1
|
Jiang Y, Sachdeva K, Goulbourne CN, Berg MJ, Peddy J, Stavrides PH, Pensalfini A, Pawlik M, Whyte L, Balapal BS, Shivakumar S, Bleiwas C, Smiley JF, Mathews PM, Nixon RA. Increased neuronal expression of the early endosomal adaptor APPL1 leads to endosomal and synaptic dysfunction with cholinergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613736. [PMID: 39345644 PMCID: PMC11430014 DOI: 10.1101/2024.09.19.613736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dysfunction of the endolysosomal system within neurons is a prominent feature of Alzheimer's disease (AD) pathology. Multiple AD-risk factors are known to cause hyper-activity of the early-endosome small GTPase rab5, resulting in neuronal endosomal pathway disruption. APPL1, an important rab5 effector protein, is an interface between endosomal and neuronal function through a rab5-activating interaction with the BACE1-generated C-terminal fragment (βCTF or C99) of the amyloid precursor protein (APP), a pathogenic APP fragment generated within endolysosomal compartments. To better understand the role of APPL1 in the AD endosomal phenotype, we generated a transgenic mouse model over-expressing human APPL1 within neurons (Thy1-APPL1 mice). Consistent with the important endosomal regulatory role of APPL1, Thy1-APPL1 mice have enlarged neuronal early endosomes and increased synaptic endocytosis due to increased rab5 activation. We additionally demonstrate pathological consequences of APPL1 overexpression, including functional changes in hippocampal long-term potentiation (LTP) and long-term depression (LTD), as well as degeneration of the large projection cholinergic neurons of the basal forebrain and impairment of hippocampal-dependent memory. Our findings show that increased neuronal APPL1 levels lead to a cascade of pathological effects within neurons, including early endosomal alterations, synaptic dysfunction, and neurodegeneration. Multiple risk factors and molecular regulators, including APPL1 activity, are known to contribute to the endosomal dysregulation seen in the early stages of AD, and these findings further highlight the shared pathobiology and consequences to a neuron of early endosomal pathway disruption. Significance Statement Dysfunction in the endolysosomal system within neurons is a key feature of Alzheimer's disease (AD). Multiple AD risk factors lead to hyperactivity of the early-endosome GTPase rab5, disrupting neuronal pathways including the cholinergic circuits involved early in memory decline. APPL1, a crucial rab5 effector, connects endosomal and neuronal functions through its interaction with a specific amyloid precursor protein (APP) fragment generated within endosomes. To understand APPL1's role, a transgenic mouse model over-expressing human APPL1 in neurons (Thy1-APPL1 mice) was developed. These mice show enlarged early endosomes and increased synaptic endocytosis due to rab5 activation, resulting in impaired hippocampal long-term potentiation and depression, the degeneration of basal forebrain cholinergic neurons, and memory deficits, highlighting a pathological cascade mediated through APPL1 at the early endosome.
Collapse
|
2
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
3
|
Haselager M, Thijssen R, West C, Young L, Van Kampen R, Willmore E, Mackay S, Kater A, Eldering E. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ 2021; 28:1658-1668. [PMID: 33495554 PMCID: PMC8167103 DOI: 10.1038/s41418-020-00692-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), the lymph node (LN) microenvironment delivers critical survival signals by inducing the expression of anti-apoptotic Bcl-2 members Bcl-XL, Bfl-1, and Mcl-1, resulting in apoptosis blockade. We determined previously that resistance against various drugs, among which is the clinically applied BH3 mimetic venetoclax, is dominated by upregulation of the anti-apoptotic regulator Bcl-XL. Direct clinical targeting of Bcl-XL by, e.g., Navitoclax is however not desirable due to induction of thrombocytopenia. Since the actual regulation of Bcl-XL in CLL in the context of the LN microenvironment is not well elucidated, we investigated various candidate LN signals to drive Bcl-XL expression. We found a dominance for NF-κB signaling upon CD40 stimulation, which results in activation of both the canonical and non-canonical NF-κB signaling pathways. We demonstrate that expression of Bcl-XL is first induced by the canonical NF-κB pathway, and subsequently boosted and continued via non-canonical NF-κB signaling through stabilization of NIK. NF-κB subunits p65 and p52 can both bind to the Bcl-XL promoter and activate transcription upon CD40 stimulation. Moreover, canonical NF-κB signaling was correlated with Bfl-1 expression, whereas Mcl-1 in contrast, was not transcriptionally regulated by NF-κB. Finally, we applied a novel compound targeting NIK to selectively inhibit the non-canonical NF-κB pathway and showed that venetoclax-resistant CLL cells were sensitized to venetoclax. In conclusion, protective signals from the CLL microenvironment can be tipped towards apoptosis sensitivity by interfering with non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Marco Haselager
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| | - Rachel Thijssen
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Christopher West
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Louise Young
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Roel Van Kampen
- grid.416905.fZuyderland Medical Center, Sittard, The Netherlands
| | - Elaine Willmore
- grid.1006.70000 0001 0462 7212Drug Discovery Unit, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Mackay
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnon Kater
- grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, Brough D. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol 2020; 219:191204. [PMID: 33044555 PMCID: PMC7543090 DOI: 10.1083/jcb.202006194] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Diverse pathogen- and damage-associated stresses drive inflammation via activation of the multimolecular NLRP3-inflammasome complex. How the effects of diverse stimuli are integrated by the cell to regulate NLRP3 has been the subject of intense research, and yet an accepted unifying hypothesis for the control of NLRP3 remains elusive. Here, we review the literature on the effects of NLRP3-activating stimuli on subcellular organelles and conclude that a shared feature of NLRP3-activating stresses is an organelle dysfunction. In particular, we propose that the endosome may be more important than previously recognized as a signal-integrating hub for NLRP3 activation in response to many stimuli and may also link to the dysfunction of other organelles. In addition, NLRP3-inflammasome-activating stimuli trigger diverse posttranslational modifications of NLRP3 that are important in controlling its activation. Future research should focus on how organelles respond to specific NLRP3-activating stimuli, and how this relates to posttranslational modifications, to delineate the organellar control of NLRP3.
