1
|
Fission Yeast Rho1p-GEFs: From Polarity and Cell Wall Synthesis to Genome Stability. Int J Mol Sci 2022; 23:ijms232213888. [PMID: 36430366 PMCID: PMC9697909 DOI: 10.3390/ijms232213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Rho1p is a membrane-associated protein that belongs to the Rho family of small GTPases. These proteins coordinate processes such as actin remodelling and polarised secretion to maintain the shape and homeostasis of yeast cells. In response to extracellular stimuli, Rho1p undergoes conformational switching between a guanosine triphosphate (GTP)-bound active state and a guanosine diphosphate (GDP)-bound inactive state. Cycling is improved with guanine nucleotide exchange factor (GEF) activity necessary to activate signalling and GTPase activating protein (GAP) activity required for subsequent signal depletion. This review focuses on fission yeast Rho1p GEFs, Rgf1p, Rgf2p, and Rgf3p that belong to the family of DH-PH domain-containing Dbl-related GEFs. They are multi-domain proteins that detect biological signals that induce or inhibit their catalytic activity over Rho1p. Each of them activates Rho1p in different places and times. Rgf1p acts preferentially during polarised growth. Rgf2p is required for sporulation, and Rgf3p plays an essential function in septum synthesis. In addition, we outline the noncanonical roles of Rho1p-GEFs in genomic instability.
Collapse
|
2
|
Zeng L, Huang J, Feng P, Zhao X, Si Z, Long X, Cheng Q, Yi Y. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2022; 38:34. [PMID: 34989900 DOI: 10.1007/s11274-021-03222-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/26/2021] [Indexed: 12/23/2022]
Abstract
Formic acid is a representative small molecule acid in lignocellulosic hydrolysate that can inhibit the growth of Saccharomyces cerevisiae cells during alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. In this study, RNA-Seq technology was used to study the response of S. cerevisiae to formic acid stress at the transcriptional level. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to observe the surface morphology of yeast cells. A total of 1504 genes were identified as being differentially expressed, with 797 upregulated and 707 downregulated genes. Transcriptomic analysis showed that most genes related to glycolysis, glycogen synthesis, protein degradation, the cell cycle, the MAPK signaling pathway, and redox regulation were significantly induced under formic acid stress and were involved in protein translation and synthesis amino acid synthesis genes were significantly suppressed. Formic acid stress can induce oxidative stress, inhibit protein biosynthesis, cause cells to undergo autophagy, and activate the intracellular metabolic pathways of energy production. The increase of glycogen and the decrease of energy consumption metabolism may be important in the adaptation of S. cerevisiae to formic acid. In addition, formic acid can also induce sexual reproduction and spore formation. This study through transcriptome analysis has preliminarily reveal the molecular response mechanism of S. cerevisiae to formic acid stress and has provided a basis for further research on methods used to improve the tolerance to cell inhibitors in lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Lingjie Zeng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Jinxiang Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Pixue Feng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xuemei Zhao
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Zaiyong Si
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xiufeng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Qianwei Cheng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Yi Yi
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China.
| |
Collapse
|
3
|
Sellers-Moya Á, Nuévalos M, Molina M, Martín H. Clotrimazole-Induced Oxidative Stress Triggers Novel Yeast Pkc1-Independent Cell Wall Integrity MAPK Pathway Circuitry. J Fungi (Basel) 2021; 7:jof7080647. [PMID: 34436186 PMCID: PMC8399625 DOI: 10.3390/jof7080647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
Azoles are one of the most widely used drugs to treat fungal infections. To further understand the fungal response to azoles, we analyzed the MAPK circuitry of the model yeast Saccharomyces cerevisiae that operates under treatment with these antifungals. Imidazoles, and particularly clotrimazole, trigger deeper changes in MAPK phosphorylation than triazoles, involving a reduction in signaling through the mating pathway and the activation of the MAPKs Hog1 and Slt2 from the High-Osmolarity Glycerol (HOG) and the Cell Wall Integrity (CWI) pathways, respectively. Clotrimazole treatment leads to actin aggregation, mitochondrial alteration, and oxidative stress, which is essential not only for the activation of both MAPKs, but also for the appearance of a low-mobility form of Slt2 caused by additional phosphorylation to that occurring at the conserved TEY activation motif. Clotrimazole-induced ROS production and Slt2 phosphorylation are linked to Tpk3-mediated PKA activity. Resistance to clotrimazole depends on HOG and CWI-pathway-mediated stress responses. However, Pkc1 and other proteins acting upstream in the pathway are not critical for the activation of the Slt2 MAPK module, suggesting a novel rewiring of signaling through the CWI pathway. We further show that the strong impact of azole treatment on MAPK signaling is conserved in other yeast species.
