1
|
Sun X, Wang Y, Yang X, Xiang X, Zou L, Liu X, Luo G, Han Q. Profilin Pfy1 is critical for cell wall integrity and virulence in Candida albicans. Microbiol Spectr 2025; 13:e0259324. [PMID: 39992147 PMCID: PMC11960436 DOI: 10.1128/spectrum.02593-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Profilin is a small actin-binding protein that plays an important role in actin polymerization. However, its functions in Candida albicans, the most prevalent fungal pathogen, remain unclear. Here, we report that profilin plays a crucial role in C. albicans morphogenesis and virulence. Deletion of profilin results in abnormal morphogenesis and impaired hyphal development. Furthermore, pfy1Δ/Δ is hypersensitive to cell wall stress and displays thicker cell wall than wild-type cells, indicative of a critical function of Pfy1 in cell wall integrity. In addition, our findings demonstrate that profilin is required for the virulence of C. albicans in a murine model of systemic infection. In conclusion, our work provides a promising target for developing antifungal drugs.IMPORTANCEOur research revealed Pfy1 is not only involved in hyphal development but also essential for pseudohyphal formation in response to DNA damage agents methyl methanesulfonate (MMS) and H2O2. The disruption of PFY1 resulted in striking morphological defects in both yeast and hyphal forms. Further investigation suggested that profilin plays a role in polarized growth of Candida albicans via binding with Act1, and contributes to cell wall remodeling. Both hyphal growth and cell wall integrity are the important virulence factors of C. albicans. Thus, pfy1Δ/Δ strains significantly reduced mortality rates in mice. These findings suggested that profilin could serve as a target for developing new antifungal drugs possibly for use in combination therapies with caspofungin, for treating invasive candidiasis.
Collapse
Affiliation(s)
- Xun Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- The Third Clinical Medical College of the Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Yueqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaomin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Gang Luo
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guizhou, China
| | - Qi Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Biel N, Rashid F, Natua S, Wang TY, Chou TF, Nguyen TVP, Golding I, Kalsotra A, Sokac AM. Reducing Cofilin dosage makes embryos resilient to heat stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631102. [PMID: 39803506 PMCID: PMC11722379 DOI: 10.1101/2025.01.02.631102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification. Here, we show that exposing early Drosophila embryos to mild heat stress (32°C) induces a Cofilin-mediated Actin Stress Response and upregulation of heat- and ER- stress response genes. However, these responses do not alleviate the negative impacts of heat exposure. Instead, heat stressed embryos show downregulation of hundreds of developmental genes, including determinants of the embryonic body plan, and are less likely to hatch as larvae and adults. Remarkably, reducing Cofilin dosage blunts induction of all stress response pathways, mitigates downregulation of developmental genes, and completely rescues survival. Thus, Cofilin intersects with multiple stress response pathways, and modulates the transcriptomic response to heat stress. Strikingly, Cofilin knockdown emerges as a potent pro-survival manipulation for embryos.
Collapse
Affiliation(s)
- Natalie Biel
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Faizan Rashid
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- These authors contributed equally
| | - Subhashis Natua
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- These authors contributed equally
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead contact
| |
Collapse
|
3
|
Yoo K, Bhattacharya S, Oliveira NK, Pereira de Sa N, Matos GS, Del Poeta M, Fries BC. With age comes resilience: how mitochondrial modulation drives age-associated fluconazole tolerance in Cryptococcus neoformans. mBio 2024; 15:e0184724. [PMID: 39136442 PMCID: PMC11389405 DOI: 10.1128/mbio.01847-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic fungal microorganism that causes life-threatening meningoencephalitis. During the infection, the microbial population is heterogeneously composed of cells with varying generational ages, with older cells accumulating during chronic infections. This is attributed to their enhanced resistance to phagocytic killing and tolerance of antifungals like fluconazole (FLC). In this study, we investigated the role of ergosterol synthesis, ATP-binding cassette (ABC) transporters, and mitochondrial metabolism in the regulation of age-dependent FLC tolerance. We find that old Cn cells increase the production of ergosterol and exhibit upregulation of ABC transporters. Old cells also show transcriptional and phenotypic characteristics consistent with increased metabolic activity, leading to increased ATP production. This is accompanied by increased production of reactive oxygen species, which results in mitochondrial fragmentation. This study demonstrates that the metabolic changes occurring in the mitochondria of old cells drive the increase in ergosterol synthesis and the upregulation of ABC transporters, leading to FLC tolerance. IMPORTANCE Infections caused by Cryptococcus neoformans cause more than 180,000 deaths annually. Estimated 1-year mortality for patients receiving care ranges from 20% in developed countries to 70% in developing countries, suggesting that current treatments are inadequate. Some fungal cells can persist and replicate despite the usage of current antifungal regimens, leading to death or treatment failure. Aging in fungi is associated with enhanced tolerance against antifungals and resistance to killing by host cells. This study shows that age-dependent increase in mitochondrial reactive oxygen species drive changes in the regulation of membrane transporters and ergosterol synthesis, ultimately leading to the heightened tolerance against fluconazole in old C. neoformans cells. Understanding the underlying molecular mechanisms of this age-associated antifungal tolerance will enable more targeted antifungal therapies for cryptococcal infections.