Collapse
Affiliation(s)
- Paula I. Seoane
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Bali Lee
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Christopher Hoyle
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK,Correspondence to David Brough:
| |
Collapse
|
5
|
Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci Rep 2019; 9:4563. [PMID: 30872589 PMCID: PMC6418260 DOI: 10.1038/s41598-018-36052-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Signaling via Toll-like receptor 4 (TLR4) in macrophages constitutes an essential part of the innate immune response to bacterial infections. Detailed and quantified descriptions of TLR4 signal transduction would help to understand and exploit the first-line response of innate immune defense. To date, most mathematical modelling studies were performed on transformed cell lines. However, properties of primary macrophages differ significantly. We therefore studied TLR4-dependent activation of NF-κB transcription factor in bone marrow-derived and peritoneal primary macrophages. We demonstrate that the kinetics of NF-κB phosphorylation and nuclear translocation induced by a wide range of bacterial lipopolysaccharide (LPS) concentrations in primary macrophages is much faster than previously reported for macrophage cell lines. We used a comprehensive combination of experiments and mathematical modeling to understand the mechanisms of this rapid response. We found that elevated basal NF-κB in the nuclei of primary macrophages is a mechanism increasing native macrophage sensitivity and response speed to the infection. Such pre-activated state of macrophages accelerates the NF-κB translocation kinetics in response to low agonist concentrations. These findings enabled us to refine and construct a new model combining both NF-κB phosphorylation and translocation processes and predict the existence of a negative feedback loop inactivating phosphorylated NF-κB.
Collapse
|
6
|
Goto-Silva L, McShane MP, Salinas S, Kalaidzidis Y, Schiavo G, Zerial M. Retrograde transport of Akt by a neuronal Rab5-APPL1 endosome. Sci Rep 2019; 9:2433. [PMID: 30792402 PMCID: PMC6385319 DOI: 10.1038/s41598-019-38637-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/27/2018] [Indexed: 01/19/2023] Open
Abstract
Long-distance axonal trafficking plays a critical role in neuronal function and transport defects have been linked to neurodegenerative disorders. Various lines of evidence suggest that the small GTPase Rab5 plays a role in neuronal signaling via early endosomal transport. Here, we characterized the motility of Rab5 endosomes in primary cultures of mouse hippocampal pyramidal cells by live-cell imaging and showed that they exhibit bi-directional long-range motility in axons, with a strong bias toward retrograde transport. Characterization of key Rab5 effectors revealed that endogenous Rabankyrin-5, Rabenosyn-5 and APPL1 are all present in axons. Further analysis of APPL1-positive endosomes showed that, similar to Rab5-endosomes, they display more frequent long-range retrograde than anterograde movement, with the endosomal levels of APPL1 correlated with faster retrograde movement. Interestingly, APPL1-endosomes transport the neurotrophin receptor TrkB and mediate retrograde axonal transport of the kinase Akt1. FRET analysis revealed that APPL1 and Akt1 interact in an endocytosis-dependent manner. We conclude that Rab5-APPL1 endosomes exhibit the hallmarks of axonal signaling endosomes to transport Akt1 in hippocampal pyramidal cells.
Collapse
Affiliation(s)
- Livia Goto-Silva
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, 22281-100, Rio de Janeiro, Brazil
| | - Marisa P McShane
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Sara Salinas
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia.,UMR1058. INSERM/Université de Montpellier/Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Montpellier, France
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Giampietro Schiavo
- Molecular NeuroPathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Jung W, Sierecki E, Bastiani M, O'Carroll A, Alexandrov K, Rae J, Johnston W, Hunter DJB, Ferguson C, Gambin Y, Ariotti N, Parton RG. Cell-free formation and interactome analysis of caveolae. J Cell Biol 2018; 217:2141-2165. [PMID: 29716956 PMCID: PMC5987714 DOI: 10.1083/jcb.201707004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/24/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Caveolae are linked to signaling protein regulation through interactions with caveolins. We describe a cell-free system for the biogenesis of caveolae and show phosphorylated-caveolins preferentially bind signaling proteins. Our validation in vivo shows that phosphorylated CAV1 recruits TRAF2 to the endosome to form a signaling platform. Caveolae have been linked to the regulation of signaling pathways in eukaryotic cells through direct interactions with caveolins. Here, we describe a cell-free system based on Leishmania tarentolae (Lt) extracts for the biogenesis of caveolae and show its use for single-molecule interaction studies. Insertion of expressed caveolin-1 (CAV1) into Lt membranes was analogous to that of caveolin in native membranes. Electron tomography showed that caveolins generate domains of precise size and curvature. Cell-free caveolae were used in quantitative assays to test the interaction of membrane-inserted caveolin with signaling proteins and to determine the stoichiometry of interactions. Binding of membrane-inserted CAV1 to several proposed binding partners, including endothelial nitric-oxide synthase, was negligible, but a small number of proteins, including TRAF2, interacted with CAV1 in a phosphorylation-(CAV1Y14)–stimulated manner. In cells subjected to oxidative stress, phosphorylated CAV1 recruited TRAF2 to the early endosome forming a novel signaling platform. These findings lead to a novel model for cellular stress signaling by CAV1.