Collapse
Affiliation(s)
| | | | - María Molina
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-3941888 (M.M. & H.M.)
| | - Humberto Martín
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-3941888 (M.M. & H.M.)
| |
Collapse
|
4
|
Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses. Appl Environ Microbiol 2020; 86:AEM.01339-20. [PMID: 32859590 DOI: 10.1128/aem.01339-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Contamination of soil and water with heavy metals and metalloids is a serious environmental problem. Cadmium and arsenic are major environmental contaminants that pose a serious threat to human health. Although toxicities of cadmium and arsenic to living organisms have been extensively studied, the molecular mechanisms of cellular responses to cadmium and arsenic remain poorly understood. In this study, we demonstrate that the cell wall integrity (CWI) pathway is involved in coping with cell wall stresses induced by cadmium and arsenate through its role in the regulation of cell wall modification. Interestingly, the Rlm1p and SBF (Swi4p-Swi6p) complex transcription factors of the CWI pathway were shown to be specifically required for tolerance to cadmium and arsenate, respectively. Furthermore, we found the PIR2 gene, encoding cell wall O-mannosylated heat shock protein, whose expression is under the control of the CWI pathway, is important for maintaining cell wall integrity during cadmium and arsenate stresses. In addition, our results revealed that the CWI pathway is involved in modulating the expression of genes involved in cell wall biosynthesis and cell cycle control in response to cadmium and arsenate via distinct sets of transcriptional regulators.IMPORTANCE Environmental pollution by metal/metalloids such as cadmium and arsenic has become a serious problem in many countries, especially in developing countries. This study shows that in the yeast S. cerevisiae, the CWI pathway plays a protective role against cadmium and arsenate through the upregulation of genes involved in cell wall biosynthesis and cell cycle control, possibly in order to modulate cell wall reconstruction and cell cycle phase transition, respectively. These data provide insights into molecular mechanisms underlying adaptive responses to cadmium and arsenate.
Collapse
|
5
|
Moniliophthora perniciosa development: key genes involved in stress-mediated cell wall organization and autophagy. Int J Biol Macromol 2020; 154:1022-1035. [PMID: 32194118 DOI: 10.1016/j.ijbiomac.2020.03.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Moniliophthora perniciosa is a basidiomycete responsible for the witches' broom disease in cacao (Theobroma cacao L.). Chitin synthase (CHS), chitinase (CHIT) and autophagy (ATG) genes have been associated to stress response preceding the formation of basidiocarp. An analysis of literature mining, interactomics and gene expression was developed to identify the main proteins related to development, cell wall organization and autophagy in M. perniciosa. TORC2 complex elements were identified and were involved in the response to the nutrient starvation during the fungus development stages preceding the basidiocarp formation. This complex interacted with target proteins related to cell wall synthesis and to polarization and cell division (FKS1, CHS, CDC42, ROM2). Autolysis and autophagy processes were associated to CHIT2, ATG8 and to the TORC1 complex (TOR1 and KOG1), which is central in the upstream signalization of the stress response due to nutrient starvation and growth regulation. Other important elements that participate to steps preceding basidiocarp formation were also identified (KOG1, SSZ1, GDI1, FKS1, CCD10, CKS1, CDC42, RHO1, AVO1, BAG7). Similar gene expression patterns during fungus reproductive structure formation and when treated by rapamycin (a nutritional related-autophagy stress agent) were observed: cell division related-genes were repressed while those related to autolysis/autophagy were overexpressed.