Collapse
Affiliation(s)
- Kyungyoon Yoo
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nivea Pereira de Sa
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gabriel Soares Matos
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Bettina C Fries
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|
4
|
Yoo K, Oliveira NK, Bhattacharya S, Fries BC. Achieving Resilience in Aging: How Mitochondrial Modulation Drives Age-associated Fluconazole Tolerance in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586817. [PMID: 38585804 PMCID: PMC10996610 DOI: 10.1101/2024.03.26.586817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryptococcus neoformans ( Cn ) is an opportunistic fungal microorganism that causes life-threatening meningoencephalitis. During the infection, the microbial population is heterogeneously composed of cells with varying generational ages, with older cells accumulating during chronic infections. This is attributed to their enhanced resistance to phagocytic killing and tolerance of antifungals like fluconazole (FLC). In this study, we investigated the role of ergosterol synthesis, ATP-binding cassette (ABC) transporters, and mitochondrial metabolism in the regulation of age-dependent FLC tolerance. We find that old Cn cells increase the production of ergosterol and exhibit upregulation of ABC transporters. Old cells also show transcriptional and phenotypic characteristics consistent with increased metabolic activity, leading to increased ATP production. This is accompanied by increased production of reactive oxygen species (ROS), which results in mitochondrial fragmentation. This study demonstrates that the metabolic changes occurring in the mitochondria of old cells drive the increase in ergosterol synthesis and the upregulation of ABC transporters, leading to FLC tolerance. IMPORTANCE Infections caused by Cryptococcus neoformans cause more than 180,000 deaths annually. Estimated one-year mortality for patients receiving care ranges from 20% in developed countries to 70% in developing countries, suggesting that current treatments are inadequate. Some fungal cells can persist and replicate despite the usage of current antifungal regimens, leading to death or treatment failure. In replicative aging, older cells display a resilient phenotype, characterized by their enhanced tolerance against antifungals and resistance to killing by host cells. This study shows that age-dependent increase in mitochondrial reactive oxygen species drive changes in ABC transporters and ergosterol synthesis, ultimately leading to the heightened tolerance against fluconazole in old C. neoformans cells. Understanding the underlying molecular mechanisms of this age-associated antifungal tolerance will enable more targeted antifungal therapies for cryptococcal infections.
Collapse
|
5
|
Davis J, Meyer T, Smolnig M, Smethurst DG, Neuhaus L, Heyden J, Broeskamp F, Edrich ES, Knittelfelder O, Kolb D, Haar TVD, Gourlay CW, Rockenfeller P. A dynamic actin cytoskeleton is required to prevent constitutive VDAC-dependent MAPK signalling and aberrant lipid homeostasis. iScience 2023; 26:107539. [PMID: 37636069 PMCID: PMC10450525 DOI: 10.1016/j.isci.2023.107539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
The dynamic nature of the actin cytoskeleton is required to coordinate many cellular processes, and a loss of its plasticity has been linked to accelerated cell aging and attenuation of adaptive response mechanisms. Cofilin is an actin-binding protein that controls actin dynamics and has been linked to mitochondrial signaling pathways that control drug resistance and cell death. Here we show that cofilin-driven chronic depolarization of the actin cytoskeleton activates cell wall integrity mitogen-activated protein kinase (MAPK) signalling and disrupts lipid homeostasis in a voltage-dependent anion channel (VDAC)-dependent manner. Expression of the cof1-5 mutation, which reduces the dynamic nature of actin, triggers loss of cell wall integrity, vacuole fragmentation, disruption of lipid homeostasis, lipid droplet (LD) accumulation, and the promotion of cell death. The integrity of the actin cytoskeleton is therefore essential to maintain the fidelity of MAPK signaling, lipid homeostasis, and cell health in S. cerevisiae.