Collapse
Affiliation(s)
- WooRam Jung
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Emma Sierecki
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Michele Bastiani
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Ailis O'Carroll
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Kirill Alexandrov
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - James Rae
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Wayne Johnston
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Dominic J B Hunter
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Charles Ferguson
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Yann Gambin
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Robert G Parton
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia .,The University of Queensland, The Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic Biol Med 2018; 114:40-51. [PMID: 28988799 PMCID: PMC5748263 DOI: 10.1016/j.freeradbiomed.2017.10.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.
Collapse
Affiliation(s)
- Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
9
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Liu Y, Zhang C, Zhao L, Du N, Hou N, Song T, Huang C. APPL1 promotes the migration of gastric cancer cells by regulating Akt2 phosphorylation. Int J Oncol 2017; 51:1343-1351. [PMID: 28902365 DOI: 10.3892/ijo.2017.4121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
As a multifunctional adaptor protein, APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif 1) is overexpressed in many cancers, and has been implicated in tumorigenesis and tumor progression. The present study investigated the expression of APPL1 in gastric carcinoma and the function in regulating cell migration. We investigated the expression of APPL1 in gastric carcinoma based upon The Cancer Genome Atlas (TCGA) database. The expression of APPL1 in collected gastric carcinoma tissues and cultured cells was measured by qRT-PCR and western blot analysis. Transwell assay and wound healing assay were used to analyze the effects of APPL1 on tumor cell migration. The statistical results based upon TCGA database showed significantly higher expression of APPL1 in gastric carcinoma compared to adjacent normal tissues, and we confirmed these findings by measuring APPL1 expression in collected gastric carcinoma tissues and cultured cells. The results of transwell assay and wound healing assay showed that when APPL1 was silenced by siRNA, cell migration was inhibited and overexpression of APPL1 promoted migration. Western blot results demonstrated that changes in several mesenchymal markers were consistent with the observed reduction or enhancement of cell migration. Importantly, the expression of APPL1 significantly affected the phosphorylation of Akt2. In addition, MMP2 and MMP9, downstream effectors of Akt2 changed accordingly, which is a critical requirement for Akt2-mediated cell migration. The results demonstrate an important new function of APPL1 in regulating cell migration through a mechanism that depends on Akt2 phosphorylation.
Collapse
Affiliation(s)
- Yingxun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Chunli Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- Department of Oncology Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Tusheng Song
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Jiang X, Zhou Y, Wu KKL, Chen Z, Xu A, Cheng KKY. APPL1 prevents pancreatic beta cell death and inflammation by dampening NFκB activation in a mouse model of type 1 diabetes. Diabetologia 2017; 60:464-474. [PMID: 28011992 DOI: 10.1007/s00125-016-4185-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/17/2016] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Beta cell inflammation and demise is a feature of type 1 diabetes. The insulin-sensitising molecule 'adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1' (APPL1), which contains an NH2-terminal Bin/Amphiphysin/Rvs domain, a central pleckstrin homology domain and a COOH-terminal phosphotyrosine-binding domain, has been shown to modulate inflammatory response in various cell types but its role in regulating beta cell mass and inflammation in type 1 diabetes remains unknown. Thus, we investigated whether APPL1 prevents beta cell apoptosis and inflammation in diabetes. METHODS Appl1-knockout mice and their wild-type littermates, as well as C57BL/6N mice injected with adeno-associated virus encoding APPL1 or green fluorescent protein, were treated with multiple-low-dose streptozotocin (MLDS) to induce experimental type 1 diabetes. Their glucose metabolism and beta cell function were assessed. The effect of APPL1 deficiency on beta cell function upon exposure to a diabetogenic cytokine cocktail (CKS; consisting of TNF-α, IL-1β and IFN-γ) was assessed ex vivo. RESULTS Expression of APPL1 was significantly reduced in pancreatic islets from mouse models of type 1 diabetes or islets treated with CKS. Hyperglycaemia, beta cell loss and insulitis induced by MLDS were exacerbated by genetic deletion of Appl1 but were alleviated by beta cell-specific overexpression of APPL1. APPL1 preserved beta cell mass by reducing beta cell apoptosis upon treatment with MLDS. Mechanistically, APPL1 deficiency potentiate CKS-induced phosphorylation of NFκB inhibitor, α (IκBα) and subsequent phosphorylation and transcriptional activation of p65, leading to a dramatic induction of NFκB-regulated apoptotic and proinflammatory programs in beta cells. Pharmacological inhibition of NFκB or inducible NO synthase (iNOS) largely abrogate the detrimental effects of APPL1 deficiency on beta cell functions. CONCLUSIONS/INTERPRETATION APPL1 negatively regulates inflammation and apoptosis in pancreatic beta cells by dampening the NFκB-iNOS-NO axis, representing a promising target for treating type 1 diabetes.
