1
|
Jensen NM, Fu Y, Betzer C, Li H, Elfarrash S, Shaib AH, Krah D, Vitic Z, Reimer L, Gram H, Buchman V, Denham M, Rizzoli SO, Halliday GM, Jensen PH. MJF-14 proximity ligation assay detects early non-inclusion alpha-synuclein pathology with enhanced specificity and sensitivity. NPJ Parkinsons Dis 2024; 10:227. [PMID: 39613827 DOI: 10.1038/s41531-024-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
α-Synuclein proximity ligation assay (PLA) has proved a sensitive technique for detection of non-Lewy body α-synuclein aggregate pathology. Here, we describe the MJF-14 PLA, a new PLA towards aggregated α-synuclein with unprecedented specificity, using the aggregate-selective α-synuclein antibody MJFR-14-6-4-2 (hereafter MJF-14). Signal in the assay correlates with α-synuclein aggregation in cell culture and human neurons, induced by α-synuclein overexpression or pre-formed fibrils. Co-labelling of MJF-14 PLA and pS129-α-synuclein immunofluorescence in post-mortem cases of dementia with Lewy bodies shows that while the MJF-14 PLA reveals extensive non-inclusion pathology, it is not sensitive towards pS129-α-synuclein-positive Lewy bodies. In Parkinson's disease brain, direct comparison of PLA and immunohistochemistry with the MJF-14 antibody shows widespread α-synuclein pathology preceding the formation of conventional Lewy pathology. In conclusion, we introduce an improved α-synuclein aggregate PLA to uncover abundant non-inclusion pathology, which deserves future validation with brain bank resources and in different synucleinopathies.
Collapse
Affiliation(s)
- Nanna Møller Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - YuHong Fu
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Cristine Betzer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hongyun Li
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sara Elfarrash
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ali H Shaib
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Donatus Krah
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Zagorka Vitic
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lasse Reimer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hjalte Gram
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Mark Denham
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Neuroscience Research Australia & Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Poul Henning Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
2
|
Wu B, Yang L, Xi C, Yao H, Chen L, Fan F, Wu G, Du Z, Hu J, Hu S. Corticospinal-specific Shh overexpression in combination with rehabilitation promotes CST axonal sprouting and skilled motor functional recovery after ischemic stroke. Mol Neurobiol 2024; 61:2186-2196. [PMID: 37864058 DOI: 10.1007/s12035-023-03642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Ischemic stroke often leads to permanent neurological impairments, largely due to limited neuroplasticity in adult central nervous system. Here, we first showed that the expression of Sonic Hedgehog (Shh) in corticospinal neurons (CSNs) peaked at the 2nd postnatal week, when corticospinal synaptogenesis occurs. Overexpression of Shh in adult CSNs did not affect motor functions and had borderline effects on promoting the recovery of skilled locomotion following ischemic stroke. In contrast, CSNs-specific Shh overexpression significantly enhanced the efficacy of rehabilitative training, resulting in robust axonal sprouting and synaptogenesis of corticospinal axons into the denervated spinal cord, along with significantly improved behavioral outcomes. Mechanistically, combinatory treatment led to additional mTOR activation in CSNs when compared to that evoked by rehabilitative training alone. Taken together, our study unveiled a role of Shh, a morphogen involved in early development, in enhancing neuroplasticity, which significantly improved the outcomes of rehabilitative training. These results thus provide novel insights into the design of combinatory treatment for stroke and traumatic central nervous system injuries.
Collapse
Affiliation(s)
- Biwu Wu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Lei Yang
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Caihua Xi
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Haijun Yao
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Long Chen
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Fengqi Fan
- Pain Department of Yueyang Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Wu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhouying Du
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Shukun Hu
- Department of Neurosurgery and Neurocritical Care, Affiliated Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200042, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
3
|
Stubbs T, Bingman JI, Besse J, Mykytyn K. Ciliary signaling proteins are mislocalized in the brains of Bardet-Biedl syndrome 1-null mice. Front Cell Dev Biol 2023; 10:1092161. [PMID: 36699005 PMCID: PMC9868275 DOI: 10.3389/fcell.2022.1092161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
In the brain, primary cilia are found on most, if not all, central neurons. The importance of neuronal cilia is underscored by the fact that human diseases caused by primary cilia dysfunction, which are known as ciliopathies, are associated with neuropathologies, including neuropsychiatric disorders and learning and memory deficits. Neuronal cilia are enriched for certain G protein-coupled receptors and their downstream effectors, suggesting they sense and respond to neuromodulators in the extracellular milieu. GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome, with GPCRs failing to localize to cilia, indicating the Bardet-Biedl syndrome proteins are required for trafficking of G protein-coupled receptors into neuronal cilia. Yet, dopamine receptor 1 accumulates in cilia in the absence of Bardet-Biedl syndrome proteins, suggesting Bardet-Biedl syndrome proteins are required for normal ciliary import and export. To further explore the roles of the Bardet-Biedl syndrome proteins in neuronal cilia, we examined localization of ciliary signaling proteins in a new constitutive Bbs1 knockout mouse model. Interestingly, we find that two additional ciliary G protein-coupled receptors (Gpr161 and Gpr19) abnormally accumulate in cilia on Bardet-Biedl syndrome neurons. In addition, we find that the GPCR signaling protein β-arrestin accumulates in a subset of cilia in the brain, suggesting the presence of additional unidentified ciliary G protein-coupled receptors. These results confirm the importance of the Bardet-Biedl syndrome proteins in establishing ciliary GPCR pathways and indicate that loss of Bbs1 leads to complex changes in the localization of signaling proteins in the brain.
Collapse
|
4
|
Hamze M, Medina I, Delmotte Q, Porcher C. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain. Front Physiol 2021; 12:798066. [PMID: 34955901 PMCID: PMC8703190 DOI: 10.3389/fphys.2021.798066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
In the early stages of the central nervous system growth and development, γ-aminobutyric acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, synaptogenesis, and network formation. These actions are associated with increased concentration of chloride ions in immature neurons [(Cl−)i] that determines the depolarizing strength of ion currents mediated by GABAA receptors, a ligand-gated Cl− permeable ion channel. During neuron maturation the (Cl−)i progressively decreases leading to weakening of GABA induced depolarization and enforcing GABA function as principal inhibitory neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key molecule governing Cl− extrusion and determining the resting level of (Cl−)i in developing and mature mammalian neurons. Among factors controlling the functioning of KCC2 and the maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network activity during postnatal development.
Collapse
Affiliation(s)
- Mira Hamze
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Igor Medina
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Quentin Delmotte
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
5
|
The presynaptic glycine transporter GlyT2 is regulated by the Hedgehog pathway in vitro and in vivo. Commun Biol 2021; 4:1197. [PMID: 34663888 PMCID: PMC8523746 DOI: 10.1038/s42003-021-02718-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability. By modulating the activation state of the Hedgehog pathway, de la Rocha-Muñoz et al demonstrate that Hedgehog signaling controls the expression and transport activity of the neuronal glycine transporter GlyT2. This work begins to reveal a potential link between the Hedgehog signaling pathway and presynaptic glycine availability.