Collapse
Affiliation(s)
- Jack Davis
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Thorsten Meyer
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Martin Smolnig
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | | | - Lisa Neuhaus
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Jonas Heyden
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Filomena Broeskamp
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | | | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Dagmar Kolb
- Medical University of Graz, Core Facility Ultrastructure Analysis, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Patrick Rockenfeller
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| |
Collapse
|
6
|
Knorre DA, Galkina KV, Shirokovskikh T, Banerjee A, Prasad R. Do Multiple Drug Resistance Transporters Interfere with Cell Functioning under Normal Conditions? BIOCHEMISTRY (MOSCOW) 2021; 85:1560-1569. [PMID: 33705294 DOI: 10.1134/s0006297920120081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells rely on multiple mechanisms to protect themselves from exogenous toxic compounds. For instance, cells can limit penetration of toxic molecules through the plasma membrane or sequester them within the specialized compartments. Plasma membrane transporters with broad substrate specificity confer multiple drug resistance (MDR) to cells. These transporters efflux toxic compounds at the cost of ATP hydrolysis (ABC-transporters) or proton influx (MFS-transporters). In our review, we discuss the possible costs of having an active drug-efflux system using yeast cells as an example. The pleiotropic drug resistance (PDR) subfamily ABC-transporters are known to constitutively hydrolyze ATP even without any substrate stimulation or transport across the membrane. Besides, some MDR-transporters have flippase activity allowing transport of lipids from inner to outer lipid layer of the plasma membrane. Thus, excessive activity of MDR-transporters can adversely affect plasma membrane properties. Moreover, broad substrate specificity of ABC-transporters also suggests the possibility of unintentional efflux of some natural metabolic intermediates from the cells. Furthermore, in some microorganisms, transport of quorum-sensing factors is mediated by MDR transporters; thus, overexpression of the transporters can also disturb cell-to-cell communications. As a result, under normal conditions, cells keep MDR-transporter genes repressed and activate them only upon exposure to stresses. We speculate that exploiting limitations of the drug-efflux system is a promising strategy to counteract MDR in pathogenic fungi.
Collapse
Affiliation(s)
- D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - K V Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T Shirokovskikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| | - R Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| |
Collapse
|
7
|
Pignataro M, Di Rocco G, Lancellotti L, Bernini F, Subramanian K, Castellini E, Bortolotti CA, Malferrari D, Moro D, Valdrè G, Borsari M, Del Monte F. Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation. Redox Biol 2020; 37:101691. [PMID: 32863228 PMCID: PMC7472925 DOI: 10.1016/j.redox.2020.101691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/01/2023] Open
Abstract
Cofilins are small protein of the actin depolymerizing family. Actin polymerization/depolymerization is central to a number of critical cellular physiological tasks making cofilin a key protein for several physiological functions of the cell. Cofilin activity is mainly regulated by phosphorylation on serine residue 3 making this post-translational modification key to the regulation of myofilament integrity. In fact, in this form, the protein segregates in myocardial aggregates in human idiopathic dilated cardiomyopathy. Since myofilament network is an early target of oxidative stress we investigated the molecular changes induced by oxidation on cofilin isoforms and their interplay with the protein phosphorylation state to get insight on whether/how those changes may predispose to early protein aggregation. Using different and complementary approaches we characterized the aggregation properties of cofilin-2 and its phosphomimetic variant (S3D) in response to oxidative stress in silico, in vitro and on isolated cardiomyocytes. We found that the phosphorylated (inactive) form of cofilin-2 is mechanistically linked to the formation of an extended network of fibrillar structures induced by oxidative stress via the formation of a disulfide bond between Cys39 and Cys80. Such phosphorylation-dependent effect is likely controlled by changes in the hydrogen bonding network involving Cys39. We found that the sulfide ion inhibits the formation of such structures. This might represent the mechanism for the protective effect of the therapeutic agent Na2S on ischemic injury.