Collapse
Affiliation(s)
- Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, L8, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yawen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, L8, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Kelvin K L Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, L8, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zhanrui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, L8, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, L8, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
| | - Kenneth K Y Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, L8, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
| |
Collapse
|
12
|
Liu Z, Xiao T, Peng X, Li G, Hu F. APPLs: More than just adiponectin receptor binding proteins. Cell Signal 2017; 32:76-84. [PMID: 28108259 DOI: 10.1016/j.cellsig.2017.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
APPLs (adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) are multifunctional adaptor proteins that bind to various membrane receptors, nuclear factors and signaling proteins to regulate many biological activities and processes, such as cell proliferation, chromatin remodeling, endosomal trafficking, cell survival, cell metabolism and apoptosis. APPL1, one of the APPL isoforms, was the first identified protein and interacts directly with adiponectin receptors to mediate adiponectin signaling to enhance lipid oxidation and glucose uptake. APPLs also act on insulin signaling pathways and are important mediators of insulin sensitization. Based on recent findings, this review highlights the critical roles of APPLs, particularly APPL1 and its isoform partner APPL2, in mediating adiponectin, insulin, endosomal trafficking and other signaling pathways. A deep understanding of APPLs and their related signaling pathways may potentially lead to therapeutic and interventional treatments for obesity, diabetes, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhuoying Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoyu Peng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
13
|
Song J, Mu Y, Li C, Bergh A, Miaczynska M, Heldin CH, Landström M. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain. Oncotarget 2016; 7:279-92. [PMID: 26583432 PMCID: PMC4807998 DOI: 10.18632/oncotarget.6346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023] Open
Abstract
The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL–TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker.
Collapse
Affiliation(s)
- Jie Song
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Yabing Mu
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Chunyan Li
- Implant Center, Stomatological Hospital, Jilin University, Changchun, China
| | - Anders Bergh
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Marta Miaczynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, Warsaw, Poland
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
14
|
Yeo JC, Wall AA, Luo L, Condon ND, Stow JL. Distinct Roles for APPL1 and APPL2 in Regulating Toll-like Receptor 4 Signaling in Macrophages. Traffic 2016; 17:1014-26. [PMID: 27219021 DOI: 10.1111/tra.12415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
Macrophages are activated by contact with pathogens to mount innate immune defenses against infection. Toll-like receptor 4 (TLR4) at the macrophage surface recognizes and binds bacterial lipopolysaccharide (LPS), setting off signaling and transcriptional events that lead to the secretion of pro- and anti-inflammatory cytokines; these in turn control inflammatory and antimicrobial responses. Although the complex regulatory pathways downstream of TLR4 have been extensively studied, further molecules critical for modulating the resulting cytokine outputs remain to be characterized. Here we establish potential roles for APPL1 and 2 signaling adaptors as regulators of LPS/TLR4-induced signaling, transcription, and cytokine secretion. APPL1 and 2 are differentially localized to distinct signaling-competent membrane domains on the surface and in endocytic compartments of LPS-activated macrophages. By depleting cells of each adaptor respectively we show separate and opposing functions for APPL1 and 2 in Akt and MAPK signaling. Specifically, APPL2 has a dominant role in nuclear translocation of NF-KB p65 and it serves to constrain the secretion of pro- and anti-inflammatory cytokines. The APPLs, and in particular APPL2, are thus revealed as adaptors with important capacity to modulate inflammatory responses mounted by LPS/TLR4 during infection.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
15
|
Kim S, Sato Y, Mohan PS, Peterhoff C, Pensalfini A, Rigoglioso A, Jiang Y, Nixon RA. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease. Mol Psychiatry 2016; 21:707-16. [PMID: 26194181 PMCID: PMC4721948 DOI: 10.1038/mp.2015.97] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
β-Amyloid precursor protein (APP) and its cleaved products are strongly implicated in Alzheimer's disease (AD). Endosomes are highly active APP processing sites, and endosome anomalies associated with upregulated expression of early endosomal regulator, rab5, are the earliest known disease-specific neuronal response in AD. Here, we show that the rab5 effector APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) mediates rab5 overactivation in Down syndrome (DS) and AD, which is caused by elevated levels of the β-cleaved carboxy-terminal fragment of APP (βCTF). βCTF recruits APPL1 to rab5 endosomes, where it stabilizes active GTP-rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired axonal transport of rab5 endosomes. In DS fibroblasts, APPL1 knockdown corrects these endosomal anomalies. βCTF levels are also elevated in AD brain, which is accompanied by abnormally high recruitment of APPL1 to rab5 endosomes as seen in DS fibroblasts. These studies indicate that persistent rab5 overactivation through βCTF-APPL1 interactions constitutes a novel APP-dependent pathogenic pathway in AD.