Collapse
|
6
|
Expression of the hippocampal PTCH during early abstinence is associated with drinking patterns in a rat model of voluntary alcohol intake. Neuroreport 2021; 32:757-761. [PMID: 33994522 DOI: 10.1097/wnr.0000000000001646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Perinatal alcohol exposure induces fetal alcohol syndrome partially through Sonic Hedgehog (SHH) impairment; however, the relationship between SHH signaling cascade and alcohol drinking pattern in adulthood remains obscure. We studied the expression of SHH and components of respective signaling cascade [PTCH receptor (Patched), SMO co-receptor (Smoothened) and downstream transcriptional factor Glioma-associated oncogene (GLI)] during early abstinence in brain regions of rats demonstrating different drinking patterns in intermittent access two-bottle choice paradigm (IA2BC). Male Wistar rats were subjected to twenty 24-h sessions of free access to two-bottle choice (water or 20% ethanol) with 24-h withdrawal periods (water only). Control animals had access to water only. Quantitative PCR and western blotting were used to assess transcript and protein levels in the brain, respectively. During the course of the IA2BC, one part of animals demonstrated gradual escalation from low to high alcohol intake and preference of alcohol over water (group I), while the other one consumed alcohol at stable high level (group II) (Peregud et al., 2021). Three days after the last drinking session, PTCH mRNA elevated in the hippocampus of group I rats as compared to the control group. However, SHH, SMO and GLI mRNA levels in the hippocampus did not change. The protein content of PTCH in the hippocampus of group I rats was higher as compared to both control and group II. PTCH elevation is a known marker of SHH cascade activity. Thus, activated hippocampal SHH signaling cascade is a hallmark of rats demonstrating gradual escalation of alcohol intake in the IA2BC procedure.
Collapse
|
7
|
Petralia RS, Yao PJ, Kapogiannis D, Wang YX. Invaginating Structures in Synapses - Perspective. Front Synaptic Neurosci 2021; 13:685052. [PMID: 34108873 PMCID: PMC8180840 DOI: 10.3389/fnsyn.2021.685052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
Invaginating structures are common in the synapses of most animals. However, the details of these invaginating structures remain understudied in part because they are not well resolved in light microscopy and were often misidentified in early electron microscope (EM) studies. Utilizing experimental techniques along with the latest advances in microscopy, such as focused ion beam-scanning EM (FIB-SEM), evidence is gradually building to suggest that the synaptic invaginating structures contribute to synapse development, maintenance, and plasticity. These invaginating structures are most elaborate in synapses mediating rapid integration of signals, such as muscle contraction, mechanoreception, and vision. Here we argue that the synaptic invaginations should be considered in future studies seeking to understand their role in sensory integration and coordination, learning, and memory. We review the various types of invaginating structures in the synapses and discuss their potential functions. We also present several new examples of invaginating structures from a variety of animals including Drosophila and mice, mainly using FIB-SEM, with which we trace the form and arrangement of these structures.
Collapse
Affiliation(s)
- Ronald S. Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders/National Institutes of Health, Bethesda, MD, United States
| | - Pamela J. Yao
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health, Bethesda, MD, United States
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health, Bethesda, MD, United States
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders/National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Delmotte Q, Hamze M, Medina I, Buhler E, Zhang J, Belgacem YH, Porcher C. Smoothened receptor signaling regulates the developmental shift of GABA polarity in rat somatosensory cortex. J Cell Sci 2020; 133:jcs247700. [PMID: 32989040 PMCID: PMC7595691 DOI: 10.1242/jcs.247700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/12/2020] [Indexed: 02/05/2023] Open
Abstract
Sonic hedgehog (Shh) and its patched-smoothened receptor complex control a variety of functions in the developing central nervous system, such as neural cell proliferation and differentiation. Recently, Shh signaling components have been found to be expressed at the synaptic level in the postnatal brain, suggesting a potential role in the regulation of synaptic transmission. Using in utero electroporation of constitutively active and negative-phenotype forms of the Shh signal transducer smoothened (Smo), we studied the role of Smo signaling in the development and maturation of GABAergic transmission in the somatosensory cortex. Our results show that enhancing Smo activity during development accelerates the shift from depolarizing to hyperpolarizing GABA in a manner dependent on functional expression of potassium-chloride cotransporter type 2 (KCC2, also known as SLC12A5). On the other hand, blocking Smo activity maintains the GABA response in a depolarizing state in mature cortical neurons, resulting in altered chloride homeostasis and increased seizure susceptibility. This study reveals unexpected functions of Smo signaling in the regulation of chloride homeostasis, through control of KCC2 cell-surface stability, and the timing of the GABA excitatory-to-inhibitory shift in brain maturation.
Collapse
Affiliation(s)
- Quentin Delmotte
- Aix-Marseille University, Parc Scientifique de Luminy, 13273, Marseille, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, 13273 Marseille, France
| | - Mira Hamze
- Aix-Marseille University, Parc Scientifique de Luminy, 13273, Marseille, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, 13273 Marseille, France
| | - Igor Medina
- Aix-Marseille University, Parc Scientifique de Luminy, 13273, Marseille, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, 13273 Marseille, France
| | - Emmanuelle Buhler
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- Plateforme Post-Génomique, INMED, 13273 Marseille, France
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Yesser H Belgacem
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, 13273 Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, Parc Scientifique de Luminy, 13273, Marseille, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, 13273 Marseille, France
| |
Collapse
|
9
|
Delmotte Q, Diabira D, Belaidouni Y, Hamze M, Kochmann M, Montheil A, Gaiarsa JL, Porcher C, Belgacem YH. Sonic Hedgehog Signaling Agonist (SAG) Triggers BDNF Secretion and Promotes the Maturation of GABAergic Networks in the Postnatal Rat Hippocampus. Front Cell Neurosci 2020; 14:98. [PMID: 32425757 PMCID: PMC7212340 DOI: 10.3389/fncel.2020.00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Sonic hedgehog (Shh) signaling plays critical roles during early central nervous system development, such as neural cell proliferation, patterning of the neural tube and neuronal differentiation. While Shh signaling is still present in the postnatal brain, the roles it may play are, however, largely unknown. In particular, Shh signaling components are found at the synaptic junction in the maturing hippocampus during the first two postnatal weeks. This period is characterized by the presence of ongoing spontaneous synaptic activity at the cellular and network levels thought to play important roles in the onset of neuronal circuit formation and synaptic plasticity. Here, we demonstrate that non-canonical Shh signaling increases the frequency of the synchronized electrical activity called Giant Depolarizing Potentials (GDP) and enhances spontaneous GABA post-synaptic currents in the rodent hippocampus during the early postnatal period. This effect is mediated specifically through the Shh co-receptor Smoothened via intracellular Ca2+ signal and the activation of the BDNF-TrkB signaling pathway. Given the importance of these spontaneous events on neuronal network maturation and refinement, this study opens new perspectives for Shh signaling on the control of early stages of postnatal brain maturation and physiology.