Collapse
|
6
|
Jiménez-Gutiérrez E, Alegría-Carrasco E, Sellers-Moya Á, Molina M, Martín H. Not just the wall: the other ways to turn the yeast CWI pathway on. Int Microbiol 2019; 23:107-119. [PMID: 31342212 DOI: 10.1007/s10123-019-00092-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
The Saccharomyces cerevisiae cell wall integrity (CWI) pathway took this name when its role in the cell response to cell wall aggressions was clearly established. The receptors involved in sensing the damage, the relevant components operating in signaling to the MAPK Slt2, the transcription factors activated by this MAPK, as well as some key regulatory mechanisms have been identified and characterized along almost 30 years. However, other stimuli that do not alter specifically the yeast cell wall, including protein unfolding, low or high pH, or plasma membrane, oxidative and genotoxic stresses, have been also found to trigger the activation of this pathway. In this review, we compile almost forty non-cell wall-specific compounds or conditions, such as tunicamycin, hypo-osmotic shock, diamide, hydroxyurea, arsenate, and rapamycin, which induce these stresses. Relevant aspects of the CWI-mediated signaling in the response to these non-conventional pathway activators are discussed. The data presented here highlight the central and key position of the CWI pathway in the safeguard of yeast cells to a wide variety of external aggressions.
Collapse
Affiliation(s)
- Elena Jiménez-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ángela Sellers-Moya
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Humberto Martín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Warner H, Wilson BJ, Caswell PT. Control of adhesion and protrusion in cell migration by Rho GTPases. Curr Opin Cell Biol 2018; 56:64-70. [PMID: 30292078 PMCID: PMC6368645 DOI: 10.1016/j.ceb.2018.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022]
Abstract
Cell migration is a critical process that underpins a number of physiological and pathological contexts such as the correct functioning of the immune system and the spread of metastatic cancer cells. Central to this process are the Rho family of GTPases, which act as core regulators of cell migration. Rho GTPases are molecular switches that associate with lipid membranes and act to choreograph molecular events that underpin cell migration. Specifically, these GTPases play critical roles in coordinating force generation through driving the formation of cellular protrusions as well as cell-cell and cell-matrix adhesions. Here we provide an update on the many roles of Rho-family GTPases in coordinating protrusion and adhesion formation in the context of cell migration, as well as describing how their activity is controlled to by a variety of complex signalling networks.
Collapse
Affiliation(s)
- Harry Warner
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Beverley J Wilson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
8
|
Zhang C, Luo Z, He D, Su L, Yin H, Wang G, Liu H, Rensing C, Wang Z. FgBud3, a Rho4-Interacting Guanine Nucleotide Exchange Factor, Is Involved in Polarity Growth, Cell Division and Pathogenicity of Fusarium graminearum. Front Microbiol 2018; 9:1209. [PMID: 29930543 PMCID: PMC5999796 DOI: 10.3389/fmicb.2018.01209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
Rho GTPases are signaling macromolecules that are associated with developmental progression and pathogenesis of Fusarium graminearum. Generally, enzymatic activities of Rho GTPases are regulated by Rho GTPase guanine nucleotide exchange factors (RhoGEFs). In this study, we identified a putative RhoGEF encoding gene (FgBUD3) in F. graminearum database and proceeded further by using a functional genetic approach to generate FgBUD3 targeted gene deletion mutant. Phenotypic analysis results showed that the deletion of FgBUD3 caused severe reduction in growth of FgBUD3 mutant generated during this study. We also observed that the deletion of FgBUD3 completely abolished sexual reproduction and triggered the production of abnormal asexual spores with nearly no septum in ΔFgbud3 strain. Further results obtained from infection assays conducted during this research revealed that the FgBUD3 defective mutant lost its pathogenicity on wheat and hence, suggests FgBud3 plays an essential role in the pathogenicity of F. graminearum. Additional, results derived from yeast two-hybrid assays revealed that FgBud3 strongly interacted with FgRho4 compared to the interaction with FgRho2, FgRho3, and FgCdc42. Moreover, we found that FgBud3 interacted with both GTP-bound and GDP-bound form of FgRho4. From these results, we subsequently concluded that, the Rho4-interacting GEF protein FgBud3 crucially promotes vegetative growth, asexual and sexual development, cell division and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Chengkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zenghong Luo