Collapse
Affiliation(s)
- Marcello Pignataro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, USA
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lidia Lancellotti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Elena Castellini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Daniele Malferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Moro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Valdrè
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, USA; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna, Italy.
| |
Collapse
|
8
|
Hoffmann L, Rust MB, Culmsee C. Actin(g) on mitochondria - a role for cofilin1 in neuronal cell death pathways. Biol Chem 2020; 400:1089-1097. [PMID: 31256058 DOI: 10.1515/hsz-2019-0120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 11/15/2022]
Abstract
Actin dynamics, the coordinated assembly and disassembly of actin filaments (F-actin), are essential for fundamental cellular processes, including cell shaping and motility, cell division or organelle transport. Recent studies highlighted a novel role for actin dynamics in the regulation of mitochondrial morphology and function, for example, through mitochondrial recruitment of dynamin-related protein 1 (Drp1), a key factor in the mitochondrial fission machinery. Mitochondria are dynamic organelles, and permanent fission and fusion is essential to maintain their function in energy metabolism, calcium homeostasis and regulation of reactive oxygen species (ROS). Here, we summarize recent insights into the emerging role of cofilin1, a key regulator of actin dynamics, for mitochondrial shape and function under physiological conditions and during cellular stress, respectively. This is of peculiar importance in neurons, which are particularly prone to changes in actin regulation and mitochondrial integrity and function. In neurons, cofilin1 may contribute to degenerative processes through formation of cofilin-actin rods, and through enhanced mitochondrial fission, mitochondrial membrane permeabilization, and the release of cytochrome c. Overall, mitochondrial impairment induced by dysfunction of actin-regulating proteins such as cofilin1 emerge as important mechanisms of neuronal death with relevance to acute brain injury and neurodegenerative diseases, such as Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Lena Hoffmann
- Institute of Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von-Frisch Straße 2, D-35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Gießen, Hans-Meerwein-Straße 6, D-35032 Marburg, Germany
| | - Marco B Rust
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Gießen, Hans-Meerwein-Straße 6, D-35032 Marburg, Germany.,Molecular Neurobiology Group, Institute of Physiological Chemistry, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von-Frisch Straße 2, D-35043 Marburg, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von-Frisch Straße 2, D-35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Gießen, Hans-Meerwein-Straße 6, D-35032 Marburg, Germany.,Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Kovaleva TF, Maksimova NS, Pchelin PV, Pershin VI, Tkachenko NM, Gainullin MR, Mukhina IV. A New Cofilin-Dependent Mechanism for the Regulation of Brain Mitochondria Biogenesis and Degradation. Sovrem Tekhnologii Med 2020; 12:6-13. [PMID: 34513032 PMCID: PMC8353704 DOI: 10.17691/stm2020.12.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Indexed: 11/14/2022] Open
Abstract
The aim Was to study the role of post-translational modifications of cofilin in the regulation of respiration and autophagy in murine brain mitochondria.
Collapse
Affiliation(s)
- T F Kovaleva
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N S Maksimova
- PhD Student, Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - P V Pchelin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V I Pershin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N M Tkachenko
- Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M R Gainullin
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Researcher, Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, Oslo, 0424, Norway, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, Oslo, 0318, Norway
| | - I V Mukhina
- Professor, Director of the Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Head of the Department of Normal Physiology named after N.Y. Belenkov, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Professor, Department of Neurotechnologies, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
10
|
Sun Y, Liang L, Dong M, Li C, Liu Z, Gao H. Cofilin 2 in Serum as a Novel Biomarker for Alzheimer's Disease in Han Chinese. Front Aging Neurosci 2019; 11:214. [PMID: 31447667 PMCID: PMC6696795 DOI: 10.3389/fnagi.2019.00214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
The identification of biomarkers of Alzheimer’s disease (AD) is an important and urgent area of study, not only to aid in the early diagnosis of AD, but also to evaluate potentially new anti-AD drugs. The aim of this study was to explore cofilin 2 in serum as a novel biomarker for AD. The upregulation was observed in AD patients and different AD animal models compared to the controls, as well as in AD cell models. Memantine and donepezil can attenuate the upregulation of cofilin 2 expression in APP/PS1 mice. The serum levels of cofilin 2 in AD or mild cognitive impairment (MCI) patients were significantly higher compared to controls (AD: 167.9 ± 35.3 pg/mL; MCI: 115.9 ± 15.4 pg/mL; Control: 90.5 ± 27.1 pg/mL; p < 0.01). A significant correlation between cofilin 2 levels and cognitive decline was observed (r = –0.792; p < 0.001). The receiver operating characteristic curve (ROC) analysis showed the area under the curve (AUC) of cofilin 2 was 0.957, and the diagnostic accuracy was 80%, with 93% sensitivity and 87% specificity. The optimal cut-off value was 130.4 pg/ml. Our results indicate the possibility of serum cofilin 2 as a novel and non-invasive biomarker for AD. In addition, the expression of cofilin 2 was found to be significantly increased in AD compared to vascular dementia (VaD), and only an increased trend but not significant was detected in VaD compared to the controls. ROC analysis between AD and VaD showed that the AUC was 0.824, which could indicate a role of cofilin 2 as a biomarker in the differential diagnosis between AD and VaD.