Collapse
Affiliation(s)
- Quentin Delmotte
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Diabe Diabira
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Yasmine Belaidouni
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Mira Hamze
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Marine Kochmann
- Aix-Marseille Univ, Marseille, France.,Institut des Neurosciences de La Timone, Marseille, France
| | - Aurélie Montheil
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Christophe Porcher
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Yesser H Belgacem
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
10
|
The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen. J Neurosci 2019; 38:9338-9345. [PMID: 30381425 DOI: 10.1523/jneurosci.1662-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS. Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the establishment of wiring specificity. Here, we review these novel and unexpected functions and the unanswered questions regarding the role of SHH and its signaling pathway members in these cases.
Collapse
|
11
|
Bansal R, Engle SE, Antonellis PJ, Whitehouse LS, Baucum AJ, Cummins TR, Reiter JF, Berbari NF. Hedgehog Pathway Activation Alters Ciliary Signaling in Primary Hypothalamic Cultures. Front Cell Neurosci 2019; 13:266. [PMID: 31249512 PMCID: PMC6582312 DOI: 10.3389/fncel.2019.00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Primary cilia dysfunction has been associated with hyperphagia and obesity in both ciliopathy patients and mouse models of cilia perturbation. Neurons throughout the brain possess these solitary cellular appendages, including in the feeding centers of the hypothalamus. Several cell biology questions associated with primary neuronal cilia signaling are challenging to address in vivo. Here we utilize primary hypothalamic neuronal cultures to study ciliary signaling in relevant cell types. Importantly, these cultures contain neuronal populations critical for appetite and satiety such as pro-opiomelanocortin (POMC) and agouti related peptide (AgRP) expressing neurons and are thus useful for studying signaling involved in feeding behavior. Correspondingly, these cultured neurons also display electrophysiological activity and respond to both local and peripheral signals that act on the hypothalamus to influence feeding behaviors, such as leptin and melanin concentrating hormone (MCH). Interestingly, we found that cilia mediated hedgehog signaling, generally associated with developmental processes, can influence ciliary GPCR signaling (Mchr1) in terminally differentiated neurons. Specifically, pharmacological activation of the hedgehog-signaling pathway using the smoothened agonist, SAG, attenuated the ability of neurons to respond to ligands (MCH) of ciliary GPCRs. Understanding how the hedgehog pathway influences cilia GPCR signaling in terminally differentiated neurons could reveal the molecular mechanisms associated with clinical features of ciliopathies, such as hyperphagia-associated obesity.
Collapse
Affiliation(s)
- Ruchi Bansal
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Staci E Engle
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Patrick J Antonellis
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Logan S Whitehouse
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Anthony J Baucum
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Theodore R Cummins
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Nicolas F Berbari
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indianapolis, IN, United States.,Center for Diabetes and Metabolic Disorders Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Zaqout S, Blaesius K, Wu YJ, Ott S, Kraemer N, Becker LL, Rosário M, Rosenmund C, Strauss U, Kaindl AM. Altered inhibition and excitation in neocortical circuits in congenital microcephaly. Neurobiol Dis 2019; 129:130-143. [PMID: 31102767 DOI: 10.1016/j.nbd.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023] Open
Abstract
Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation - inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity.
Collapse
Affiliation(s)
- Sami Zaqout
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany
| | - Kathrin Blaesius
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany
| | - Yuan-Ju Wu
- Charité - Universitätsmedizin Berlin, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Ott
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Nadine Kraemer
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena-Luise Becker
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Rosenmund
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany.
| |
Collapse
|
13
|
Rivell A, Petralia RS, Wang YX, Clawson E, Moehl K, Mattson MP, Yao PJ. Sonic hedgehog expression in the postnatal brain. Biol Open 2019; 8:bio.040592. [PMID: 30837226 PMCID: PMC6451348 DOI: 10.1242/bio.040592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Beyond its role in patterning the neural tube during embryogenesis, additional functions of Sonic hedgehog (Shh) in post-embryonic and mature brains have been coming into focus. However, the question of the abundance of endogenous Shh - the ligand of the signaling pathway - and its changes over time in post-embryonic and mature brains are less well understood. Here we find that while the amounts of Shh transcript and protein in rat brains are nearly undetectable at birth, they increase continuously during postnatal development and remain at readily detectable levels in young adults. This developmental age-associated increase in Shh levels is also seen in hippocampal neurons grown in culture, in which very young neurons produce minimal amounts of Shh protein but, as neurons grow and form synapses, the amounts of Shh increase significantly. Using immunolabeling with antibodies to different residues of Shh, we observed that the N-terminal fragment and the C-terminal fragment of Shh are present in hippocampal neurons, and that these two Shh forms co-exist in most compartments of the neuron. Our findings provide a better understanding of Shh expression in the brain, laying the groundwork for further comprehending the biogenesis of Shh protein in the young and mature brain and neurons.
Collapse
Affiliation(s)
- Aileen Rivell
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Ellie Clawson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: Role of GSK-3β. Sci Rep 2019; 9:1305. [PMID: 30718708 PMCID: PMC6361942 DOI: 10.1038/s41598-018-38085-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/13/2018] [Indexed: 11/12/2022] Open
Abstract
Prenatal stress (PNS) has gained attention with regard to its impact on hippocampal neurogenesis in neonates which serves as a risk factor for postnatal neurodevelopmental deficits. Evidences from animal models have suggested that depression responsive hypothalamic-pituitary-adrenal (HPA) axis and its hormonal response via cortisol, is responsible for critical neurodevelopmental deficits in the offspring which is transduced due to gestational stress. But knowledge in the area of assessing the effects of maternal chronic unpredictable mild stress (CUMS) on neurogenesis and expression of some key signaling molecules in the offsprings are limited. We have used Wistar rats to induce PNS in offsprings by maternal CUMS during pregnancy. Prefrontal cortex (PFC) and hippocampus were assessed for biomarkers of oxidative stress, neurogenesis, neurodevelopmental signaling molecules and DNA damage in the male Wister offsprings. Our investigations resulted in sufficient evidences which prove how maternal psychological stress has widespread effect on the fetal outcomes via major physiological alteration in the antioxidant levels, neurogenesis, signaling molecules and DNA damage. PNS leads to the upregulation of GSK-3β which in turn inhibited mRNA and protein expressions of sonic hedgehog (SHH), β-catenin, Notch and brain derived neurotrophic factor (BDNF). The study explored multifaceted signaling molecules especially, GSK-3β responsible for crosstalks between different neurodevelopmental molecules like SHH, Notch, BDNF and β-catenin affecting neurodevelopment of the offsprings due to PNS.