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongdong He
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Su
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Yin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,J. Craig Venter Institute, La Jolla, CA, United States
| | - Zonghua Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Lai H, Chiou JG, Zhurikhina A, Zyla TR, Tsygankov D, Lew DJ. Temporal regulation of morphogenetic events in Saccharomyces cerevisiae. Mol Biol Cell 2018; 29:2069-2083. [PMID: 29927361 PMCID: PMC6232962 DOI: 10.1091/mbc.e18-03-0188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tip growth in fungi involves highly polarized secretion and modification of the cell wall at the growing tip. The genetic requirements for initiating polarized growth are perhaps best understood for the model budding yeast Saccharomyces cerevisiae. Once the cell is committed to enter the cell cycle by activation of G1 cyclin/cyclin-dependent kinase (CDK) complexes, the polarity regulator Cdc42 becomes concentrated at the presumptive bud site, actin cables are oriented toward that site, and septin filaments assemble into a ring around the polarity site. Several minutes later, the bud emerges. Here, we investigated the mechanisms that regulate the timing of these events at the single-cell level. Septin recruitment was delayed relative to polarity establishment, and our findings suggest that a CDK-dependent septin “priming” facilitates septin recruitment by Cdc42. Bud emergence was delayed relative to the initiation of polarized secretion, and our findings suggest that the delay reflects the time needed to weaken the cell wall sufficiently for the cell to bud. Rho1 activation by Rom2 occurred at around the time of bud emergence, perhaps in response to local cell-wall weakening. This report reveals regulatory mechanisms underlying the morphogenetic events in the budding yeast.
Collapse
Affiliation(s)
- Helen Lai
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
10
|
Heinisch JJ, Rodicio R. Protein kinase C in fungi—more than just cell wall integrity. FEMS Microbiol Rev 2017; 42:4562651. [DOI: 10.1093/femsre/fux051] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
|
11
|
Marei H, Carpy A, Macek B, Malliri A. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors. Cell Cycle 2016; 15:1961-74. [PMID: 27152953 PMCID: PMC4968972 DOI: 10.1080/15384101.2016.1183852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 10/30/2022] Open
Abstract
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Liu Y, Lee IJ, Sun M, Lower CA, Runge KW, Ma J, Wu JQ. Roles of the novel coiled-coil protein Rng10 in septum formation during fission yeast cytokinesis. Mol Biol Cell 2016; 27:2528-41. [PMID: 27385337 PMCID: PMC4985255 DOI: 10.1091/mbc.e16-03-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
The regulation of Rho-GAP localization is not well understood. A novel coiled-coil protein Rng10 is characterized that localizes the Rho-GAP Rga7 in fission yeast. Rng10 and Rga7 physically interact and work together to regulate the accumulation and dynamics of glucan synthases for successful septum formation during cytokinesis. Rho GAPs are important regulators of Rho GTPases, which are involved in various steps of cytokinesis and other processes. However, regulation of Rho-GAP cellular localization and function is not fully understood. Here we report the characterization of a novel coiled-coil protein Rng10 and its relationship with the Rho-GAP Rga7 in fission yeast. Both rng10Δ and rga7Δ result in defective septum and cell lysis during cytokinesis. Rng10 and Rga7 colocalize on the plasma membrane at the cell tips during interphase and at the division site during cell division. Rng10 physically interacts with Rga7 in affinity purification and coimmunoprecipitation. Of interest, Rga7 localization is nearly abolished without Rng10. Moreover, Rng10 and Rga7 work together to regulate the accumulation and dynamics of glucan synthases for successful septum formation in cytokinesis. Our results show that cellular localization and function of the Rho-GAP Rga7 are regulated by a novel protein, Rng10, during cytokinesis in fission yeast.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Mingzhai Sun