Collapse
Affiliation(s)
- Yingni Sun
- School of Life Sciences, Ludong University, Yantai, China
| | - Lisheng Liang
- Department of Pain, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Meili Dong
- Central Sterile Supply Department, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Cong Li
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States
| | - Zhenzhen Liu
- Chemical Engineering and Materials Science, College of Chemistry, Shandong Normal University, Jinan, China
| | - Hongwei Gao
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
11
|
Jia X, Zhang X, Hu Y, Hu M, Han X, Sun Y, Han L. Role of Downregulation and Phosphorylation of Cofilin in Polarized Growth, MpkA Activation and Stress Response of Aspergillus fumigatus. Front Microbiol 2018; 9:2667. [PMID: 30455681 PMCID: PMC6230985 DOI: 10.3389/fmicb.2018.02667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus causes most of aspergillosis in clinic and comprehensive function analysis of its key protein would promote anti-aspergillosis. In a previous study, we speculated actin depolymerizing factor cofilin might be essential for A. fumigatus viability and found its overexpression upregulated oxidative response and cell wall polysaccharide synthesis of this pathogen. Here, we constructed a conditional cofilin mutant to determine the essential role of cofilin. And the role of cofilin downregulation and phosphorylation in A. fumigatus was further analyzed. Cofilin was required for the polarized growth and heat sensitivity of A. fumigatus. Downregulation of cofilin caused hyphal cytoplasmic leakage, increased the sensitivity of A. fumigatus to sodium dodecyl sulfonate but not to calcofluor white and Congo Red and farnesol, and enhanced the basal phosphorylation level of MpkA, suggesting that cofilin affected the cell wall integrity (CWI) signaling. Downregulation of cofilin also increased the sensitivity of A. fumigatus to alkaline pH and H2O2. Repressing cofilin expression in A. fumigatus lead to attenuated virulence, which manifested as lower adherence and internalization rates, weaker host inflammatory response and shorter survival rate in a Galleria mellonella model. Expression of non-phosphorylated cofilin with a mutation of S5A had little impacts on A. fumigatus, whereas expression of a mimic-phosphorylated cofilin with a mutation of S5E resulted in inhibited growth, increased phospho-MpkA level, and decreased pathogenicity. In conclusion, cofilin is crucial to modulating the polarized growth, stress response, CWI and virulence of A. fumigatus.