Collapse
Affiliation(s)
- S Kim
- Cellular and Molecular Biology Training Program, New York University School of Medicine, New York, NY, USA
| | - Y Sato
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - P S Mohan
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - C Peterhoff
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - A Pensalfini
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - A Rigoglioso
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Y Jiang
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - R A Nixon
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA,Department of Cell Biology, New York University School of Medicine, New York, NY, USA,Center for Dementia Research, Nathan S Kline Institute, New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA. E-mail:
| |
Collapse
|
16
|
Zhai JS, Song JG, Zhu CH, Wu K, Yao Y, Li N. Expression of APPL1 is correlated with clinicopathologic characteristics and poor prognosis in patients with gastric cancer. ACTA ACUST UNITED AC 2016; 23:e95-e101. [PMID: 27122990 DOI: 10.3747/co.23.2775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although appl1 is overexpressed in many cancers, its status in gastric cancer (gc) is not known. In the present study, we used relevant pathologic and clinical data to investigate appl1 expression in patients with gc. METHODS In 47 gc and 27 non-gc surgical specimens, immunohistochemistry was used to detect the expression of appl1, and reverse-transcriptase polymerase chain reaction (rt-pcr) was used to detect messenger rna (mrna). A scatterplot visualized the relationship between survival time and mrna expression in gc patients. The log-rank test and other survival statistics were used to determine the association of appl1 expression with the pathologic features of the cancer and clinical outcomes. RESULTS In gc, appl1 was expressed in 28 of 47 specimens (59.6%), and in non-gc, it was expressed in 7 of 23 specimens (30.4%, p < 0.05). The expression of mrna in gc was 0.82 [95% confidence interval (ci): 0.78 to 0.86], and in non-gc, it was 0.73 (95% ci: 0.69 to 0.77; p < 0.05). Immunohistochemistry demonstrated that, in gc, appl1 expression was correlated with depth of infiltration (p = 0.005), lymph node metastasis (p = 0.017), and TNM stage (p = 0.022), but not with pathologic type (p = 0.41). Testing by rt-pcr demonstrated that, in gc, appl1 mrna expression was correlated with depth of infiltration (p = 0.042), lymph node metastasis (p = 0.031), and TNM stage (p = 0.04), but again, not with pathologic type (p = 0.98). The correlation coefficient between survival time and mrna expression was -0.83 (p < 0.01). Overexpression of appl1 protein (hazard ratio: 3.88; 95% ci: 1.07 to 14.09) and mrna (hazard ratio: 4.23; 95% ci: 3.09 to 15.11) was a risk factor for death in patients with gc. CONCLUSIONS Expression of appl1 is increased in gc. Overexpression is prognostic for a lethal outcome.
Collapse
Affiliation(s)
- J S Zhai
- Postgraduate Team, Chinese pla General Hospital, Medical School of Chinese pla, Beijing, P.R.C.;; Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - J G Song
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - C H Zhu
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - K Wu
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - Y Yao
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - N Li
- Postgraduate Team, Chinese pla General Hospital, Medical School of Chinese pla, Beijing, P.R.C.;; Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| |
Collapse
|
17
|
Villaseñor R, Kalaidzidis Y, Zerial M. Signal processing by the endosomal system. Curr Opin Cell Biol 2016; 39:53-60. [PMID: 26921695 DOI: 10.1016/j.ceb.2016.02.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 02/08/2023]
Abstract
Cells need to decode chemical or physical signals from their environment in order to make decisions on their fate. In the case of signalling receptors, ligand binding triggers a cascade of chemical reactions but also the internalization of the activated receptors in the endocytic pathway. Here, we highlight recent studies revealing a new role of the endosomal network in signal processing. The diversity of entry pathways and endosomal compartments is exploited to regulate the kinetics of receptor trafficking, and interactions with specific signalling adaptors and effectors. By governing the spatio-temporal distribution of signalling molecules, the endosomal system functions analogously to a digital-analogue computer that regulates the specificity and robustness of the signalling response.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Roche Innovation Center Basel, Grenzacherstrasse, CH-4070 Basel, Switzerland.
| | - Yannis Kalaidzidis
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| | - Marino Zerial
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| |
Collapse
|
18
|
Kalaidzidis I, Miaczynska M, Brewińska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y, Zerial M. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J Cell Biol 2016; 211:123-44. [PMID: 26459602 PMCID: PMC4602042 DOI: 10.1083/jcb.201311117] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway.
Collapse
Affiliation(s)
- Inna Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Marta Miaczynska
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Marta Brewińska-Olchowik
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Anna Hupalowska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Charles Ferguson
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland St. Lucia, Brisbane, Australia 4072
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland St. Lucia, Brisbane, Australia 4072
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
19
|
Duhamel M, Rodet F, Delhem N, Vanden Abeele F, Kobeissy F, Nataf S, Pays L, Desjardins R, Gagnon H, Wisztorski M, Fournier I, Day R, Salzet M. Molecular Consequences of Proprotein Convertase 1/3 (PC1/3) Inhibition in Macrophages for Application to Cancer Immunotherapy: A Proteomic Study. Mol Cell Proteomics 2015; 14:2857-77. [PMID: 26330543 DOI: 10.1074/mcp.m115.052480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/26/2022] Open
Abstract
Macrophages provide the first line of host immune defense. Their activation triggers the secretion of pro-inflammatory cytokines and chemokines recruiting other immune cells. In cancer, macrophages present an M2 anti-inflammatory phenotype promoting tumor growth. In this way, strategies need to be develop to reactivate macrophages. Previously thought to be expressed only in cells with a neural/neuroendocrine phenotype, the proprotein convertase 1/3 has been shown to also be expressed in macrophages and regulated as a function of the Toll-like receptor immune response. Here, we investigated the intracellular impact of the down-regulation of the proprotein convertase 1/3 in NR8383 macrophages and confirmed the results on macrophages from PC1/3 deficient mice. A complete proteomic study of secretomes and intracellular proteins was undertaken and revealed that inhibition of proprotein convertase 1/3 orient macrophages toward an M1 activated phenotype. This phenotype is characterized by filopodial extensions, Toll-like receptor 4 MyD88-dependent signaling, calcium entry augmentation and the secretion of pro-inflammatory factors. In response to endotoxin/lipopolysaccharide, these intracellular modifications increased, and the secreted factors attracted naïve T helper lymphocytes to promote the cytotoxic response. Importantly, the application of these factors onto breast and ovarian cancer cells resulted in a decrease viability or resistance. Under inhibitory conditions using interleukin 10, PC1/3-knockdown macrophages continued to secrete inflammatory factors. These data indicate that targeted inhibition of proprotein convertase 1/3 could represent a novel type of immune therapy to reactivate intra-tumoral macrophages.