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Casey A Lower
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Kurt W Runge
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, Macek B, Malliri A. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun 2016; 7:10664. [PMID: 26887924 PMCID: PMC4759627 DOI: 10.1038/ncomms10664] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Anna Woroniuk
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Claire Vennin
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Paul Timpson
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| |
Collapse
|
14
|
Davidson R, Laporte D, Wu JQ. Regulation of Rho-GEF Rgf3 by the arrestin Art1 in fission yeast cytokinesis. Mol Biol Cell 2014; 26:453-66. [PMID: 25473118 PMCID: PMC4310737 DOI: 10.1091/mbc.e14-07-1252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The arrestin Art1 and the Rho1 guanine nucleotide exchange factor Rgf3 are interdependent for their localizations to the division site during fission yeast cytokinesis. Art1 physically interacts with Rgf3 to modulate active Rho1 GTPase levels for successful septal formation. Rho GTPases, activated by guanine nucleotide exchange factors (GEFs), are essential regulators of polarized cell growth, cytokinesis, and many other cellular processes. However, the regulation of Rho-GEFs themselves is not well understood. Rgf3 is an essential GEF for Rho1 GTPase in fission yeast. We show that Rgf3 protein levels and localization are regulated by arrestin-related protein Art1. art1∆ cells lyse during cell separation with a thinner and defective septum. As does Rgf3, Art1 concentrates to the contractile ring starting at early anaphase and spreads to the septum during and after ring constriction. Art1 localization depends on its C-terminus, and Art1 is important for maintaining Rgf3 protein levels. Biochemical experiments reveal that the Rgf3 C-terminus binds to Art1. Using an Rgf3 conditional mutant and mislocalization experiments, we found that Art1 and Rgf3 are interdependent for localization to the division site. As expected, active Rho1 levels at the division site are reduced in art1∆ and rgf3 mutant cells. Taken together, these data reveal that the arrestin family protein Art1 regulates the protein levels and localization of the Rho-GEF Rgf3, which in turn modulates active Rho1 levels during fission yeast cytokinesis.
Collapse
Affiliation(s)
- Reshma Davidson
- Graduate Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210 Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Damien Laporte
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Huang B, Shang ZF, Li B, Wang Y, Liu XD, Zhang SM, Guan H, Rang WQ, Hu JA, Zhou PK. DNA-PKcs associates with PLK1 and is involved in proper chromosome segregation and cytokinesis. J Cell Biochem 2014; 115:1077-88. [PMID: 24166892 DOI: 10.1002/jcb.24703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Accurate mitotic regulation is as important as intrinsic DNA repair for maintaining genomic stability. It is believed that these two cellular mechanisms are interconnected with DNA damage. DNA-PKcs is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair, and it was recently discovered to be involved in mitotic processing. However, the underlying mechanism of DNA-PKcs action in mitotic control is unknown. Here, we demonstrated that depletion of DNA-PKcs led to the dysregulation of mitotic progression in response to DNA damage, which eventually resulted in multiple failures, including failure to segregate sister chromatids and failure to complete cytokinesis, with daughter cells becoming fused again. The depletion of DNA-PKcs resulted in a notable failure of cytokinesis, with a high incidence of multinucleated cells. There were also cytoplasmic bridges containing DNA that continuously connected the daughter cells after DNA damage was induced. Phosphorylated DNA-PKcs (T2609) colocalizes with PLK1 throughout mitosis, including at the centrosomes from prophase to anaphase and at the kinetochores from prometaphase to metaphase, with accumulation at the midbody during cytokinesis. Importantly, DNA-PKcs was found to associate with PLK1 in the mitotic phase, and the depletion of DNA-PKcs resulted in the overexpression of PLK1 due to increased protein stability. However, deficiency in DNA-PKcs attenuated the recruitment of phosphorylated PLK1 to the midbody but not to the kinetochores and centrosomes. Our results demonstrate the functional association of DNA-PKcs with PLK1, especially in chromosomal segregation and cytokinesis control.