Collapse
|
15
|
Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. Exp Neurol 2018; 312:10-19. [PMID: 30391523 DOI: 10.1016/j.expneurol.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a significant health concern that greatly impacts quality of life, and is common in men as they age, impacting 52% of men between the ages of 40 and 70. A significant underlying cause of ED development is injury to the cavernous nerve (CN), a peripheral nerve that innervates the penis. CN injury also occurs in up to 82% of prostatectomy patients. We recently showed that Sonic hedgehog (SHH) protein delivered by peptide amphiphile (PA) nanofiber hydrogel to the CN and penis of a prostatectomy model of CN injury, is neuroprotective, accelerates CN regeneration, improves erectile function ~60%, preserves penile smooth muscle 56% and suppresses collagen deposition 30%. This regenerative potential is substantial in an adult prostatectomy model (P120). However prostatectomy patients are typically older (61.5 ± 9.6 years) and our models should mimic patient conditions more effectively when considering translation. In this study we examine regenerative potential in an aged prostatectomy model (P200-329). METHODS The caudal portion of the pelvic ganglia (MPG) and CN were dissected from adult (n = 11), and aged (n = 13) Sprague Dawley rats, and were grown in organ culture 3 days. Uninjured and 2 day CN crushed MPG/CN were exposed to Affi-Gel beads containing SHH protein, PBS (control), or 5e1 SHH inhibitor. Neurites were quantified by counting the number of growth cones normalized by tissue perimeter (mm) and immunohistochemistry for SHH, patched1 (PTCH1), smoothened (SMO), GLI1-3, and GAP43 were performed. RESULTS SHH treatment increased neurites 3.5-fold, in uninjured adult, and 5.7-fold in aged rats. Two days after CN crush, SHH treatment increased neurites 1.8-fold in adult rats and 2.5-fold in aged rats. SHH inhibition inhibited neurite formation in uninjured MPG/CN but not in 2 day CN crushed MPG/CN. PTCH1 and SMO (SHH receptors), and SHH transcriptional activators/repressors, GLI1-3, were abundant in aged MPG/CN with unaltered localization. ROCK1 was induced with SHH treatment. CONCLUSIONS Reintroduction of SHH protein in an aged prostatectomy model is even more effective in promoting neurite formation/CN regeneration than in the adult. The first 48 h after CN injury are a critical window when growth factors are released, that impact later neurite formation. These studies are significant because most prostatectomy patients are not young and healthy, as with adult rats, so the aged prostatectomy model will more accurately simulate ED patient response. Understanding how neurite formation changes with age is critical for clinical translation of SHH PA to prostatectomy patients.
Collapse
|
16
|
Liu S, Lv Y, Wan XX, Song ZJ, Liu YP, Miao S, Wang GL, Liu GJ. Hedgehog signaling contributes to bone cancer pain by regulating sensory neuron excitability in rats. Mol Pain 2018; 14:1744806918767560. [PMID: 29607715 PMCID: PMC5888817 DOI: 10.1177/1744806918767560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors. Production and persistence of these pain behaviors are well correlated with tumor cell implantation-induced up-regulation and activation of sonic hedgehog signaling in primary sensory neurons and spinal cord. Spinal administration of sonic hedgehog signaling inhibitor cyclopamine prevents and reverses the induction and persistence of bone cancer pain without affecting normal pain sensitivity. Inhibiting sonic hedgehog signaling activation with cyclopamine, in vivo or in vitro, greatly suppresses tumor cell implantation-induced increase of intracellular Ca2+ and hyperexcitability of the sensory neurons and also the activation of GluN2B receptor and the subsequent Ca2+-dependent signals CaMKII and CREB in dorsal root ganglion and the spinal cord. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest that targeting sonic hedgehog signaling may be an effective approach for treating bone cancer pain.
Collapse
Affiliation(s)
- Su Liu
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,2 Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - You Lv
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin-Xin Wan
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Jing Song
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue-Peng Liu
- 3 Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Shuai Miao
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guang-Lei Wang
- 2 Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Gong-Jian Liu
- 2 Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Development of Parvalbumin-Expressing Basket Terminals in Layer II of the Rat Medial Entorhinal Cortex. eNeuro 2018; 5:eN-NWR-0438-17. [PMID: 29951577 PMCID: PMC6019390 DOI: 10.1523/eneuro.0438-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
Grid cells in layer II of the medial entorhinal cortex (MEC LII) generate multiple regular firing fields in response to the position and speed of an individual within the environment. They exhibit a protracted postnatal development and, in the adult, show activity differences along the dorsoventral axis (DVA). Evidence suggests parvalbumin-positive (PV+) interneurons, most of which are perisomatic-targeting cells, play a crucial role in generation of the hexagonal grid cell activity pattern. We therefore hypothesized that the development and organization of PV+ perisomatic terminals in MEC LII reflect the postnatal emergence of the hexagonal firing pattern and dorsoventral differences seen in grid cell activity. We used immuno-electron microscopy to examine the development of PV+ perisomatic terminals and their target somata within dorsal and ventral MEC LII in rats of postnatal day (P)10, P15, and P30. We demonstrate that in dorsal and ventral MEC LII, the cross-sectional area of somata and number and density of perisomatic PV+ terminals increase between P10 and P15. A simultaneous decrease was observed in cross-sectional area of PV+ terminals. Between P15 and P30, both MEC regions showed an increase in PV+ terminal size and percentage of PV+ terminals containing mitochondria, which may enable grid cell activity to emerge and stabilize. We also report that dorsal somata are larger and apposed by more PV+ terminals than ventral somata at all stages, suggesting a protracted maturation in the ventral portion and a possible gradient in soma size and PV+ basket innervation along the DVA in the adult.
Collapse
|
18
|
Antonelli F, Casciati A, Tanori M, Tanno B, Linares-Vidal MV, Serra N, Bellés M, Pannicelli A, Saran A, Pazzaglia S. Alterations in Morphology and Adult Neurogenesis in the Dentate Gyrus of Patched1 Heterozygous Mice. Front Mol Neurosci 2018; 11:168. [PMID: 29875630 PMCID: PMC5974030 DOI: 10.3389/fnmol.2018.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Many genes controlling neuronal development also regulate adult neurogenesis. We investigated in vivo the effect of Sonic hedgehog (Shh) signaling activation on patterning and neurogenesis of the hippocampus and behavior of Patched1 (Ptch1) heterozygous mice (Ptch1+/−). We demonstrated for the first time, that Ptch1+/− mice exhibit morphological, cellular and molecular alterations in the dentate gyrus (DG), including elongation and reduced width of the DG as well as deregulations at multiple steps during lineage progression from neural stem cells to neurons. By using stage-specific cellular markers, we detected reduction of quiescent stem cells, newborn neurons and astrocytes and accumulation of proliferating intermediate progenitors, indicative of defects in the dynamic transition among neural stages. Phenotypic alterations in Ptch1+/− mice were accompanied by expression changes in Notch pathway downstream components and TLX nuclear receptor, as well as perturbations in inflammatory and synaptic networks and mouse behavior, pointing to complex biological interactions and highlighting cooperation between Shh and Notch signaling in the regulation of neurogenesis.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mirella Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Maria V Linares-Vidal
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Noemi Serra
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Monserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Alessandro Pannicelli
- Technical Unit of Energetic Efficiency, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
19
|
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Mol Psychiatry 2018; 23:1356-1367. [PMID: 28416808 PMCID: PMC5984103 DOI: 10.1038/mp.2017.39] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1-/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.