Collapse
Affiliation(s)
- Marie Duhamel
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Franck Rodet
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Nadira Delhem
- §Institut de Biologie de Lille, UMR 8161 CNRS, Institut Pasteur de Lille, Université Lille 1, Lille, France
| | - Fabien Vanden Abeele
- ¶Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Firas Kobeissy
- ‖Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut
| | - Serge Nataf
- **Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1
| | - Laurent Pays
- **Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1
| | - Roxanne Desjardins
- ‡‡Institut de Pharmacologie, Département de Chirurgie/Service d'Urologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Hugo Gagnon
- §§PhenoSwitch Bioscience Inc. 3001 12 Ave Nord, Sherbrooke, Qc, Canada, J1H 5N4
| | - Maxence Wisztorski
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Isabelle Fournier
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Robert Day
- ‡‡Institut de Pharmacologie, Département de Chirurgie/Service d'Urologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Michel Salzet
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France;
| |
Collapse
|
20
|
Chau TL, Göktuna SI, Rammal A, Casanova T, Duong HQ, Gatot JS, Close P, Dejardin E, Desmecht D, Shostak K, Chariot A. A role for APPL1 in TLR3/4-dependent TBK1 and IKKε activation in macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 194:3970-83. [PMID: 25780039 DOI: 10.4049/jimmunol.1401614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/03/2015] [Indexed: 01/07/2023]
Abstract
Endosomes have important roles in intracellular signal transduction as a sorting platform. Signaling cascades from TLR engagement to IRF3-dependent gene transcription rely on endosomes, yet the proteins that specifically recruit IRF3-activating molecules to them are poorly defined. We show that adaptor protein containing a pleckstrin-homology domain, a phosphotyrosine-binding domain, and a leucine zipper motif (APPL)1, an early endosomal protein, is required for both TRIF- and retinoic acid-inducible gene 1-dependent signaling cascades to induce IRF3 activation. APPL1, but not early endosome Ag 1, deficiency impairs IRF3 target gene expression upon engagement of both TLR3 and TLR4 pathways, as well as in H1N1-infected macrophages. The IRF3-phosphorylating kinases TBK1 and IKKε are recruited to APPL1 endosomes in LPS-stimulated macrophages. Interestingly, APPL1 undergoes proteasome-mediated degradation through ERK1/2 to turn off signaling. APPL1 degradation is blocked when signaling through the endosome is inhibited by chloroquine or dynasore. Therefore, APPL1 endosomes are critical for IRF3-dependent gene expression in response to some viral and bacterial infections in macrophages. Those signaling pathways involve the signal-induced degradation of APPL1 to prevent aberrant IRF3-dependent gene expression linked to immune diseases.
Collapse
Affiliation(s)
- Tieu-Lan Chau
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Serkan Ismail Göktuna
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Ayman Rammal
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Tomás Casanova
- Department of Veterinary Pathology, Fundamental and Applied Research for Animals and Health, University of Liege, 4000 Liege, Belgium
| | - Hong-Quan Duong
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Jean-Stéphane Gatot
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Pierre Close
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Emmanuel Dejardin
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Molecular Immunology and Signal Transduction, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; and
| | - Daniel Desmecht
- Department of Veterinary Pathology, Fundamental and Applied Research for Animals and Health, University of Liege, 4000 Liege, Belgium
| | - Kateryna Shostak
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Walloon Excellence in Life Sciences and Biotechnology, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
21
|
Gao L, Tang W, Ding Z, Wang D, Qi X, Wu H, Guo J. Protein-Binding Function of RNA-Dependent Protein Kinase Promotes Proliferation through TRAF2/RIP1/NF-κB/c-Myc Pathway in Pancreatic β cells. Mol Med 2015; 21:154-66. [PMID: 25715336 DOI: 10.2119/molmed.2014.00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/18/2015] [Indexed: 12/29/2022] Open
Abstract
Double-stranded RNA-dependent protein kinase (PKR), an intracellular pathogen recognition receptor, is involved both in insulin resistance in peripheral tissues and in downregulation of pancreatic β-cell function in a kinase-dependent manner, indicating PKR as a core component in the progression of type 2 diabetes. PKR also acts as an adaptor protein via its protein-binding domain. Here, the PKR protein-binding function promoted β-cell proliferation without its kinase activity, which is associated with enhanced physical interaction with tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. In addition, the transcription of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-dependent survival gene c-Myc was upregulated significantly and is necessary for proliferation. Upregulation of the PKR protein-binding function induced the NF-κB pathway, as observed by dose-dependent degradation of IκBα, induced nuclear translocation of p65 and elevated NF-κB-dependent reporter gene expression. NF-κB-dependent reporter activity and β-cell proliferation both were suppressed by TRAF2-siRNA, but not by TRAF6-siRNA. TRAF2-siRNA blocked the ubiquitination of receptor-interacting serine/threonine-protein kinase 1 (RIP1) induced by PKR protein binding. Furthermore, RIP1-siRNA inhibited β-cell proliferation. Proinflammatory cytokines (TNFα) and glucolipitoxicity also promoted the physical interaction of PKR with TRAF2. Collectively, these data indicate a pivotal role for PKR's protein-binding function on the proliferation of pancreatic β cells through TRAF2/RIP1/NF-κB/c-Myc pathways. Therapeutic opportunities for type 2 diabetes may arise when its kinase catalytic function, but not its protein-binding function, is downregulated.