Collapse
Affiliation(s)
- Bo Huang
- School of Public Heath, Central South University, Changsha, Hunan Province, 410078, P.R. China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China; Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province, 421000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cundell MJ, Price C. The budding yeast amphiphysin complex is required for contractile actin ring (CAR) assembly and post-contraction GEF-independent accumulation of Rho1-GTP. PLoS One 2014; 9:e97663. [PMID: 24874185 PMCID: PMC4038553 DOI: 10.1371/journal.pone.0097663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 12/26/2022] Open
Abstract
The late events of the budding yeast cell division cycle, cytokinesis and cell separation, require the assembly of a contractile actomyosin ring (CAR), primary and secondary septum formation followed by enzymatic degradation of the primary septum. Here we present evidence that demonstrates a role for the budding yeast amphiphysin complex, a heterodimer comprising Rvs167 and Rvs161, in CAR assembly and cell separation. The iqg1-1 allele is synthetically lethal with both rvs167 and rvs161 null mutations. We show that both Iqg1 and the amphiphysin complex are required for CAR assembly in early anaphase but cells are able to complete assembly in late anaphase when these activities are, respectively, either compromised or absent. Amphiphysin dependent CAR assembly is dependent upon the Rvs167 SH3 domain, but this function is insufficient to explain the observed synthetic lethality. Dosage suppression of the iqg1-1 allele demonstrates that endocytosis is required for the default cell separation pathway in the absence of CAR contraction but is unlikely to be required to maintain viability. The amphiphysin complex is required for normal, post-mitotic, localization of Chs3 and the Rho1 GEF, Rom2, which are responsible for secondary septum deposition and the accumulation of GTP bound Rho1 at the bud neck. It is concluded that a failure of polarity establishment in the absence of CAR contraction and amphiphysin function leads to loss of viability as a result of the consequent cell separation defect.
Collapse
Affiliation(s)
- Michael John Cundell
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Clive Price
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
18
|
Chapa-y-Lazo B, Allwood EG, Smaczynska-de Rooij II, Snape ML, Ayscough KR. Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses. Traffic 2014; 15:546-57. [PMID: 24460703 PMCID: PMC4282331 DOI: 10.1111/tra.12155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/25/2022]
Abstract
The AP-2 complex is a heterotetrameric endocytic cargo-binding adaptor that facilitates uptake of membrane proteins during mammalian clathrin-mediated endocytosis. While budding yeast has clear homologues of all four AP-2 subunits which form a complex and localize to endocytic sites in vivo, the function of yeast AP-2 has remained enigmatic. Here, we demonstrate that AP-2 is required for hyphal growth in Candida albicans and polarized cell responses in Saccharomyces cerevisiae. Deletion of APM4, the cargo-binding mu subunit of AP-2, causes defects in pseudohyphal growth, generation of a mating projection and the cell wall damage response. In an apm4 null mutant, the cell wall stress sensor Mid2 is unable to relocalize to the tip of a mating projection following pheromone addition, or to the mother bud neck in response to cell wall damage. A direct binding interaction between Mid2 and the mu homology domain of Apm4 further supports a model in which AP-2 binds Mid2 to facilitate its internalization and relocalization in response to specific signals. Thus, Mid2 is the first cargo for AP-2 identified in yeast. We propose that endocytic recycling of Mid2 and other components is required for polarized cell responses ensuring cell wall deposition and is tightly monitored during cell growth.