Collapse
Affiliation(s)
- Xiaodong Jia
- Institute for Disease Control and Prevention of PLA, Beijing, China.,Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing, China
| | - Xi Zhang
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yingsong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Mandong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Xuelin Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yansong Sun
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Li Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
12
|
Bhakt P, Shivarathri R, Choudhary DK, Borah S, Kaur R. Fluconazole-induced actin cytoskeleton remodeling requires phosphatidylinositol 3-phosphate 5-kinase in the pathogenic yeast Candida glabrata. Mol Microbiol 2018; 110:425-443. [PMID: 30137648 PMCID: PMC6221164 DOI: 10.1111/mmi.14110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
Known azole antifungal resistance mechanisms include mitochondrial dysfunction and overexpression of the sterol biosynthetic target enzyme and multidrug efflux pumps. Here, we identify, through a genetic screen, the vacuolar membrane‐resident phosphatidylinositol 3‐phosphate 5‐kinase (CgFab1) to be a novel determinant of azole tolerance. We demonstrate for the first time that fluconazole promotes actin cytoskeleton reorganization in the emerging, inherently less azole‐susceptible fungal pathogen Candida glabrata, and genetic or chemical perturbation of actin structures results in intracellular sterol accumulation and azole susceptibility. Further, CgFAB1 disruption impaired vacuole homeostasis and actin organization, and the F‐actin‐stabilizing compound jasplakinolide rescued azole toxicity in cytoskeleton defective‐mutants including the Cgfab1Δ mutant. In vitro assays revealed that the actin depolymerization factor CgCof1 binds to multiple lipids including phosphatidylinositol 3,5‐bisphosphate. Consistently, CgCof1 distribution along with the actin filament‐capping protein CgCap2 was altered upon both CgFAB1 disruption and fluconazole exposure. Altogether, these data implicate CgFab1 in azole tolerance through actin network remodeling. Finally, we also show that actin polymerization inhibition rendered fluconazole fully and partially fungicidal in azole‐susceptible and azole‐resistant C. glabrata clinical isolates, respectively, thereby, underscoring the role of fluconazole‐effectuated actin remodeling in azole resistance.
Collapse
Affiliation(s)
- Priyanka Bhakt
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raju Shivarathri
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Deepak Kumar Choudhary
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Sapan Borah
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Identification and Characterization of Key Charged Residues in the Cofilin Protein Involved in Azole Susceptibility, Apoptosis, and Virulence of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62:AAC.01659-17. [PMID: 29483117 DOI: 10.1128/aac.01659-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/10/2018] [Indexed: 12/28/2022] Open
Abstract
Through some specific amino acid residues, cofilin, a ubiquitous actin depolymerization factor, can significantly affect mitochondrial function related to drug resistance and apoptosis in Saccharomyces cerevisiae; however, this modulation in a major fungal pathogen, Aspergillus fumigatus, was still unclear. Hereby, it was found, first, that mutations on several charged residues in cofilin to alanine, D19A-R21A, E48A, and K36A, increased the formation of reactive oxygen species and induced apoptosis along with typical hallmarks, including mitochondrial membrane potential depolarization, cytochrome c release, upregulation of metacaspases, and DNA cleavage, in A. fumigatus Two of these mutations (D19A-R21A and K36A) increased acetyl coenzyme A and ATP concentrations by triggering fatty acid β-oxidation. The upregulated acetyl coenzyme A affected the ergosterol biosynthetic pathway, leading to overexpression of cyp51A and -B, while excess ATP fueled ATP-binding cassette transporters. Besides, both of these mutations reduced the susceptibility of A. fumigatus to azole drugs and enhanced the virulence of A. fumigatus in a Galleria mellonella infection model. Taken together, novel and key charged residues in cofilin were identified to be essential modules regulating the mitochondrial function involved in azole susceptibility, apoptosis, and virulence of A. fumigatus.
Collapse
|
14
|
Vermeulen E, Carpentier S, Kniemeyer O, Sillen M, Maertens J, Lagrou K. Proteomic Differences between Azole-Susceptible and -Resistant <i>Aspergillus fumigatus</i> Strains. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.81007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Jia X, Zhang X, Hu Y, Hu M, Tian S, Han X, Sun Y, Han L. Role of actin depolymerizing factor cofilin in Aspergillus fumigatus oxidative stress response and pathogenesis. Curr Genet 2017; 64:619-634. [PMID: 29170805 DOI: 10.1007/s00294-017-0777-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
Aspergillus fumigatus is a major fungal pathogen that is responsible for approximately 90% of human aspergillosis. Cofilin is an actin depolymerizing factor that plays crucial roles in multiple cellular functions in many organisms. However, the functions of cofilin in A. fumigatus are still unknown. In this study, we constructed an A. fumigatus strain overexpressing cofilin (cofilin OE). The cofilin OE strain displayed a slightly different growth phenotype, significantly increased resistance against H2O2 and diamide, and increased activation of the high osmolarity glycerol pathway compared to the wild-type strain (WT). The cofilin OE strain internalized more efficiently into lung epithelial A549 cells, and induced increased transcription of inflammatory factors (MCP-1, TNF-α and IL-8) compared to WT. Cofilin overexpression also resulted in increased polysaccharides including β-1, 3-glucan and chitin, and increased transcription of genes related to oxidative stress responses and polysaccharide synthesis in A. fumigatus. However, the cofilin OE strain exhibited similar virulence to the wild-type strain in murine and Galleria mellonella infection models. These results demonstrated for the first time that cofilin, a regulator of actin cytoskeleton dynamics, might play a critical role in the regulation of oxidative stress responses and cell wall polysaccharide synthesis in A. fumigatus.