Collapse
|
20
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Structures in Mammalian Synapses. Front Synaptic Neurosci 2018; 10:4. [PMID: 29674962 PMCID: PMC5895750 DOI: 10.3389/fnsyn.2018.00004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling.
Collapse
Affiliation(s)
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, United States
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
21
|
Liu S, Yao JL, Wan XX, Song ZJ, Miao S, Zhao Y, Wang XL, Liu YP. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression. J Pain Res 2018; 11:649-659. [PMID: 29662325 PMCID: PMC5892616 DOI: 10.2147/jpr.s153544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance.
Collapse
Affiliation(s)
- Su Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Li Yao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu, China
| | - Xin-Xin Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Jing Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Miao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ye Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu-Li Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue-Peng Liu
- Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| |
Collapse
|
22
|
Okuyama H, Hamazaki T, Hama R, Ogushi Y, Kobayashi T, Ohara N, Uchino H. A Critical Review of the Consensus Statement from the European Atherosclerosis Society Consensus Panel 2017. Pharmacology 2018; 101:184-218. [PMID: 29353277 DOI: 10.1159/000486374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The Consensus Statement from the European Atherosclerosis Society (EAS) Consensus Panel 2017 concludes on the basis of 3 different types of clinical studies that low-density lipoprotein (LDL) causes atherosclerotic cardiovascular disease (ASCVD). In Mendelian randomization studies, rare genetic mutations affecting LDL receptor function were found to cause higher or lower LDL-C levels, which are associated with correspondingly altered ASCVD risk. In prospective cohort studies and randomized controlled trials (RCTs) of statins, a remarkably consistent log-linear association was demonstrated between the absolute magnitude of LDL-C exposure and ASCVD risk. The EAS Statement proposes that any mechanism of lowering plasma LDL concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C. However, as we explain, we do not find this conclusion acceptable. SUMMARY Our review points out that different interpretations are possible for the results of Mendelian randomization studies. As for prospective cohort studies, many inconsistent reports on the association of LDL-C and ASCVD were disregarded when drafting the Statement, reports with and without genetic factors related to LDL receptor function should be analyzed separately, and the term ASCVD in the Statement is used inappropriately because myocardial infarction and cerebral infarction differ in their association with LDL-C. As for RCTs, clinical reports on statins published before and after the implementation of new regulations affecting clinical trials (2004/2005) should not both be included in meta-analyses because the evaluated efficacy of statins changed markedly, and the irreversible adverse effects of statins need to be evaluated more rigorously now that their mechanisms have been elucidated. Key Messages: Apart from the EAS hypothesis that LDL causes ASCVD, recent pharmacological/biochemical studies, as summarized in this review and elsewhere, have revealed that atherosclerosis is caused by statins taken to lower LDL-C, as well as by warfarin and some types of vegetable fats and oils, in the absence of significantly elevated LDL-C levels. Thus, the promotion of statin treatment by the Statement is rather risky and we do not feel that the conclusions are justified for the prevention of ASCVD.
Collapse
Affiliation(s)
- Harumi Okuyama
- Nagoya City University, and Institute for Consumer Science and Human Life, Kinjo, Gakuin University, Nagoya, Japan
| | | | - Rokuro Hama
- Non-Profit Organization Japan Institute of Pharmacovigillance, Osaka, Japan
| | - Yoichi Ogushi
- Ogushi Institute of Medical Informatics, Kanagawa, Japan
| | - Tetsuyuki Kobayashi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Naoki Ohara
- College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | | |
Collapse
|
23
|
Intellicount: High-Throughput Quantification of Fluorescent Synaptic Protein Puncta by Machine Learning. eNeuro 2017; 4:eN-MNT-0219-17. [PMID: 29218324 PMCID: PMC5718246 DOI: 10.1523/eneuro.0219-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/18/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023] Open
Abstract
Synapse formation analyses can be performed by imaging and quantifying fluorescent signals of synaptic markers. Traditionally, these analyses are done using simple or multiple thresholding and segmentation approaches or by labor-intensive manual analysis by a human observer. Here, we describe Intellicount, a high-throughput, fully-automated synapse quantification program which applies a novel machine learning (ML)-based image processing algorithm to systematically improve region of interest (ROI) identification over simple thresholding techniques. Through processing large datasets from both human and mouse neurons, we demonstrate that this approach allows image processing to proceed independently of carefully set thresholds, thus reducing the need for human intervention. As a result, this method can efficiently and accurately process large image datasets with minimal interaction by the experimenter, making it less prone to bias and less liable to human error. Furthermore, Intellicount is integrated into an intuitive graphical user interface (GUI) that provides a set of valuable features, including automated and multifunctional figure generation, routine statistical analyses, and the ability to run full datasets through nested folders, greatly expediting the data analysis process.
Collapse
|
24
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Presynaptic Terminals in Neuromuscular Junctions, Photoreceptor Terminals, and Other Synapses of Animals. Neuromolecular Med 2017; 19:193-240. [PMID: 28612182 PMCID: PMC6518423 DOI: 10.1007/s12017-017-8445-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Typically, presynaptic terminals form a synapse directly on the surface of postsynaptic processes such as dendrite shafts and spines. However, some presynaptic terminals invaginate-entirely or partially-into postsynaptic processes. We survey these invaginating presynaptic terminals in all animals and describe several examples from the central nervous system, including giant fiber systems in invertebrates, and cup-shaped spines, electroreceptor synapses, and some specialized auditory and vestibular nerve terminals in vertebrates. We then examine mechanoreceptors and photoreceptors, concentrating on the complex of pre- and postsynaptic processes found in basal invaginations of the cell. We discuss in detail the role of vertebrate invaginating horizontal cell processes in both chemical and electrical feedback mechanisms. We also discuss the common presence of indenting or invaginating terminals in neuromuscular junctions on muscles of most kinds of animals, and especially discuss those of Drosophila and vertebrates. Finally, we consider broad questions about the advantages of possessing invaginating presynaptic terminals and describe some effects of aging and disease, especially on neuromuscular junctions. We suggest that the invagination is a mechanism that can enhance both chemical and electrical interactions at the synapse.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
25
|
Li S, Li S, Li Y, Yan H, Huang C, Liu Q. Influence of circadian disorder on structures and functions of neurons in hippocampus of mice. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1299368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Songbing Li
- West China Hospital, Sichuan University, Chendu, China
| | - Shuaizhen Li
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
| | - Yonghong Li
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
| | - Hongli Yan
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
| | - Changquan Huang
- College of Electronic Engineering, Chengdu University of Information Technology, Chendu, China
- Department of Gynecology, Third People Hospital Mianyang City, Mianyang, China
| | - Qingxiu Liu
- Department of Gynecology, Third People Hospital Mianyang City, Mianyang, China
| |
Collapse
|
26
|
Liu C, Hu Q, Jing J, Zhang Y, Jin J, Zhang L, Mu L, Liu Y, Sun B, Zhang T, Kong Q, Wang G, Wang D, Zhang Y, Liu X, Zhao W, Wang J, Feng T, Li H. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons. Mol Cell Neurosci 2017; 83:65-73. [PMID: 28684360 DOI: 10.1016/j.mcn.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/21/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP.