Collapse
|
19
|
Muñoz S, Manjón E, García P, Sunnerhagen P, Sánchez Y. The checkpoint-dependent nuclear accumulation of Rho1p exchange factor Rgf1p is important for tolerance to chronic replication stress. Mol Biol Cell 2014; 25:1137-50. [PMID: 24478458 PMCID: PMC3967976 DOI: 10.1091/mbc.e13-11-0689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Guanine nucleotide exchange factors control many aspects of cell morphogenesis by turning on Rho-GTPases. The fission yeast exchange factor Rgf1p (Rho gef1) specifically regulates Rho1p during polarized growth and localizes to cortical sites. Here we report that Rgf1p is relocalized to the cell nucleus during the stalled replication caused by hydroxyurea (HU). Import to the nucleus is mediated by a nuclear localization sequence at the N-terminus of Rgf1p, whereas release into the cytoplasm requires two leucine-rich nuclear export sequences at the C-terminus. Moreover, Rgf1p nuclear accumulation during replication arrest depends on the 14-3-3 chaperone Rad24p and the DNA replication checkpoint kinase Cds1p. Both proteins control the nuclear accumulation of Rgf1p by inhibition of its nuclear export. A mutant, Rgf1p-9A, that substitutes nine serine potential phosphorylation Cds1p sites for alanine fails to accumulate in the nucleus in response to replication stress, and this correlates with a severe defect in survival in the presence of HU. In conclusion, we propose that the regulation of Rgf1p could be part of the mechanism by which Cds1p and Rad24p promote survival in the presence of chronic replication stress. It will be of general interest to understand whether the same is true for homologues of Rgf1p in budding yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Sofía Muñoz
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, 37008 Salamanca, Spain Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
20
|
Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ. The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. EUKARYOTIC CELL 2013; 12:998-1008. [PMID: 23666623 PMCID: PMC3697460 DOI: 10.1128/ec.00085-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/07/2013] [Indexed: 11/20/2022]
Abstract
In the hyphal tip of Candida albicans we have made detailed quantitative measurements of (i) exocyst components, (ii) Rho1, the regulatory subunit of (1,3)-β-glucan synthase, (iii) Rom2, the specialized guanine-nucleotide exchange factor (GEF) of Rho1, and (iv) actin cortical patches, the sites of endocytosis. We use the resulting data to construct and test a quantitative 3-dimensional model of fungal hyphal growth based on the proposition that vesicles fuse with the hyphal tip at a rate determined by the local density of exocyst components. Enzymes such as (1,3)-β-glucan synthase thus embedded in the plasma membrane continue to synthesize the cell wall until they are removed by endocytosis. The model successfully predicts the shape and dimensions of the hyphae, provided that endocytosis acts to remove cell wall-synthesizing enzymes at the subapical bands of actin patches. Moreover, a key prediction of the model is that the distribution of the synthase is substantially broader than the area occupied by the exocyst. This prediction is borne out by our quantitative measurements. Thus, although the model highlights detailed issues that require further investigation, in general terms the pattern of tip growth of fungal hyphae can be satisfactorily explained by a simple but quantitative model rooted within the known molecular processes of polarized growth. Moreover, the methodology can be readily adapted to model other forms of polarized growth, such as that which occurs in plant pollen tubes.
Collapse
Affiliation(s)
- David Caballero-Lima
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Zhang L, Liu N, Ma X, Jiang L. The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 13:200-18. [PMID: 23157175 DOI: 10.1111/1567-1364.12022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/08/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
In the present study, we have identified 339 dimethyl sulfoxide (DMSO)-sensitive and nine DMSO-tolerant gene mutations in Saccharomyces cerevisiae through a functional genomics approach. Twelve of these identified DMSO-sensitive mutations are of genes involved in the general control of gene expression mediated by the SWR1 complex and the RNA polymerase II mediator complex, whereas 71 of them are of genes involved in the protein trafficking and vacuolar sorting processes. In addition, twelve of these DMSO-sensitive mutations are of genes involved in the cell wall integrity (CWI) and its regulation. DMSO-tolerant mutations are of genes mainly involved in the metabolism and the gene expression control. Therefore, the transcriptional control machinery, the CWI and its regulation as well as the protein trafficking and sorting process play critical roles in the DMSO detoxification in yeast cells.
Collapse
Affiliation(s)
- Lilin Zhang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | | | | |
Collapse
|
22
|
Lockshon D, Olsen CP, Brett CL, Chertov A, Merz AJ, Lorenz DA, Van Gilst MR, Kennedy BK. Rho signaling participates in membrane fluidity homeostasis. PLoS One 2012; 7:e45049. [PMID: 23071506 PMCID: PMC3465289 DOI: 10.1371/journal.pone.0045049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/14/2012] [Indexed: 01/03/2023] Open
Abstract
Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast's sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation.
Collapse
Affiliation(s)
- Daniel Lockshon
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
| | - Carissa Perez Olsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher L. Brett
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrei Chertov
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Alexey J. Merz
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Daniel A. Lorenz
- Sonoma State University, Rohnert Park, California, United States of America
| | - Marc R. Van Gilst
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
| |
Collapse
|