Collapse
Affiliation(s)
- Xiaodong Jia
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Xi Zhang
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Yingsong Hu
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Mandong Hu
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Shuguang Tian
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Xuelin Han
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China
| | - Yansong Sun
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China.
| | - Li Han
- Institute for Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20# Dongda Str., 100071, Beijing, China.
| |
Collapse
|
16
|
Liao PH, Hsu HH, Chen TS, Chen MC, Day CH, Tu CC, Lin YM, Tsai FJ, Kuo WW, Huang CY. Phosphorylation of cofilin-1 by ERK confers HDAC inhibitor resistance in hepatocellular carcinoma cells via decreased ROS-mediated mitochondria injury. Oncogene 2016; 36:1978-1990. [DOI: 10.1038/onc.2016.357] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022]
|
17
|
Vasicova P, Rinnerthaler M, Haskova D, Novakova L, Malcova I, Breitenbach M, Hasek J. Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells. MICROBIAL CELL 2016; 3:206-214. [PMID: 28357356 PMCID: PMC5349148 DOI: 10.15698/mic2016.05.499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin filaments form cortical patches and emanating cables in fermenting cells of
Saccharomyces cerevisiae. This pattern has been shown to be
depolarized in glucose-depleted cells after formaldehyde fixation and staining
with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was
remarkable. Here we extend our knowledge on actin in live glucose-depleted cells
co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin
cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches
also in mother cells. However, even after 80 min of glucose deprivation these
cells showed a clear network of actin cables labeled with Abp140-GFP in contrast
to previously published data. In live cells with a mitochondrial dysfunction
(rho0 cells), glucose depletion resulted in almost immediate
appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in
mother cells. Residual actin cables were clustered in patch-associated bundles.
A similar overlapping “patchy” pattern of both actin markers was observed upon
treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of
oxidative phosphorylation) and upon treatment with formaldehyde. While the
formaldehyde-targeted process stays unknown, our results indicate that published
data on yeast actin cytoskeleton obtained from glucose-depleted cells after
fixation should be considered with caution.
Collapse
Affiliation(s)
- Pavla Vasicova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Danusa Haskova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Lenka Novakova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Ivana Malcova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Michael Breitenbach
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| |
Collapse
|
18
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
19
|
Li G, Zhou J, Budhraja A, Hu X, Chen Y, Cheng Q, Liu L, Zhou T, Li P, Liu E, Gao N. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget 2015; 6:1834-49. [PMID: 25595902 PMCID: PMC4359335 DOI: 10.18632/oncotarget.2795] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/20/2014] [Indexed: 01/12/2023] Open
Abstract
Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer.
Collapse
Affiliation(s)
- Guobing Li
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | - Jing Zhou
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | - Amit Budhraja
- 3 Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Xiaoye Hu
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | - Yibiao Chen
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | - Qi Cheng
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | - Lei Liu
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | - Ting Zhou
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | - Ping Li
- 2 State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ehu Liu
- 2 State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ning Gao
- 1 College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| |
Collapse
|
20
|
Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. BIOARCHITECTURE 2014; 2:75-87. [PMID: 22880146 PMCID: PMC3414384 DOI: 10.4161/bioa.20975] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Apoptosis is an important biological process required for the removal of unwanted or damaged cells. Mounting evidence implicates the actin cytoskeleton as both a sensor and mediator of apoptosis. Studies also suggest that actin binding proteins (ABPs) significantly contribute to apoptosis and that actin dynamics play a key role in regulating apoptosis signaling. Changes in the organization of the actin cytoskeleton has been attributed to the process of malignant transformation and it is hypothesized that remodeling of the actin cytoskeleton may enable tumor cells to evade normal apoptotic signaling. This review aims to illuminate the role of the actin cytoskeleton in apoptosis by systematically analyzing how actin and ABPs regulate different apoptosis pathways and to also highlight the potential for developing novel compounds that target tumor-specific actin filaments.