Collapse
Affiliation(s)
- Lili Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Tang
- Department of Endocrinology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - ZhengZheng Ding
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - DingYu Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - XiaoQiang Qi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - HuiWen Wu
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Banach-Orlowska M, Szymanska E, Miaczynska M. APPL1 endocytic adaptor as a fine tuner of Dvl2-induced transcription. FEBS Lett 2015; 589:532-9. [PMID: 25622892 DOI: 10.1016/j.febslet.2015.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/28/2022]
Abstract
APPL1 is a multifunctional endocytic adaptor which acts at different steps of various signaling pathways. Here we report that APPL1 interacts with Dvl2, a protein known to activate the canonical and non-canonical Wnt pathways. APPL1 synergizes with Dvl2 and potentiates transcription driven by AP-1 transcription factors, specifically by c-Jun, in non-canonical Wnt signaling. This function of APPL1 requires its endosomal recruitment. Overproduction of APPL1 increases Dvl2-mediated expression of AP-1 target gene encoding metalloproteinase 1 (MMP1) in a JNK-dependent manner. Collectively, we propose a novel role of APPL1 as a positive regulator of Dvl2-dependent transcriptional activity of AP-1.
Collapse
Affiliation(s)
| | - Ewelina Szymanska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
23
|
Absence of Appl2 sensitizes endotoxin shock through activation of PI3K/Akt pathway. Cell Biosci 2014; 4:60. [PMID: 25328665 PMCID: PMC4201708 DOI: 10.1186/2045-3701-4-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The adapter proteins Appl1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif 1) and Appl2 are highly homologous and involved in several signaling pathways. While previous studies have shown that Appl1 plays a pivotal role in adiponectin signaling and insulin secretion, the physiological functions of Appl2 are largely unknown. RESULTS In the present study, the role of Appl2 in sepsis shock was investigated by using Appl2 knockout (KO) mice. When challenged with lipopolysaccharides (LPS), Appl2 KO mice exhibited more severe symptoms of endotoxin shock, accompanied by increased production of proinflammatory cytokines. In comparison with the wild-type control, deletion of Appl2 led to higher levels of TNF-α and IL-1β in primary macrophages. In addition, phosphorylation of Akt and its downstream effector NF-κB was significantly enhanced. By co-immunoprecipitation, we found that Appl2 and Appl1 interacted with each other and formed a complex with PI3K regulatory subunit p85α, which is an upstream regulator of Akt. Consistent with these results, deletion of Appl1 in macrophages exhibited characteristics of reduced Akt activation and decreased the production of TNFα and IL-1β when challenged by LPS. CONCLUSIONS Results of the present study demonstrated that Appl2 is a critical negative regulator of innate immune response via inhibition of PI3K/Akt/NF-κB signaling pathway by forming a complex with Appl1 and PI3K.
Collapse
|
24
|
Wang YZ, Tian FF, Yan M, Zhang JM, Liu Q, Lu JY, Zhou WB, Yang H, Li J. Delivery of an miR155 inhibitor by anti-CD20 single-chain antibody into B cells reduces the acetylcholine receptor-specific autoantibodies and ameliorates experimental autoimmune myasthenia gravis. Clin Exp Immunol 2014; 176:207-21. [PMID: 24387321 DOI: 10.1111/cei.12265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2013] [Indexed: 11/28/2022] Open
Abstract
MicroRNA-155 (miR155) is required for antibody production after vaccination with attenuated Salmonella. miR155-deficient B cells generated reduced germinal centre responses and failed to produce high-affinity immunoglobulin (Ig)G1 antibodies. In this study, we observed up-regulation of miR155 in the peripheral blood mononuclear cells (PBMCs) of patients with myasthenia gravis (MG), and miR155 was also up-regulated in torpedo acetylcholine receptor (T-AChR)-stimulated B cells. We used an inhibitor of miR155 conjugated to anti-CD20 single-chain antibody to treat both the cultured B cells and the experimental autoimmune MG (EAMG) mice. Our results demonstrated that silencing of miR155 by its inhibitor impaired the B cell-activating factor (BAFF)-R-related signalling pathway and reduced the translocation of nuclear factor (NF)-κB into the nucleus. Additionally, AChR-specific autoantibodies were reduced, which may be related to the altered amounts of marginal zone B cells and memory B cells in the spleens of EAMG mice. Our study suggests that miR155 may be a promising target for the clinical therapy of MG.