Collapse
Affiliation(s)
- Chuanliang Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China; Vocational College Daxing'an Mountains, Jiagedaqi District, Heilongjiang 165000, China
| | - Qiongqiong Hu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jia Jing
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yun Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jing Jin
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Liulei Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Tongshuai Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Dandan Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yao Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Xijun Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China.
| | - Tao Feng
- Department of Neurology, The Nangang Branch of Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, China.
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, Heilongjiang 150086, China
| |
Collapse
|
27
|
Sonic -'Jack-of-All-Trades' in Neural Circuit Formation. J Dev Biol 2017; 5:jdb5010002. [PMID: 29615560 PMCID: PMC5831768 DOI: 10.3390/jdb5010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
As reflected by the term morphogen, molecules such as Shh and Wnts were identified based on their role in early development when they instruct precursor cells to adopt a specific cell fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo studies indicated that morphogens direct axons during their navigation through the developing nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
Collapse
|
28
|
He W, Cui L, Zhang C, Zhang X, He J, Xie Y, Chen Y. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism. Exp Cell Res 2017; 350:83-90. [DOI: 10.1016/j.yexcr.2016.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/06/2016] [Accepted: 11/12/2016] [Indexed: 12/29/2022]
|
29
|
The Many Hats of Sonic Hedgehog Signaling in Nervous System Development and Disease. J Dev Biol 2016; 4:jdb4040035. [PMID: 29615598 PMCID: PMC5831807 DOI: 10.3390/jdb4040035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells. Shh signaling is particularly dynamic in the nervous system, ranging from canonical transcription-dependent, to non-canonical and localized to axonal growth cones. Here, we review the variety of Shh functions in the developing nervous system and their consequences for neurodevelopmental diseases and neural regeneration, with particular emphasis on the signaling mechanisms underlying Shh action.
Collapse
|
30
|
Yao PJ, Manor U, Petralia RS, Brose RD, Wu RTY, Ott C, Wang YX, Charnoff A, Lippincott-Schwartz J, Mattson MP. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell 2016; 28:387-395. [PMID: 27932496 PMCID: PMC5341723 DOI: 10.1091/mbc.e16-07-0553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Activation of the Sonic hedgehog signaling pathway affects multiple aspects of mitochondria in hippocampal neurons. It increases mitochondrial mass significantly, reduces fission, and promotes elongation. It also protects neurons against stress. Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Uri Manor
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca D Brose
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ryan T Y Wu
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Carolyn Ott
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ari Charnoff
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
31
|
Yao PJ, Petralia RS, Mattson MP. Sonic Hedgehog Signaling and Hippocampal Neuroplasticity. Trends Neurosci 2016; 39:840-850. [PMID: 27865563 PMCID: PMC5148655 DOI: 10.1016/j.tins.2016.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
Abstract
Sonic hedgehog (Shh) is a secreted protein that controls the patterning of neural progenitor cells, and their neuronal and glial progeny, during development. Emerging findings suggest that Shh also has important roles in the formation and plasticity of neuronal circuits in the hippocampus, a brain region of fundamental importance in learning and memory. Shh mediates activity-dependent and injury-induced hippocampal neurogenesis. Activation of Shh receptors in the dendrites of hippocampal neurons engages a trans-neuronal signaling pathway that accelerates axon outgrowth and enhances glutamate release from presynaptic terminals. Impaired Shh signaling may contribute to the pathogenesis of several developmental and adult-onset neurological disorders that affect the hippocampus, suggesting a potential for therapeutic interventions that target Shh pathways.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA.
| | - Ronald S Petralia
- Advanced Imaging Core, NIDCD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Forrest CM, McNair K, Vincenten MCJ, Darlington LG, Stone TW. Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet and cancer. BMC Cancer 2016; 16:772. [PMID: 27716118 PMCID: PMC5054602 DOI: 10.1186/s12885-016-2795-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The related tumour suppressor proteins Deleted in Colorectal Cancer (DCC) and neogenin are absent or weakly expressed in many cancers, whereas their insertion into cells suppresses oncogenic behaviour. Serine proteases influence the initiation and progression of cancers although the mechanisms are unknown. METHODS The effects of environmental (bacterial subtilisin) and endogenous mammalian (chymotrypsin) serine proteases were examined on protein expression in fresh, normal tissue and human neuroblastoma and mammary adenocarcinoma lines. Cell proliferation and migration assays (chemoattraction and wound closure) were used to examine cell function. Cells lacking DCC were transfected with an ectopic dcc plasmid. RESULTS Subtilisin and chymotrypsin selectively depleted DCC and neogenin from cells at nanomolar concentrations without affecting related proteins. Cells showed reduced adherence and increased migration, but after washing they re-attached within 24 h, with recovery of protein expression. These effects are induced by chymotryptic activity as they are prevented by chymostatin and the soybean Bowman-Birk inhibitor typical of many plant protease inhibitors. CONCLUSIONS Bacillus subtilis, which secretes subtilisin is widely present in soil, the environment and the intestinal contents, while subtilisin itself is used in meat processing, animal feed probiotics and many household cleaning agents. With chymotrypsin present in chyme, blood and tissues, these proteases may contribute to cancer development by depleting DCC and neogenin. Blocking their activity by Bowman-Birk inhibitors may explain the protective effects of a plant diet. Our findings identify a potential non-genetic contribution to cancer cell behaviour which may explain both the association of processed meats and other factors with cancer incidence and the protection afforded by plant-rich diets, with significant implications for cancer prevention.