Collapse
Affiliation(s)
- Melissa Desouza
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, Australia
| | | | | |
Collapse
|
21
|
Yang DH, Lee JW, Lee J, Moon EY. Dynamic rearrangement of F-actin is required to maintain the antitumor effect of trichostatin A. PLoS One 2014; 9:e97352. [PMID: 24846135 PMCID: PMC4028200 DOI: 10.1371/journal.pone.0097352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/17/2014] [Indexed: 11/20/2022] Open
Abstract
Actin plays a role in various processes in eukaryotic cells, including cell growth and death. We investigated whether the antitumor effect of trichostatin A (TSA) is associated with the dynamic rearrangement of F-actin. TSA is an antitumor drug that induces hyper-acetylation of histones by inhibiting histone deacetylase. HeLa human cervical cancer cells were used to measure the antitumor effect of TSA. The percent cell survival was determined by an MTT assay. Hypodiploid cell formation was assessed by flow cytometry. Collapse of the mitochondrial membrane potential (MMP) was identified by a decrease in the percentage of cells with red MitoProbe J-aggregate (JC-1) fluorescence. Cell survival was reduced by treatment with TSA, as judged by an MTT assay and staining with propidium iodide, FITC-labeled annexin V, or 4′,6-diamidino-2-phenylindole (DAPI). TSA also induced an MMP collapse, as judged by the measurement of intracellular red JC-1 fluorescence. In addition, the F-actin depolymerizers cytochalasin D (CytoD) and latrunculin B (LatB) induced an MMP collapse and increased apoptotic cell death in HeLa cells. However, our data show that apoptotic cell death and the MMP collapse induced by TSA were decreased by the co-treatment of cells with CytoD and LatB. These findings demonstrate that the dynamic rearrangement of F-actin might be necessary for TSA-induced HeLa cell apoptosis involving a TSA-induced MMP collapse. They also suggest that actin cytoskeleton dynamics play an important role in maintaining the therapeutic effects of antitumor agents in tumor cells. They further suggest that maintaining the MMP could be a novel strategy for increasing drug sensitivity in TSA-treated tumors.
Collapse
Affiliation(s)
- Dong-Hee Yang
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Jiyoung Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
22
|
Smethurst DG, Dawes IW, Gourlay CW. Actin - a biosensor that determines cell fate in yeasts. FEMS Yeast Res 2013; 14:89-95. [DOI: 10.1111/1567-1364.12119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences; University of NSW; Kensington Sydney NSW Australia
| | - Campbell W. Gourlay
- Kent Fungal Group; School of Biosciences; University of Kent; Canterbury Kent UK
| |
Collapse
|
23
|
High cofilin-1 levels correlate with cisplatin resistance in lung adenocarcinomas. Tumour Biol 2013; 35:1233-8. [PMID: 24018823 DOI: 10.1007/s13277-013-1164-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/29/2013] [Indexed: 12/17/2022] Open
Abstract
High cofilin-1 levels have been shown to be an accurate prognostic biomarker in non-small cell lung cancer (NSCLC) and a predictive factor in drug resistance. Herein we explore the role of cofilin-1 in cis-diamminedichloroplatinum(II) (cisplatin) resistance. We evaluated cofilin-1 levels in intrinsically cisplatin-resistant A549 (ICR-A549) cells and determined the cisplatin toxicity in A549 cells transiently transfected and overexpressing CFL1 plasmid. Moreover, expression levels (activity) of the CFL1 gene network were analyzed in a cisplatin-resistant human lung adenocarcinoma cell panel. ICR-A549 cells, selected by challenging parental cells with 10-fold drug GI50 value, presented a sixfold increase in cisplatin GI50 value and an increased cofilin-1 immunocontent (P < 0.01). In addition, cells transfected with cofilin-1 became more resistant to cisplatin (P < 0.01). High activity of the CFL1 gene network was found in a cisplatin-resistant adenocarcinoma cell panel (P < 0.01). In vitro evidences suggest that cofilin-1 is a biological predictor of cisplatin resistance, supporting new treatment initiatives based on cofilin-1 levels to guide chemotherapeutic interventions in NSCLC patients.
Collapse
|