Collapse
Affiliation(s)
- Y-Z Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hennig J, McShane MP, Cordes N, Eke I. APPL proteins modulate DNA repair and radiation survival of pancreatic carcinoma cells by regulating ATM. Cell Death Dis 2014; 5:e1199. [PMID: 24763056 PMCID: PMC4001316 DOI: 10.1038/cddis.2014.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/12/2022]
Abstract
Despite intensive multimodal therapies, the overall survival rate of patients with ductal adenocarcinoma of the pancreas is still poor. The chemo- and radioresistance mechanisms of this tumor entity remain to be determined in order to develop novel treatment strategies. In cancer, endocytosis and membrane trafficking proteins are known to be utilized and they also critically regulate essential cell functions like survival and proliferation. On the basis of these data, we evaluated the role of the endosomal proteins adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif (APPL)1 and 2 for the radioresistance of pancreatic carcinoma cells. Here, we show that APPL2 expression in pancreatic cancer cells is upregulated after irradiation and that depletion of APPL proteins by small interfering RNA (siRNA) significantly reduced radiation survival in parallel to impairing DNA double strand break (DSB) repair. In addition, APPL knockdown diminished radiogenic hyperphosphorylation of ataxia telangiectasia mutated (ATM). Activated ATM and APPL1 were also shown to interact after irradiation, suggesting that APPL has a more direct role in the phosphorylation of ATM. Double targeting of APPL proteins and ATM caused similar radiosensitization and concomitant DSB repair perturbation to that observed after depletion of single proteins, indicating that ATM is the central modulator of APPL-mediated effects on radiosensitivity and DNA repair. These data strongly suggest that endosomal APPL proteins contribute to the DNA damage response. Whether targeting of APPL proteins is beneficial for the survival of patients with pancreatic adenocarcinoma remains to be elucidated.
Collapse
Affiliation(s)
- J Hennig
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - M P McShane
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - N Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - I Eke
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| |
Collapse
|
26
|
Cheng KKY, Lam KSL, Wang B, Xu A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract Res Clin Endocrinol Metab 2014; 28:3-13. [PMID: 24417941 DOI: 10.1016/j.beem.2013.06.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adiponectin is an insulin-sensitizing adipokine with protective effects against a cluster of obesity-related metabolic and cardiovascular disorders. The adipokine exerts its insulin-sensitizing effects by alleviation of obesity-induced ectopic lipid accumulation, lipotoxicity and chronic inflammation, as well as by direct cross-talk with insulin signaling cascades. Adiponectin and insulin signaling pathways converge at the adaptor protein APPL1. On the one hand, APPL1 interacts with adiponectin receptors and mediates both metabolic and vascular actions of adiponectin through activation of AMP-activated protein kinase and p38 MAP kinase. On the other hand, APPL1 potentiates both the actions and secretion of insulin by fine-tuning the Akt activity in multiple insulin target tissues. In obese animals, reduced APPL1 expression contributes to both insulin resistance and defective insulin secretion. This review summarizes recent advances on the molecular mechanisms by which adiponectin sensitizes insulin actions, and discusses the roles of APPL1 in regulating both adiponectin and insulin signaling cascades.
Collapse
Affiliation(s)
- Kenneth K Y Cheng
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Karen S L Lam
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Baile Wang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong; Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong.
| |
Collapse
|
27
|
Pyrzynska B, Banach-Orlowska M, Teperek-Tkacz M, Miekus K, Drabik G, Majka M, Miaczynska M. Multifunctional protein APPL2 contributes to survival of human glioma cells. Mol Oncol 2012; 7:67-84. [PMID: 22989406 PMCID: PMC3553582 DOI: 10.1016/j.molonc.2012.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 12/01/2022] Open
Abstract
Some endocytic proteins have recently been shown to play a role in tumorigenesis. In this study, we demonstrate that APPL2, an adapter protein with known endocytic functions, is upregulated in 40% cases of glioblastoma multiforme, the most common and aggressive cancer of the central nervous system. The silencing of APPL2 expression by small interfering RNAs (siRNAs) in glioma cells markedly reduces cell survival under conditions of low growth factor availability and enhances apoptosis (measured by executor caspase activity). Long‐term depletion of APPL2 by short hairpin RNAs (shRNAs), under regular growth factor availability, suppresses the cell transformation abilities, assessed by inhibited colony formation in soft agar and by reduced xenograft tumor growth in vivo. At the molecular level, the negative effect of APPL2 knockdown on cell survival is not due to the alterations in AKT or GSK3β activities which were reported to be modulated by APPL proteins. Instead, we attribute the reduced cell survival upon APPL2 depletion to the changes in gene expression, in particular to the upregulation of apoptosis‐related genes, such as UNC5B (a proapoptotic dependence receptor) and HRK (harakiri, an activator of apoptosis, which antagonizes anti‐apoptotic function of Bcl2). In support of this notion, the loss of glioma cell survival upon APPL2 knockdown can be rescued either by an excess of netrin‐1, the prosurvival ligand of UNC5B or by simultaneous silencing of HRK. Consistently, APPL2 overexpression reduces expression of HRK and caspase activation in cells treated with apoptosis inducers, resulting in the enhancement of cell viability. This prosurvival activity of APPL2 is independent of its endosomal localization. Cumulatively, our data indicate that a high level of APPL2 protein might enhance glioblastoma growth by maintaining low expression level of genes responsible for cell death induction. APPL2 protein levels are elevated in 40% cases of glioblastoma multiforme. Overexpression of APPL2 exhibits cytoprotective effects in glioma cells. APPL2 depletion reduces survival and transformation abilities of glioma cells. Silencing of APPL2 promotes expression of proapoptotic genes HRK and UNC5B.
Collapse
Affiliation(s)
- Beata Pyrzynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|