC, Buttrick GJ, Sochaj AM, Messin LJ, Del Mar Mora-Santos M, Hardwick KG, Millar JBA. Identification of a Sgo2-Dependent but Mad2-Independent Pathway Controlling Anaphase Onset in Fission Yeast. Cell Rep 2017; 18:1422-1433. [PMID: 28178520 PMCID: PMC5316559 DOI: 10.1016/j.celrep.2017.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/08/2016] [Accepted: 01/15/2017] [Indexed: 10/28/2022] Open
Abstract
The onset of anaphase is triggered by activation of the anaphase-promoting complex/cyclosome (APC/C) following silencing of the spindle assembly checkpoint (SAC). APC/C triggers ubiquitination of Securin and Cyclin B, which leads to loss of sister chromatid cohesion and inactivation of Cyclin B/Cdk1, respectively. This promotes relocalization of Aurora B kinase and other components of the chromosome passenger complex (CPC) from centromeres to the spindle midzone. In fission yeast, this is mediated by Clp1 phosphatase-dependent interaction of CPC with Klp9/MKLP2 (kinesin-6). When this interaction is disrupted, kinetochores bi-orient normally, but APC/C activation is delayed via a mechanism that requires Sgo2 and some (Bub1, Mph1/Mps1, and Mad3), but not all (Mad1 and Mad2), components of the SAC and the first, but not second, lysine, glutamic acid, glutamine (KEN) box in Mad3. These data indicate that interaction of CPC with Klp9 terminates a Sgo2-dependent, but Mad2-independent, APC/C-inhibitory pathway that is distinct from the canonical SAC.
Collapse
Affiliation(s)
- John C Meadows
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Institute of Advanced Study, University of Warwick, Coventry CV4 7AL, UK
| | - Theresa C Lancaster
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Graham J Buttrick
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Alicja M Sochaj
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Liam J Messin
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Del Mar Mora-Santos
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jonathan B A Millar
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
46
|
Corbett KD. Molecular Mechanisms of Spindle Assembly Checkpoint Activation and Silencing. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:429-455. [PMID: 28840248 DOI: 10.1007/978-3-319-58592-5_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cell division, the Spindle Assembly Checkpoint (SAC) plays a key regulatory role by monitoring the status of chromosome-microtubule attachments and allowing chromosome segregation only after all chromosomes are properly attached to spindle microtubules. While the identities of SAC components have been known, in some cases, for over two decades, the molecular mechanisms of the SAC have remained mostly mysterious until very recently. In the past few years, advances in biochemical reconstitution, structural biology, and bioinformatics have fueled an explosion in the molecular understanding of the SAC. This chapter seeks to synthesize these recent advances and place them in a biological context, in order to explain the mechanisms of SAC activation and silencing at a molecular level.
Collapse
Affiliation(s)
- Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.
- Departments of Cellular & Molecular Medicine and Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
Joglekar AP. A Cell Biological Perspective on Past, Present and Future Investigations of the Spindle Assembly Checkpoint. BIOLOGY 2016; 5:biology5040044. [PMID: 27869759 PMCID: PMC5192424 DOI: 10.3390/biology5040044] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/04/2022]
Abstract
The spindle assembly checkpoint (SAC) is a quality control mechanism that ensures accurate chromosome segregation during cell division. It consists of a mechanochemical signal transduction mechanism that senses the attachment of chromosomes to the spindle, and a signaling cascade that inhibits cell division if one or more chromosomes are not attached. Extensive investigations of both these component systems of the SAC have synthesized a comprehensive understanding of the underlying molecular mechanisms. This review recounts the milestone results that elucidated the SAC, compiles a simple model of the complex molecular machinery underlying the SAC, and highlights poorly understood facets of the biochemical design and cell biological operation of the SAC that will drive research forward in the near future.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
48
|
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)—the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.
Collapse
Affiliation(s)
- Song-Tao Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Hang Zhang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
49
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
50
|
Garvanska DH, Larsen MSY, Nilsson J. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C. Biol Open 2016; 5:1441-1448. [PMID: 27591192 PMCID: PMC5087681 DOI: 10.1242/bio.020842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) inhibits the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores by generating a diffusible inhibitor termed the mitotic checkpoint complex (MCC). At metaphase, rapid activation of the APC/C requires removal of the MCC, a process that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor contribution to SAC silencing in HCT116 cells. Strikingly, in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E2 enzyme UBE2D. In conclusion, we provide in vivo insight into the APC/C E2 module and its interplay with SAC silencing components.
Collapse
Affiliation(s)
- Dimitriya H Garvanska
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Marie Sofie Yoo Larsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|