Collapse
Affiliation(s)
- Caroline M Forrest
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kara McNair
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria C J Vincenten
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Trevor W Stone
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
33
|
Stone TW, Darlington LG, Forrest CM. Dependence receptor involvement in subtilisin-induced long-term depression and in long-term potentiation. Neuroscience 2016; 336:49-62. [PMID: 27590265 DOI: 10.1016/j.neuroscience.2016.08.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
The serine protease subtilisin induces a form of long-term depression (LTD) which is accompanied by a reduced expression of the axo-dendritic guidance molecule Unco-ordinated-5C (Unc-5C). One objective of the present work was to determine whether a loss of Unc-5C function contributed to subtilisin-induced LTD by using Unc-5C antibodies in combination with the pore-forming agents Triton X-100 (0.005%) or streptolysin O in rat hippocampal slices. In addition we have assessed the effect of subtilisin on the related dependence receptor Deleted in Colorectal Cancer (DCC) and used antibodies to this protein for functional studies. Field excitatory postsynaptic potentials (fEPSPs) were analyzed in rat hippocampal slices and protein extracts were used for Western blotting. Subtilisin produced a greater loss of DCC than of Unc-5C, but the antibodies had no effect on resting excitability or fEPSPs and did not modify subtilisin-induced LTD. However, antibodies to DCC but not Unc-5C did reduce the amplitude of theta-burst long-term potentiation (LTP). In addition, two inhibitors of endocytosis - dynasore and tat-gluR2(3Y) - were tested and, although the former compound had no effect on neurophysiological responses, tat-gluR2(3Y) did reduce the amplitude of subtilisin-induced LTD without affecting the expression of DCC or Unc-5C but with some loss of PostSynaptic Density Protein-95. The results support the view that the dependence receptor DCC may be involved in LTP and suggest that the endocytotic removal of a membrane protein or proteins may contribute to subtilisin-induced LTD, although it appears that neither Unc-5C nor DCC are involved in this process.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neurosciences and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | - Caroline M Forrest
- Institute of Neurosciences and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
34
|
Scholz B, Doidge AN, Barnes P, Hall J, Wilkinson LS, Thomas KL. The Regulation of Cytokine Networks in Hippocampal CA1 Differentiates Extinction from Those Required for the Maintenance of Contextual Fear Memory after Recall. PLoS One 2016; 11:e0153102. [PMID: 27224427 PMCID: PMC4880201 DOI: 10.1371/journal.pone.0153102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/23/2016] [Indexed: 12/17/2022] Open
Abstract
We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity-associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families' characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory.
Collapse
Affiliation(s)
- Birger Scholz
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Amie N. Doidge
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Philip Barnes
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Schools of Psychology and Medicine, Behavioral Genetics Group, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
35
|
Abstract
UNLABELLED The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits.
Collapse
|
36
|
Kharebava G, Rashid MA, Lee JW, Sarkar S, Kevala K, Kim HY. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons. Biol Open 2015; 4:1660-70. [PMID: 26545965 PMCID: PMC4736029 DOI: 10.1242/bio.013425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3) that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine), an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1) transcription and sonic hedgehog (Shh) target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO) agonist (SAG) or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway. Summary: Synaptamide, an omega-3 fatty acid metabolite, promotes axon growth while Shh antagonizes synaptamide-mediated axon growth by a SMO-independent, non-canonical pathway.
Collapse
Affiliation(s)
- Giorgi Kharebava
- Laboratory of Molecular Signaling, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA
| | - Mohammad A Rashid
- Laboratory of Molecular Signaling, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ji-Won Lee
- Laboratory of Molecular Signaling, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA
| | - Sarmila Sarkar
- Laboratory of Molecular Signaling, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA
| | - Karl Kevala
- Laboratory of Molecular Signaling, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA
| |
Collapse
|
37
|
Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related Invaginating Projections. Neuromolecular Med 2015; 17:211-40. [PMID: 26007200 DOI: 10.1007/s12017-015-8358-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Neurons and especially their synapses often project long thin processes that can invaginate neighboring neuronal or glial cells. These "invaginating projections" can occur in almost any combination of postsynaptic, presynaptic, and glial processes. Invaginating projections provide a precise mechanism for one neuron to communicate or exchange material exclusively at a highly localized site on another neuron, e.g., to regulate synaptic plasticity. The best-known types are postsynaptic projections called "spinules" that invaginate into presynaptic terminals. Spinules seem to be most prevalent at large very active synapses. Here, we present a comprehensive review of all kinds of invaginating projections associated with both neurons in general and more specifically with synapses; we describe them in all animals including simple, basal metazoans. These structures may have evolved into more elaborate structures in some higher animal groups exhibiting greater synaptic plasticity. In addition to classic spinules and filopodial invaginations, we describe a variety of lesser-known structures such as amphid microvilli, spinules in giant mossy terminals and en marron/brush synapses, the highly specialized fish retinal spinules, the trophospongium, capitate projections, and fly gnarls, as well as examples in which the entire presynaptic or postsynaptic process is invaginated. These various invaginating projections have evolved to modify the function of a particular synapse, or to channel an effect to one specific synapse or neuron, without affecting those nearby. We discuss how they function in membrane recycling, nourishment, and cell signaling and explore how they might change in aging and disease.
Collapse
|
38
|
Novel Mechanisms of Spinal Cord Plasticity in a Mouse Model of Motoneuron Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:654637. [PMID: 26064939 PMCID: PMC4433663 DOI: 10.1155/2015/654637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
A hopeful spinal cord repairing strategy involves the activation of neural precursor cells. Unfortunately, their ability to generate neurons after injury appears limited. Another process promoting functional recovery is synaptic plasticity. We have previously studied some mechanisms of spinal plasticity involving BDNF, Shh, Notch-1, Numb, and Noggin, by using a mouse model of motoneuron depletion induced by cholera toxin-B saporin. TDP-43 is a nuclear RNA/DNA binding protein involved in amyotrophic lateral sclerosis. Interestingly, TDP-43 could be localized at the synapse and affect synaptic strength. Here, we would like to deepen the investigation of this model of spinal plasticity. After lesion, we observed a glial reaction and an activity-dependent modification of Shh, Noggin, and Numb proteins. By using multivariate regression models, we found that Shh and Noggin could affect motor performance and that these proteins could be associated with both TDP-43 and Numb. Our data suggest that TDP-43 is likely an important regulator of synaptic plasticity, probably in collaboration with other proteins involved in both neurogenesis and synaptic plasticity. Moreover, given the rapidly increasing knowledge about spinal cord plasticity, we believe that further efforts to achieve spinal cord repair by stimulating the intrinsic potential of spinal cord will produce interesting results.
Collapse
|
39
|
Borodinsky LN, Belgacem YH, Swapna I, Visina O, Balashova OA, Sequerra EB, Tu MK, Levin JB, Spencer KA, Castro PA, Hamilton AM, Shim S. Spatiotemporal integration of developmental cues in neural development. Dev Neurobiol 2014; 75:349-59. [PMID: 25484201 DOI: 10.1002/dneu.22254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
Abstract
Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here, we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity, and the environment. We focus on second messenger dynamics and their role as integrators of the action of diverse cues, enabling plasticity in the process of neural development.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, California, 95817
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mioranzza S, Nunes F, Marques DM, Fioreze GT, Rocha AS, Botton PHS, Costa MS, Porciúncula LO. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development. Int J Dev Neurosci 2014; 36:45-52. [PMID: 24862851 DOI: 10.1016/j.ijdevneu.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023] Open
Abstract
Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development.
Collapse
Affiliation(s)
- Sabrina Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Fernanda Nunes
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Daniela M Marques
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Gabriela T Fioreze
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Andréia S Rocha
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Paulo Henrique S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Marcelo S Costa
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
41
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
42
|
DiBenedictis BT, Helfand AI, Baum MJ, Cherry JA. A quantitative comparison of the efferent projections of the anterior and posterior subdivisions of the medial amygdala in female mice. Brain Res 2013; 1543:101-8. [PMID: 24262912 DOI: 10.1016/j.brainres.2013.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022]
Abstract
In rodents, many aspects of sociosexual behavior are mediated by chemosignals released by opposite-sex conspecifics. These chemosignals are relayed via the main (MOS) and accessory olfactory systems (AOS) to the medial amygdala (Me). The Me is subdivided into anterior (MeA) and posterior (MeP) subnuclei, and lesions targeting these regions have different effects on proceptive courtship behaviors in female mice. Differential behavioral effects of MeA vs. MeP lesions could reflect a difference in the projections of neurons located in these Me subnuclei. To examine this question, we injected female mice with the anterograde tracer, Fluoro-Ruby into either the MeA or MeP and quantified labeled puncta in 11 forebrain target sites implicated in courtship behaviors using confocal fluorescence microscopy. We found that the MeP more densely innervates the medial and intermediate regions of the posterior bed nucleus of the stria terminalis (pBNST) and the posteromedial cortical amygdala (PMCo), while the MeA more densely innervates the horizontal diagonal band of Broca (HDB) and the medial olfactory tubercle (mOT), a region that may be a component of the circuitry responsible for olfactory-mediated motivated behaviors.
Collapse
Affiliation(s)
| | | | - Michael J Baum
- Department of Biology, Boston University, Boston, MA 02215, United States
| | - James A Cherry
- Department of Psychology, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
43
|
Ma X, Turnbull P, Peterson R, Turnbull J. Trophic and proliferative effects of Shh on motor neurons in embryonic spinal cord culture from wildtype and G93A SOD1 mice. BMC Neurosci 2013; 14:119. [PMID: 24119209 PMCID: PMC3852546 DOI: 10.1186/1471-2202-14-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 09/18/2013] [Indexed: 12/01/2022] Open
Abstract
Background The developmental morphogen sonic hedgehog (Shh) may continue to play a trophic role in the support of terminally-differentiated motor neurons, of potential relevance to motor neuron disease. In addition, it may support the proliferation and differentiation of endogenous stem cells along motor neuronal lineages. As such, we have examined the trophic and proliferative effects of Shh supplementation or Shh antagonism in embryonic spinal cord cell cultures derived from wildtype or G93A SOD1 mice, a mouse model of amyotrophic lateral sclerosis. Results Shh supported survival, and stimulated growth of motor neurons, neurite outgrowth, and neurosphere formation in primary culture derived from both G93A SOD1 and WT mice. Shh increased the percentage of ciliated motor neurons, especially in G93A SOD1 culture. Shh-treated cultures showed increased neuronal proliferation compared to controls and especially cyclopamine treated cultures, from G93A SOD1 and WT mice. Moreover, Shh enhanced cell survival and differentiation of motor neuron precursors in WT culture. Conclusions Shh is neurotrophic to motor neurons and has mitogenic effects in WT and mSOD1 G93A culture in vitro.
Collapse
Affiliation(s)
- Xiaoxing Ma
- Department of Medicine, McMaster University, 1200 Main St West, Hamilton, ON L8N 3Z5, Canada.
| | | | | | | |
Collapse
|
44
|
Petralia RS, Schwartz CM, Wang YX, Kawamoto EM, Mattson MP, Yao PJ. Sonic hedgehog promotes autophagy in hippocampal neurons. Biol Open 2013; 2:499-504. [PMID: 23789099 PMCID: PMC3654269 DOI: 10.1242/bio.20134275] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/20/2013] [Indexed: 01/07/2023] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway is well known in patterning of the neural tube during embryonic development, but its emerging role in differentiated neurons is less understood. Here we report that Shh enhances autophagy in cultured hippocampal neurons. Microarray analysis reveals the upregulation of multiple autophagy-related genes in neurons in response to Shh application. Through analysis of the autophagy-marker LC3 by immunoblot analysis and immunocytochemistry, we confirm activation of the autophagy pathway in Shh-exposed neurons. Using electron microscopy, we find autophagosomes and associated structures with a wide range of morphologies in synaptic terminals of Shh-exposed neurons. Moreover, we show that Shh-triggered autophagy depends on class III Phosphatidylinositol 3-kinase complexes (PtdIns3K). These results identify a link between Shh and autophagy pathways and, importantly, provide a lead for further understanding the physiology of Shh signaling activity in neurons.
Collapse
|
45
|
Reduction of AP180 and CALM produces defects in synaptic vesicle size and density. Neuromolecular Med 2012; 15:49-60. [PMID: 22851330 DOI: 10.1007/s12017-012-8194-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 07/14/2012] [Indexed: 10/28/2022]
Abstract
Clathrin assembly proteins AP180 and CALM regulate the assembly of clathrin-coated vesicles (CCVs), which mediate diverse intracellular trafficking processes, including synaptic vesicle (SV) recycling at the synapse. Although studies using several invertebrate model systems have indicated a role for AP180 in SV recycling, less is known about AP180's or CALM's function in the synapse of mammalian neurons. In this study, we examined synapses of rat hippocampal neurons in which the level of AP180 or CALM had been reduced by RNA interference (RNAi). Using light microscopy, we visualized synaptic puncta in these AP180- or CALM-reduced neurons by co-expressing Synaptophysin::EGFP (Syp::EGFP). We found that neurons with reduced AP180 or reduced CALM had smaller Syp::EGFP-illuminated puncta. Using electron microscopy, we further examined the ultrastructure of the AP180- or CALM-reduced presynaptic terminals. We found that SVs became variably enlarged in both the AP180-reduced and CALM-reduced presynaptic terminals. Lower AP180 and CALM also reduced the density of SVs and the size of SV clusters. Our findings demonstrate that in the presynaptic terminals of hippocampal neurons, AP180 and CALM have a similar role in regulating synaptic vesicles. This overlapping activity may be necessary for high-precision and high-efficacy SV formation during endocytosis.
Collapse
|